• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 27
  • 11
  • 11
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 229
  • 229
  • 131
  • 57
  • 45
  • 40
  • 36
  • 36
  • 32
  • 30
  • 29
  • 26
  • 24
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Synthesis Of Septanosides Through An Oxyglycal Route And Studies Of Their Conformational And Mesophase Behavior

Narayanaswamy, Vijaya Ganesh 12 1900 (has links)
Cyclopropanes are strained molecules and undergo reactions, for example, through ring opening and rearrangements. Preparative methods and reactivities of cyclopropanes are known widely in organic synthesis. The high reactivities inherent in cyclopropanes allow them to be valuable building blocks in organic synthesis. The combination of cyclopropanes and carbohydrates has been explored in recent years. Carbohydrates, the naturally-occurring members of chiral pool, are attractive platforms for asymmetric synthesis. Cyclopropanation of, for example, unsaturated sugars affords [4.1.0] bicyclic systems, thereby combining the high reactivities of cyclopropanes together with optical purities of sugars. Chapter 1 of the Thesis describes (i) various types of cyclopropane ring opening reactions in general and (ii) known reactions of cyclopropanes in carbohydrates relevant to the work presented in the Thesis. Seven-membered cyclic sugars, namely, septanoses and septanosides, are less commonly known sugar homologues. Synthesis of septanoses arise interest, due to their configurational and conformational features and the attendant possibilities to explore their chemical, physical and biological properties. In a programme, it was desired to identify a new methodology for synthesis of septanosides. It was envisaged that 2-hydroxy glycals, namely, oxyglycals, would form as suitable substrates for ring expansion, leading to the formation of septanoside derivatives that are retained with hydroxyl groups in each carbon of the septanoside. In the event, a new methodology was identified. A carbene insertion of an oxyglycal substrate, nucleophilic ring opening of the cyclopropyl moiety, oxidation and reduction reactions were identified to expand the six membered pyranoses to seven membered septanosides (Scheme 1). The methodology was established through preparation of two configurationally different septanosides, namely, the methyl α-D-glycero-D-talo-septanoside and methyl α-D-glycero-L-altro-septanoside from D-glucose and D-galactose, respectively. Chapter 2 presents details of the methodology and the preparation of septanosides from precursors oxyglucal and oxygalactal. Scheme 1 Continuing the efforts to extend the methodology, preparation of a variety of septanosides, using phenoxides, sugars and azide were undertaken. It was found that ring opening with sugars were highly stereoselective, leading to an exclusive formation of the -anomer of sugar oxepines, whereas, the phenoxides and azide led to a mixture of anomers of the corresponding oxepines, in a ~1:1 ratio (Scheme 2). Scheme 2 An important observation was -anomer of the oxepine derived intermediates, having diketo-functionalities, underwent NaBH4 mediated conversion to diols with higher diastereoselectivities at the newly generated stereo-centers, whereas the -anomers lacked to retain the diastereoselectivities, in the case of aryl septanosides. This part of work consolidated further the generality of the oxyglycal ring-expansion method to prepare septanosides, possessing different substituents at their reducing ends. Chapter 3 describes the details of syntheses and characterization of various aryl septanosides, septanoside disaccharides and azido-septanoside derivatives. It was planned further to synthesize septanoside containing di-and trisaccharides from naturally-occurring disaccharides, through the oxyglycal route. Oxyglycals, derived from lactose and maltose, were expanded to septanoside-containing trisaccharides through a ring expansion method. Thus septanosides incorporated disaccharides and trisaccharides, with 6-7, 6-7-5 and 6-7-6 ring sizes, were prepared through the ring expansion method. The reaction not only led to a ring expansion, but also, to a concomitant glycoside formation, in a stereoselective manner (Scheme 3). Scheme 3 A conformational analysis of the galacto-septano-glucopyrano-configured 6-7-6 trisaccharide was undertaken with aid of NMR spectroscopy and computational methods. Spatial distances from NMR experiments were utilized while performing molecular dynamics with AMBER* force field and further optimizations using B3LYP/6-31+G* level. The study showed that septanoside ring in the trisaccharide adopted twist-chair conformation O,1TC5,6, as shown in Figure 1. Chapter 4 describes synthesis of septanoside containing di-and trisaccharides and conformational analysis of a 6-7-6 trisaccharide, through solution phase and computational methods. An effort was pursued to prepare septanoside-based amphiphiles with varying alkyl chain lengths, using our newly established methodology and to study their amphiphilicities. A series of septanoside amphiphiles, having C10 to C18 alkyl groups, were prepared as their -anomers as shown in Figure 2. The amphiphilic behavior of the alkyl septanosides was assessed through studies of their liquid crystalline (LC) properties. The LC properties were evaluated using polarizing optical microscopy, differential scanning calorimetry and powder X-ray diffraction methods. All the septanoside amphiphiles exhibited a smectic A phase in general. DSC thermograms showed crystal-crystal and crystal-mesophase phase transitions. Powder X-ray diffraction studies allowed to identify the lamellar structuring of the smectic A phase. Further, two distinct two layer spacings were observed. Such an observation is un-usual in carbohydrate liquid crystals. Chapter 5 details of synthesis and studies of the mesomorphic behavior of septanoside amphiphiles. In summary, the Thesis establishes a new route to synthesize septanoside derivatives, from oxyglycal sugar derivatives. Ring expansion of a pyranoside to a septanoside was achieved through key reactions of a cyclopropanation, ring opening, oxidation and reduction. Methyl α-D-glycero-septanoside derivatives were synthesized, from the corresponding oxyglycals. Cyclopropane ring opening ability of various nucleophiles were studied, it was found that ring-opening reactions with phenols, sugars, and azides are effective, which facilitated the synthesis of various aryl, glycosyl and azido-substituted septanosides. Synthesis of septanosides incorporated with di-and trisaccharides were accomplished. The detailed conformational analysis studies showed that the septanoside adopted twist-chair conformation in a trisaccharide molecule. Preparation and studies of septanoside based amphiphiles and their mesophase behavior were also accomplished. Overall, the studies presented in the Thesis provide a new insight to ring expanded sugars. The salient features of the present method are that the intermediates such as the seven membered vinyl halides, vinyl ethers, the diketones and the diols are potential sites for many other functionalizations. These features can be explored further in functionalizing the newly formed septanosides. (For structural formula pl see the pdf file)
162

Tuning Properties of Surfaces and Nanoscopic Objects using Dendronization and Controlled Polymerizations

Östmark, Emma January 2007 (has links)
In this study, dendronization and grafting via controlled polymerization techniques, atom transfer radical polymerization (ATRP) and ring-opening polymerization (ROP), have been explored. Modification of surfaces and cellulose using these techniques, which enable grafting of well-defined polymer architectures, has been investigated. The interest in using cellulose stems from its renewability, biocompatibility, high molecular weight, and versatile functionalization possibilities. Dendronization was performed using disulfide-cored didendrons of 2,2-bis(methylol)propionic acid (bis-MPA) on gold surfaces, for the formation of self-assembled monolayers. It was found that the height of the monolayer increased with increasing dendron generation and that the end-group functionality controlled the wettability of the modified surface. Superhydrophobic cellulose surfaces could be obtained when a ‘graft-on-graft’ architecture was obtained using ATRP from filter paper after subsequent post-functionalized using a perfluorinated compound. The low wettability could be explained by a combination of a high surface roughness and the chemical composition. Biobased dendronized polymers were synthesized through the ‘attach to’ route employing dendronization of soluble cellulose, in the form of hydroxypropyl cellulose (HPC). The dendronized polymers were studied as nanosized objects using atomic force microscopy (AFM) and it was found that the dendron end-group functionality had a large effect on the molecular conformation on surfaces of spun cast molecules. ATRP of vinyl monomers was conducted from an initiator-functionalized HPC and an initiator-functionalized first generation dendron, which was attached to HPC. The produced comb polymers showed high molecular weight and their sizes could be estimated via AFM of spun cast molecules on mica and from dynamic light scattering in solution, to around 100-200 nm. The comb polymers formed isoporous membranes, exhibiting pores of a few micrometers, when drop cast from a volatile solvent in a humid environment. HPC was also used to initiate ROP of ε-caprolactone, which was chain extended using ATRP to achieve amphiphilic comb block copolymers. These polymers could be suspended in water, cross-linked and were able to solubilize a hydrophobic compound. / QC 20100826
163

Ring-opening catalysts for cetane improvement of diesel fuels

Nylén, Ulf January 2005 (has links)
The global oil refining industry with its present product distribution essentially shifted towards fuels such as gasoline and diesel will most likely hold the fort for considerable time. However, conditions are changing and refinery survival will very much depend on long-term planning, process and product flexibility and being at the frontiers of refining technology, a technology where catalysts play leading roles. Today oil refiners are faced with the challenge of producing fuels that meet increasingly tight environmental specifications, in particular with respect to maximum sulphur content. At the same time, the average quality of crude oil is becoming poorer with higher amounts of aromatics, heteroatoms (sulphur and nitrogen) and heavy metals. In order to stay competitive, it is of decisive importance for refiners to upgrade dense petroleum fractions of low quality to highly value-added products. A practicable route, for example, is upgrading the catalytic cracking by-product Light Cycle Oil (LCO) into a high-quality diesel-blending component in a two-step catalytic process. In the first step the LCO is hydrotreated over a Pt Pd based acidic catalyst bringing about heteroatom and aromatic reduction and isomerization of C6 to C5 naphthenic structures. In the second step these naphthenic structures are selectively opened over an Ir-based catalyst to improve the cetane value. The present thesis is mainly devoted to the second catalytic step of LCO upgrading and was partly conducted within the framework of the European Union project RESCATS. From the patent literature it is evident that iridium-based catalysts could be good candidates for ring-opening purposes. A literature survey covering ring opening of naphthenic structures made in the beginning of the project (in 2001), showed the need for extending investigations to heavier hydrocarbons, more representative of the diesel fraction than model compounds such as alkylated mono C5 and C6 naphthenic rings frequently employed in previous academic studies. Ring-opening catalysts, mainly Pt-Ir based, were synthesised at KTH by two different techniques: the microemulsion and the incipient wetness techniques. Paper I is a review of the microemulsion technique and its applications in heterogeneous catalysis. Characterization of catalysts was performed employing a multitude of techniques including quantitative TPR, TEM-EDX, XPS, CO FT-IR, NH3-DRIFTS and XRF etc. Catalytic screening at 325 oC and atmospheric pressure with hydrogen and pure indan as model substance was conducted to investigate ring-opening activity in terms of conversion and selectivity to desired cetane-boosting products. This development process is the topic of Papers II-IV. The possible industrial implementation of the best catalyst candidate is demonstrated in Paper V. When designing a catalytic system aimed at refining petroleum, it is crucial to monitor the evolution of the sulphur distribution throughout the different stages of the process so that catalyst properties and reaction parameters may be optimised. The final section of this thesis and Paper VI are devoted to high-resolution sulphur-distribution analysis by means of a sulphur chemiluminescence detector (SCD) following gas chromatographic separation. / QC 20101014
164

Design of polyester and porous scaffolds

Odelius, Karin January 2005 (has links)
<p>The use of synthetic materials for tissue and organ reconstruction, i. e. tissue engineering, has become a promising alternative to current surgical therapies and may overcome the shortcomings of the methods in use today. The challenge is in the design and reproducible fabrication of biocompatible and bioresorbable polymers, with suitable surface chemistry, desirable mechanical properties, and the wanted degradation profile. These material properties can be achieved in various manners, including the synthesis of homo- and copolymers along with linear and star-shaped architectures. In many applications the materials’ three-dimensional structure is almost as important as its composition and porous scaffolds with high porosity and interconnected pores that facilitate the in-growth of cells and transportation of nutrients and metabolic waste is desired.</p><p>In this work linear and star-shaped polymers have been synthesized by ring-opening polymerization using a stannous-based catalyst and a spirocyclic tin initiator. A series of linear copolymers with various combinations of 1,5-dioxepane-2-one (DXO), Llactide (LLA) and ε-caprolactone (CL) have been polymerized using stannous octoate as catalyst. It is shown that the composition of the polymers can be chosen in such a manner that the materials’ mechanical and thermal properties can be predetermined. A solvent-casting and particulate leaching scaffold preparation technique has been developed and used to create three-dimensional structures with interconnected pores. The achieved physical properties of these materials’ should facilitate their use in both soft and hard tissue regeneration.</p><p>Well defined star-shaped polyesters have been synthesized using a spirocyclic tin initiator where L-lactide was chosen as a model system for the investigation of the polymerization kinetics. Neither the temperature nor the solvent affects the molecular weight or the molecular weight distribution of the star-shaped polymers, which all show a molecular weight distribution below 1.19 and a molecular weight determined by the initial monomer-to-initiator concentration.</p>
165

Novel methods to synthesize aliphatic polyesters of vivid architectures

Srivastava, Rajiv January 2005 (has links)
<p>Cross-linked films of ε-caprolactone (CL) and 1,5-dioxepan-2-one (DXO) having various mole fractions of monomers and different cross-link densities were prepared using 2,2’-bis-(-caprolactone-4-yl) propane (BCP) as cross-linking agent and Sn(Oct)2 as catalyst. Reaction parameters were examined to optimize the film-forming conditions. Networks obtained were elastomeric materials, easy to cast and remove from the mould. Effect of CL content and cross-link density on the final properties of the polymer network was evaluated. Thermal, mechanical and surface properties of the films were controlled by monomer feed composition and cross-link density. The films have potential to be used for tissue engineering applications as shown by preliminary cell growth studies. To avoid organometallic catalysts in the synthesis of poly(1,5-dioxepan-2-one) (PDXO), the enzyme-catalyzed ring-opening polymerization (ROP) of DXO was performed with lipase-CA (derived from Candida antarctica) as a biocatalyst. A linear relationship between number-average molecular weight (Mn) and monomer conversion was observed, which suggested that the product molecular weight can be controlled by the stoichiometry of the reactants. The monomer consumption followed a first-order rate law with respect to monomer and no chain termination occurred. Effect of reaction water content, enzyme concentration and polymerization temperature on monomer conversion and polymer properties was studied. An initial activation by heating the enzyme was sufficient to start the polymerization as monomer conversion occurred at room temperature afterwards. Terminal-functionalized polyesters and tri-block polyesters were synthesized by lipase-CA catalyzed ROP of DXO and CL in the presence of an appropriate alcohol as initiator. Alcohol bearing unsaturation introduced a double bond at the chain end of the polyester, which is a useful pathway to synthesize comb polymers. Dihydroxyl compounds were used as macro-initiators to form tri-block polyesters. The enzyme-catalyzed polymerization of lactones has been shown to be a useful method to synthesize metal-free polyesters.</p>
166

Synthesis of top coat surface treatments for the orientation of thin film block copolymers

Chen, Christopher Hancheng 08 October 2013 (has links)
Block copolymer self-assembly has demonstrated sub-optical lithographic resolution . High values of chi, the block copolymer interaction parameter, are required to achieve next-generation lithographic resolution . Unfortunately, high values of chi can lead to thin film orientation control difficulties , which are believed to be caused by large differences in the surface energy of each block relative to the substrate and the free surface. The substrate-block interface can be modified to achieve a surface energy intermediate to that of each individual block ; the air-polymer interface, however, presents additional complications. This thesis describes the synthesis of polymers for top coat surface treatments, which are designed to modify the surface energy of the air-block copolymer interface and enable block copolymer orientation control upon thermal annealing. Polymers with β-keto acid functionality were synthesized to allow polarity switching upon decarboxylation. Syntheses of anhydride containing polymers were established that provide another class of polarity switching materials. / text
167

Functionalization of C-aryl glycals and studies toward the total synthesis of 5-hydroxyaloin A

Procko, Kristen Jean 16 February 2015 (has links)
In the context of ongoing efforts toward C-aryl glycoside synthesis, a recently developed approach to form C-aryl glycals from 2-deoxysugar lactones was expanded to form novel substrates. This approach has been applied to the synthesis of various furyl glycals, allowing access to C-aryl glycals via a benzyne furan (4+2) cycloaddition methodology. The hydroboration-oxidation of said C-aryl glycals has allowed access to C(2)-oxygenated C-aryl glycosides via the benzyne cycloaddition approach. An approach to the total synthesis of 5-hydoxyaloin A is detailed, in which regioselective benzyne furan (4+2) cycloadditions were achieved via the use of a silicon tether. Two approaches to the anthrone core have been applied; one in which an unsymmetrically-substituted aryl ring is first constructed by means of a silicon tether, and one in which the unsymmetrically-substituted ring is formed last, also utilizing a silicon tether. The latter approach has allowed access to the anthrone core of 5-hydroxyaloin A, and only a final desulfurization remains in order to access the natural product. / text
168

Catalytic Insertion Reactions into the Cyclopropane Ring Syntheses of Various Belactosin C Congeners and Analogues / Reaktionen der Katalytischen Insertion in den Cyclopropanring Synthesen von Verschiedenen Belactosin C - Analoga

Korotkov, Vadim 02 July 2008 (has links)
No description available.
169

Réactions d’ouverture d’aziridines Troc-protégées

Ross, Karen 08 1900 (has links)
Ce mémoire a comme sujet principal les réactions d’ouvertures d’aziridines et leur application synthétique. Notre groupe de recherche a récemment mis au point une méthode d’aziridination énantiosélective catalysée au cuivre à partir de N-tosyloxycarbamates qui permet d’obtenir une grande variété d’arylaziridines protégées avec un groupement carbamate. Or, même si le motif aziridine se retrouve dans certains produits naturels, l’intérêt de sa synthèse provient en partie de l’accès facile à différents composés contenant une fonction amine protégée qui peuvent être obtenus suite à l’ouverture d’aziridines par différents nucléophiles. L’ouverture nucléophile des aziridines fut largement explorée pour une variété de nucléophiles et d’aziridines. Toutefois, puisque les arylaziridines protégées par un groupement carbamate n’étaient auparavant pas disponibles, leur régio- et stéréosélectivité est encore méconnue. Nous présentons ici dans un premier temps, les résultats obtenus lors de l’ouverture de la p-nitrophénylaziridine protégée par un groupement Troc avec différents nucléophiles. Puis, suite à l’obtention de bonnes diastéréosélectivités lors de la synthèse d’aziridines avec le dérivé chiral PhTrocNHOTs, des réactions d’ouvertures ont été tentées avec la p-nitrophénylaziridine protégée avec un groupement PhTroc. Les conditions optimisées d’ouverture impliquent l’acide de Lewis BF3∙OEt2 (10 mol%) à 23 °C avec une variété de nucléophiles. Ces conditions ont été appliquées à l’ouverture d’une gamme d’aziridines protégées par le groupement PhTroc dont les résultats sont décrits dans cet ouvrage. Finalement, le dernier chapitre de ce mémoire rapporte l’utilisation de ces conditions dans la synthèse du (R)-Nifenalol, un agent beta-bloquant qui a démontré une activité en tant qu’antiangineux et antiarythmique. / The main subject of this Master thesis is the ring-opening reactions of azirdines and their synthetic applications. Our group has recently developed a copper-catalyzed enantioselective aziridination reaction from N-tosyloxycarbamates which leads to a variety of carbamate-protected arylaziridines. Although the aziridine motif appears in some natural products, interest in these models comes from the easy access to amine-protected derivatives obtained via the nucleophilic ring-opening of aziridines. Nucleophilic ring-opening of aziridines has been thoroughly studied for a variety of nucleophiles and aziridines. However, as carbamate-protected arylaziridines were not previously available, little is known on either their reactivity or regio- or stereoselectivity. We present herein the results of the ring-opening of Troc-protected p-nitrophenylaziridines with a variety of nucleophiles. Furthermore, following the discovery that excellent diastereoselectivities could be achieved by using the chiral derivative PhTrocNHOTs, ring-opening reactions were attempted on PhTroc-protected p-nitrophenylaziridine. Optimized conditions were found to be 10 mol% of BF3∙OEt2 at room temperature with a variety of nucleophiles. These conditions were also used in the ring-opening of various PhTroc-protected aziridines and the results are disclosed herein. Finally, these conditions were applied to the synthesis of (R)-Nifenalol, a beta-blocking agent that has shown antianginal and antiarrhythmic properties as described in the third chapter.
170

Palladium-Catalyzed intramolecular sp3 C–H functionalization : studies in cyclopropyl and heterocyclic motifs

Ladd, Carolyn L. 12 1900 (has links)
No description available.

Page generated in 0.0668 seconds