Spelling suggestions: "subject:"robusta"" "subject:"robust""
1 |
Qualidade física e sensorial de coffea canephora L. relacionadas á altitude, estádio de maturação e preparo pós-colheitaSturm, Gustavo Martins 28 February 2012 (has links)
Made available in DSpace on 2016-12-23T14:37:31Z (GMT). No. of bitstreams: 1
Gustavo Martins Sturm.pdf: 1946932 bytes, checksum: f7116687e140f165f172456075a87b94 (MD5)
Previous issue date: 2012-02-28 / The quality of conilon coffee (Coffea canephora) is a much broached theme at present, and this quality is much variable and may be influenced by many factors. This way, this work had as objective to evaluate the influence of altitude, the maturation stages and the post-harvest treatments regarding the physical and sensorial quality of Coffea canephora L.. The genetic material used was extracted from 24 fields, on the municipality of Alegre, Jerônimo Monteiro, Castelo, Mimoso do Sul and Muqui, on the state of Espírito Santo. Eight fields located on altitudes among 0 and 250 meters, eight among 251 and 500 meters and eight above 500 meters. A genetic pool was used with samples of the fields from different genotypes of Coffea canephora. In each field three samples were obtained: Sample 1 coffee with 90% of the red coffee berries and the other 10% of green grains (90% C); Sample 2 100% red coffee berry not peeled (100% ND); Sample 3 100% red coffee berry peeled (100% CD). The coffees from the samples were dry until they reached humidity nearly 11 to 12%. The sensorial analysis was carried out by the methodology of the new Protocol of Degustation of Robusta fine coffees, carried out by two R Graders, without the previous knowledge of origin and of the grain aspect before toasting. It was verified that there is significant difference among the fields on sensorial quality of coffee in all the altitude zones studied. Altitudes higher than 500 meters promote more satisfactory results for the sensorial attributes. The samples 90% C promote inferior results on sensorial quality and present higher quantity of defects and harvest, in all the altitude zones studied. The preparations 100% ND and 100% CD do not presents difference on the evaluated characteristics on the physical classification. The preparation method 100% CD with the altitude 3 grants coffee classified on the quality scale as fine Robustas. It was verified the existence of genotypes, that even on altitude 1, are classified as fine Robustas, however only on the preparation methods 100% ND and 100% CD / A qualidade do café conilon (Coffea canephora) é um tema muito abordado atualmente, e essa qualidade é muito variável e pode ser influenciada por vários fatores. Assim, este trabalho teve como objetivo avaliar a influência da altitude, dos estádios de maturação e dos preparos pós-colheita em relação à qualidade física e sensorial de Coffea canephora L.. O material genético utilizado foi proveniente de 24 lavouras, nos municípios de Alegre, Jerônimo Monteiro, Castelo, Mimoso do Sul e Muqui, no Estado do Espírito Santo. Oito lavouras localizadas em altitudes entre 0 e 250 metros, oito entre 251 e 500 metros e oito acima de 500 metros. Utilizou-se um pool genético com amostras de lavouras de diferentes genótipos de Coffea canephora. Em cada lavoura foram obtidas três amostras: Amostra 1 café com 90% dos frutos cereja e os outros 10% verde (90% C); Amostra 2 - café 100% cereja não descascado (100% ND); Amostra 3 café 100% cereja descascado (100% CD). Os cafés das amostras foram secos até atingirem umidade em torno de 11 a 12%. A análise sensorial foi realizada por meio da metodologia do novo Protocolo de Degustação de Robustas Finos, realizado por dois provadores (R Graders), sem o conhecimento prévio da origem e do aspecto do grão antes da torração. Verificou-se que existe diferença significativa entre as lavouras na qualidade sensorial do café em todas as faixas de altitudes estudadas. Altitudes acima de 500 metros proporcionam resultados mais satisfatórios para os atributos sensoriais. As amostras 90% C proporcionam resultados inferiores na qualidade sensorial, e apresentam maior quantidade de defeitos e catação, em todas as faixas de altitudes estudadas. Os preparos 100% ND e 100% CD não apresentam diferença nas características avaliadas na classificação física. O método de preparo 100% CD com a altitude 3 confere café classificado na escala de qualidade como robustas finos.Verificou-se a existência de genótipos, que mesmo na altitude 1, são classificados como Robustas Finos, porém apenas nos métodos de preparo 100% ND e 100% CD
|
2 |
Modelo de regresión robusta con censura intervalarAliaga Flores, Luis Carlos 10 January 2023 (has links)
El presente trabajo de tesis propone el modelo de regresion log t de Student, el cual permite
modelar variables respuesta que presentan censura intervalar y se muestra robusto frente a la
presencia de observaciones atípicas. Luego, se desarrolla aquí un estudio de simulacion clásico,
con el n de analizar la sensibilidad frente a distintos niveles de valores atípicos. Finalmente,
se desarrolla la aplicacion del modelo para la estimación de las demoras en órdenes de compras
de los proveedores de las empresas en el Perú, concluyendo que el modelo propuesto en esta
tesis tiene un mejor ajuste a los datos en comparación con el modelo Log Normal.
|
3 |
Modelos mistos aditivos semiparamétricos de contornos elípticos / Elliptical contoured semiparametric additive mixed models.Pulgar, Germán Mauricio Ibacache 14 August 2009 (has links)
Neste trabalho estendemos os modelos mistos semiparamétricos propostos por Zhang et al. (1998) para uma classe mais geral de modelos, a qual denominamos modelos mistos aditivos semiparamétricos com erros de contornos elípticos. Com essa nova abordagem, flexibilizamos a curtose da distribuição dos erros possibilitando a escolha de distribuições com caudas mais leves ou mais pesadas do que as caudas da distribuição normal padrão. Funções de verossimilhança penalizadas são aplicadas para a obtenção das estimativas de máxima verossimilhança com os respectivos erros padrão aproximados. Essas estimativas, sob erros de caudas pesadas, são robustas no sentido da distância de Mahalanobis contra observações aberrantes. Curvaturas de influência local são obtidas segundo alguns esquemas de perturbação e gráficos de diagnóstico são propostos. Exemplos ilustrativos são apresentados em que ajustes sob erros normais são comparados, através das metodologias de sensibilidade desenvolvidas no trabalho, com ajustes sob erros de contornos elípticos. / In this work we extend the models proposed by Zhang et al. (1998) to a more general class of models, know as semiparametric additive mixed models with elliptical errors in order to allow distributions with heavier or lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum likelihood estimates which appear to be robust against outlying observations in the sense of the Mahalanobis distance. In order to study the sensitivity of the penalized estimates under some usual perturbation schemes in the model or data, the local influence curvatures are derived and some diagnostic graphics are proposed. Motivating examples preliminary analyzed under normal errors are reanalyzed under some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.
|
4 |
Modelos mistos aditivos semiparamétricos de contornos elípticos / Elliptical contoured semiparametric additive mixed models.Germán Mauricio Ibacache Pulgar 14 August 2009 (has links)
Neste trabalho estendemos os modelos mistos semiparamétricos propostos por Zhang et al. (1998) para uma classe mais geral de modelos, a qual denominamos modelos mistos aditivos semiparamétricos com erros de contornos elípticos. Com essa nova abordagem, flexibilizamos a curtose da distribuição dos erros possibilitando a escolha de distribuições com caudas mais leves ou mais pesadas do que as caudas da distribuição normal padrão. Funções de verossimilhança penalizadas são aplicadas para a obtenção das estimativas de máxima verossimilhança com os respectivos erros padrão aproximados. Essas estimativas, sob erros de caudas pesadas, são robustas no sentido da distância de Mahalanobis contra observações aberrantes. Curvaturas de influência local são obtidas segundo alguns esquemas de perturbação e gráficos de diagnóstico são propostos. Exemplos ilustrativos são apresentados em que ajustes sob erros normais são comparados, através das metodologias de sensibilidade desenvolvidas no trabalho, com ajustes sob erros de contornos elípticos. / In this work we extend the models proposed by Zhang et al. (1998) to a more general class of models, know as semiparametric additive mixed models with elliptical errors in order to allow distributions with heavier or lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum likelihood estimates which appear to be robust against outlying observations in the sense of the Mahalanobis distance. In order to study the sensitivity of the penalized estimates under some usual perturbation schemes in the model or data, the local influence curvatures are derived and some diagnostic graphics are proposed. Motivating examples preliminary analyzed under normal errors are reanalyzed under some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.
|
5 |
Contribuições à análise de outliers em modelos de equações estruturais / Contributions to the analysis of outliers in structural equation modelsBulhões, Rodrigo de Souza 10 May 2013 (has links)
O Modelo de Equações Estruturais (MEE) é habitualmente ajustado para realizar uma análise confirmatória sobre as conjecturas de um pesquisador acerca do relacionamento entre as variáveis observadas e latentes de algum estudo. Na prática, a maneira mais recorrente de avaliar a qualidade das estimativas de um MEE é a partir de medidas que buscam mensurar o quanto a usual matriz de covariâncias clássicas ou ordinárias se distancia da matriz de covariâncias do modelo ajustado, ou a magnitude do afastamento entre as funções de discrepância do modelo hipotético e do modelo saturado. Entretanto, elas podem não captar problemas no ajuste quando há muitos parâmetros a estimar ou bastantes observações. A fim de detectar irregularidades no ajustamento resultantes do impacto provocado pela presença de outliers no conjunto de dados, este trabalho contemplou alguns indicadores conhecidos na literatura, como também considerou alterações no Índice da Qualidade do Ajuste (ou GFI, de Goodness-of-Fit Index) e no Índice Corrigido da Qualidade do Ajuste (ou AGFI, de Ajusted Goodness-of-Fit Index), ambos nas expressões para estimação de parâmetros pelo método de Máxima Verossimilhança, que consistiram em substituir a tradicional matriz de covariâncias pelas matrizes de covariâncias computadas com os seguintes estimadores: Elipsoide de Volume Mínimo, Covariância de Determinante Mínimo, S, MM e Gnanadesikan-Kettenring Ortogonalizado (GKO). Através de estudos de simulação sobre perturbações de desvio de simetria e excesso de curtose, em baixa e alta frações de contaminação, em diferentes tamanhos de amostra e quantidades de variáveis observadas afetadas, foi possível constatar que as propostas de modificação do GFI e do AGFI adaptadas pelo estimador GKO foram as únicas que conseguiram ser informativas em todas essas situações, devendo-se escolher a primeira ou a segunda respectivamente quando a quantidade de parâmetros a serem estimados é baixa ou elevada. / The Structural Equation Model (SEM) is usually set to perform a confirmatory analysis on the assumptions of a researcher about the relationship between the observed variables and the latent variables of such a study. In practice, the most iterant way of evaluating the quality of the estimates of a SEM comes either from procedures of measuring how distant the usual classic or ordinary covariance matrix is from the covariance matrix of the adjusted model, or from the magnitude of the hiatus in discrepancy functions of both the hypothetical model and the saturated model. Nevertheless, they may fail to capture problems in the adjustment in the occurrence of either several parameters to estimate or several observations. This study included indicators known in the literature in order to detect irregularities in the adjustment resulting from the impact caused by the presence of outliers in the data set. This study has also considered changes in both the Goodness-of-Fit Index (GFI) and the Adjusted Goodness-of-Fit Index (AGFI) in the expressions for parameter estimation by Maximum Likelihood method, which consisted in replacing the traditional covariance matrix by the robust covariance matrices computed through the following estimators: Minimum Volume Ellipsoid, Minimum Covariance Determinant, S, MM and Orthogonalized Gnanadesikan-Kettenring (OGK). Through simulation studies on disturbances of both symmetry deviations and excess kurtosis in both low and high fractions of contamination in different sample sizes and quantities of affected observed variables it has become clear that the proposals of modification of both the GFI and the AGFI adapted by the OGK estimator were the only ones able to be informative in all these situations. It must be considered that GFI or AGFI must be used when the number of parameters to be estimated is either low or high, respectively.
|
6 |
Contribuições à análise de outliers em modelos de equações estruturais / Contributions to the analysis of outliers in structural equation modelsRodrigo de Souza Bulhões 10 May 2013 (has links)
O Modelo de Equações Estruturais (MEE) é habitualmente ajustado para realizar uma análise confirmatória sobre as conjecturas de um pesquisador acerca do relacionamento entre as variáveis observadas e latentes de algum estudo. Na prática, a maneira mais recorrente de avaliar a qualidade das estimativas de um MEE é a partir de medidas que buscam mensurar o quanto a usual matriz de covariâncias clássicas ou ordinárias se distancia da matriz de covariâncias do modelo ajustado, ou a magnitude do afastamento entre as funções de discrepância do modelo hipotético e do modelo saturado. Entretanto, elas podem não captar problemas no ajuste quando há muitos parâmetros a estimar ou bastantes observações. A fim de detectar irregularidades no ajustamento resultantes do impacto provocado pela presença de outliers no conjunto de dados, este trabalho contemplou alguns indicadores conhecidos na literatura, como também considerou alterações no Índice da Qualidade do Ajuste (ou GFI, de Goodness-of-Fit Index) e no Índice Corrigido da Qualidade do Ajuste (ou AGFI, de Ajusted Goodness-of-Fit Index), ambos nas expressões para estimação de parâmetros pelo método de Máxima Verossimilhança, que consistiram em substituir a tradicional matriz de covariâncias pelas matrizes de covariâncias computadas com os seguintes estimadores: Elipsoide de Volume Mínimo, Covariância de Determinante Mínimo, S, MM e Gnanadesikan-Kettenring Ortogonalizado (GKO). Através de estudos de simulação sobre perturbações de desvio de simetria e excesso de curtose, em baixa e alta frações de contaminação, em diferentes tamanhos de amostra e quantidades de variáveis observadas afetadas, foi possível constatar que as propostas de modificação do GFI e do AGFI adaptadas pelo estimador GKO foram as únicas que conseguiram ser informativas em todas essas situações, devendo-se escolher a primeira ou a segunda respectivamente quando a quantidade de parâmetros a serem estimados é baixa ou elevada. / The Structural Equation Model (SEM) is usually set to perform a confirmatory analysis on the assumptions of a researcher about the relationship between the observed variables and the latent variables of such a study. In practice, the most iterant way of evaluating the quality of the estimates of a SEM comes either from procedures of measuring how distant the usual classic or ordinary covariance matrix is from the covariance matrix of the adjusted model, or from the magnitude of the hiatus in discrepancy functions of both the hypothetical model and the saturated model. Nevertheless, they may fail to capture problems in the adjustment in the occurrence of either several parameters to estimate or several observations. This study included indicators known in the literature in order to detect irregularities in the adjustment resulting from the impact caused by the presence of outliers in the data set. This study has also considered changes in both the Goodness-of-Fit Index (GFI) and the Adjusted Goodness-of-Fit Index (AGFI) in the expressions for parameter estimation by Maximum Likelihood method, which consisted in replacing the traditional covariance matrix by the robust covariance matrices computed through the following estimators: Minimum Volume Ellipsoid, Minimum Covariance Determinant, S, MM and Orthogonalized Gnanadesikan-Kettenring (OGK). Through simulation studies on disturbances of both symmetry deviations and excess kurtosis in both low and high fractions of contamination in different sample sizes and quantities of affected observed variables it has become clear that the proposals of modification of both the GFI and the AGFI adapted by the OGK estimator were the only ones able to be informative in all these situations. It must be considered that GFI or AGFI must be used when the number of parameters to be estimated is either low or high, respectively.
|
7 |
Errores en la búsqueda de condiciones robustas. Metodologías para evitarlos.Pozueta Fernández, Maria Lourdes 10 December 2001 (has links)
El problema de encontrar condiciones robustas al efecto de factores no controlados es un tema que interesa enormemente a las empresas ya que es una característica que demanda el mercado. Existen básicamente dos métodos para estudiar el problema: El que se basa en el método propuesto por G. Taguchi a comienzos de los 80's con el que se aproxima la variabilidad a partir de matrices producto y se seleccionan las condiciones robustas minimizando la respuesta, o el que parte de una matriz más económica que permite estimar un modelo para la respuesta Y en función de los factores de control y ruido, y estudia las condiciones robustas a partir de las interacciones entre los factores ruido y los factores de control. Aunque en un principio cabrían esperar resultados muy similares analizando un mismo problema por las dos vías hemos encontrado ejemplos donde las conclusiones son muy dispares y por ello nos hemos planteado este trabajo de investigación para encontrar las causas de estas diferencias.El trabajo de investigación lo hemos iniciado estudiando la naturaleza de las superficies asociadas a la variabilidad provocada por factores ruido realizando el estudio de forma secuencial aumentando el número de factores ruido. Hemos demostrado que independientemente de que la métrica seleccionada sea s2(Y), s(Y) o lo(s(Y)) las superficies difícilmente podrán ser aproximadas por polinomios de primer orden en los factores de control llegando a la conclusión de que algunas de las estrategias habituales que los experimentadores utilizan en la práctica difícilmente llevan a un buen conocimiento de esta superficie. Por ejemplo no es adecuado colocar un diseño 2k-p de Resolución III en los factores de control en una matriz producto siendo recomendables diseños de Resolución IV con puntos centrales.A continuación se han supuesto dos fuentes de variación en la respuesta debidas a ruido, fuentes desconocidas para el experimentador, y se ha estudiado la sensibilidad de los dos métodos para recoger estas oportunidades de reducción de la variabilidad demostrándose que el modelo para métricas resumen está más preparado para recoger todas las fuentes de variación que el modelo a partir de métricas no-resumen, el cual es muy sensible a la estimación del modelo de Y.Por último se ha investigado sobre los errores más comunes a la hora de seleccionar las condiciones robustas a partir de gráficos.
|
8 |
Structure learning of Bayesian networks via data perturbation / Aprendizagem estrutural de Redes Bayesianas via perturbação de dadosGross, Tadeu Junior 29 November 2018 (has links)
Structure learning of Bayesian Networks (BNs) is an NP-hard problem, and the use of sub-optimal strategies is essential in domains involving many variables. One of them is to generate multiple approximate structures and then to reduce the ensemble to a representative structure. It is possible to use the occurrence frequency (on the structures ensemble) as the criteria for accepting a dominant directed edge between two nodes and thus obtaining the single structure. In this doctoral research, it was made an analogy with an adapted one-dimensional random-walk for analytically deducing an appropriate decision threshold to such occurrence frequency. The obtained closed-form expression has been validated across benchmark datasets applying the Matthews Correlation Coefficient as the performance metric. In the experiments using a recent medical dataset, the BN resulting from the analytical cutoff-frequency captured the expected associations among nodes and also achieved better prediction performance than the BNs learned with neighbours thresholds to the computed. In literature, the feature accounted along of the perturbed structures has been the edges and not the directed edges (arcs) as in this thesis. That modified strategy still was applied to an elderly dataset to identify potential relationships between variables of medical interest but using an increased threshold instead of the predict by the proposed formula - such prudence is due to the possible social implications of the finding. The motivation behind such an application is that in spite of the proportion of elderly individuals in the population has increased substantially in the last few decades, the risk factors that should be managed in advance to ensure a natural process of mental decline due to ageing remain unknown. In the learned structural model, it was graphically investigated the probabilistic dependence mechanism between two variables of medical interest: the suspected risk factor known as Metabolic Syndrome and the indicator of mental decline referred to as Cognitive Impairment. In this investigation, the concept known in the context of BNs as D-separation has been employed. Results of the carried out study revealed that the dependence between Metabolic Syndrome and Cognitive Variables indeed exists and depends on both Body Mass Index and age. / O aprendizado da estrutura de uma Rede Bayesiana (BN) é um problema NP-difícil, e o uso de estratégias sub-ótimas é essencial em domínios que envolvem muitas variáveis. Uma delas consiste em gerar várias estruturas aproximadas e depois reduzir o conjunto a uma estrutura representativa. É possível usar a frequência de ocorrência (no conjunto de estruturas) como critério para aceitar um arco dominante entre dois nós e assim obter essa estrutura única. Nesta pesquisa de doutorado, foi feita uma analogia com um passeio aleatório unidimensional adaptado para deduzir analiticamente um limiar de decisão apropriado para essa frequência de ocorrência. A expressão de forma fechada obtida foi validada usando bases de dados de referência e aplicando o Coeficiente de Correlação de Matthews como métrica de desempenho. Nos experimentos utilizando dados médicos recentes, a BN resultante da frequência de corte analítica capturou as associações esperadas entre os nós e também obteve melhor desempenho de predição do que as BNs aprendidas com limiares vizinhos ao calculado. Na literatura, a característica contabilizada ao longo das estruturas perturbadas tem sido as arestas e não as arestas direcionadas (arcos) como nesta tese. Essa estratégia modificada ainda foi aplicada a um conjunto de dados de idosos para identificar potenciais relações entre variáveis de interesse médico, mas usando um limiar aumentado em vez do previsto pela fórmula proposta - essa cautela deve-se às possíveis implicações sociais do achado. A motivação por trás dessa aplicação é que, apesar da proporção de idosos na população ter aumentado substancialmente nas últimas décadas, os fatores de risco que devem ser controlados com antecedência para garantir um processo natural de declínio mental devido ao envelhecimento permanecem desconhecidos. No modelo estrutural aprendido, investigou-se graficamente o mecanismo de dependência probabilística entre duas variáveis de interesse médico: o fator de risco suspeito conhecido como Síndrome Metabólica e o indicador de declínio mental denominado Comprometimento Cognitivo. Nessa investigação, empregou-se o conceito conhecido no contexto de BNs como D-separação. Esse estudo revelou que a dependência entre Síndrome Metabólica e Variáveis Cognitivas de fato existe e depende tanto do Índice de Massa Corporal quanto da idade.
|
9 |
Structure learning of Bayesian networks via data perturbation / Aprendizagem estrutural de Redes Bayesianas via perturbação de dadosTadeu Junior Gross 29 November 2018 (has links)
Structure learning of Bayesian Networks (BNs) is an NP-hard problem, and the use of sub-optimal strategies is essential in domains involving many variables. One of them is to generate multiple approximate structures and then to reduce the ensemble to a representative structure. It is possible to use the occurrence frequency (on the structures ensemble) as the criteria for accepting a dominant directed edge between two nodes and thus obtaining the single structure. In this doctoral research, it was made an analogy with an adapted one-dimensional random-walk for analytically deducing an appropriate decision threshold to such occurrence frequency. The obtained closed-form expression has been validated across benchmark datasets applying the Matthews Correlation Coefficient as the performance metric. In the experiments using a recent medical dataset, the BN resulting from the analytical cutoff-frequency captured the expected associations among nodes and also achieved better prediction performance than the BNs learned with neighbours thresholds to the computed. In literature, the feature accounted along of the perturbed structures has been the edges and not the directed edges (arcs) as in this thesis. That modified strategy still was applied to an elderly dataset to identify potential relationships between variables of medical interest but using an increased threshold instead of the predict by the proposed formula - such prudence is due to the possible social implications of the finding. The motivation behind such an application is that in spite of the proportion of elderly individuals in the population has increased substantially in the last few decades, the risk factors that should be managed in advance to ensure a natural process of mental decline due to ageing remain unknown. In the learned structural model, it was graphically investigated the probabilistic dependence mechanism between two variables of medical interest: the suspected risk factor known as Metabolic Syndrome and the indicator of mental decline referred to as Cognitive Impairment. In this investigation, the concept known in the context of BNs as D-separation has been employed. Results of the carried out study revealed that the dependence between Metabolic Syndrome and Cognitive Variables indeed exists and depends on both Body Mass Index and age. / O aprendizado da estrutura de uma Rede Bayesiana (BN) é um problema NP-difícil, e o uso de estratégias sub-ótimas é essencial em domínios que envolvem muitas variáveis. Uma delas consiste em gerar várias estruturas aproximadas e depois reduzir o conjunto a uma estrutura representativa. É possível usar a frequência de ocorrência (no conjunto de estruturas) como critério para aceitar um arco dominante entre dois nós e assim obter essa estrutura única. Nesta pesquisa de doutorado, foi feita uma analogia com um passeio aleatório unidimensional adaptado para deduzir analiticamente um limiar de decisão apropriado para essa frequência de ocorrência. A expressão de forma fechada obtida foi validada usando bases de dados de referência e aplicando o Coeficiente de Correlação de Matthews como métrica de desempenho. Nos experimentos utilizando dados médicos recentes, a BN resultante da frequência de corte analítica capturou as associações esperadas entre os nós e também obteve melhor desempenho de predição do que as BNs aprendidas com limiares vizinhos ao calculado. Na literatura, a característica contabilizada ao longo das estruturas perturbadas tem sido as arestas e não as arestas direcionadas (arcos) como nesta tese. Essa estratégia modificada ainda foi aplicada a um conjunto de dados de idosos para identificar potenciais relações entre variáveis de interesse médico, mas usando um limiar aumentado em vez do previsto pela fórmula proposta - essa cautela deve-se às possíveis implicações sociais do achado. A motivação por trás dessa aplicação é que, apesar da proporção de idosos na população ter aumentado substancialmente nas últimas décadas, os fatores de risco que devem ser controlados com antecedência para garantir um processo natural de declínio mental devido ao envelhecimento permanecem desconhecidos. No modelo estrutural aprendido, investigou-se graficamente o mecanismo de dependência probabilística entre duas variáveis de interesse médico: o fator de risco suspeito conhecido como Síndrome Metabólica e o indicador de declínio mental denominado Comprometimento Cognitivo. Nessa investigação, empregou-se o conceito conhecido no contexto de BNs como D-separação. Esse estudo revelou que a dependência entre Síndrome Metabólica e Variáveis Cognitivas de fato existe e depende tanto do Índice de Massa Corporal quanto da idade.
|
Page generated in 0.0583 seconds