• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 15
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of centrifugal atomization of melts

Li, Huiping January 1999 (has links)
The literature on atomization of melts has been reviewed. Models have been developed and applied to analyze the phenomena associated with centrifugal atomization of melts using rotating disk method. Some suggestions and guidelines for the development and operation of a centrifugal atomizer have been given. Previous experiments of melt atomization and present observations of water disintegration at the edge of a rotating disk have confirmed that the disintegration of melts or water occurs in one of three basic modes: direct droplet formation (DDF), ligament formation (LF) and film formation (FF). Wave theories have been used to analyze the disintegration of melts in the different regimes. The equations for the fastest growing wave number have been derived. Models for the calculation of powder particle sizes have been suggested and the calculated results have compared with available experimental data in the literature. Calculations have shown that disk diameter and disk rotating speed are two very important atomizing parameters. The type of melt and melt superheat also affect the powder particles size. In general, fine powder particles can be obtained by increasing disk rotating speed and using large diameter disk, provided that the melt does not solidify on the disk. In the DDF regime waves forming at the periphery of a disk are responsible for the break up of melts. The fastest growing wave number depends on the disk speed, disk diameter and properties of melt. In the FF regime sheet wave theory of Dombrowski and Johns was used to study the collapse of the melt sheet. The fastest growing wave number is a complex function of the speed and thickness of film and the properties of melt and atomizer atmosphere. The effects of disk diameter, disk rotating speed and melt flow rate on atomization are achieved through influencing the speed and thickness of film. The studies on the flow of melts on rotating disks have shown that the film forming on the disk was very thin, about tens of microns and the tangential velocity of melts was much higher than the radial velocity. The analysis of heat transfer of melts on a rotating disk has shown that partial solidification of melts on the disk is possible. To obtain a good atomization condition it is necessary to control the partial freezing of melts on the disk. A large melt superheat and a high melt flow rate are required to prevent melts from freezing on the disk. The use of a small diameter disk can also avoid freezing of the melt on the disk. Combining the calculations of heat transfer on the disk with the prediction of wave theory for particle sizes, it is shown that a disk of small diameter rotating at high speed is desirable for the production of fine powders. The cooling ability obtained by centrifugal atomization using the rotating disk method depends on the design of atomizer, the operating conditions and the type of material to be atomized. A large diameter disk on which solidification of melt is avoided and a high disk rotating speed result to the formation of fine powder particles which experience a high cooling rate. The nucleation undercooling of melt depends on particle size, disk speed, material to be atomized and the nucleation condition. A small particle size and a high disk speed lead to a large undercooling. The times for the completion of solidification of powder particle of typical sizes produced by centrifugal atomization have been calculated and their effects on the atomizer vessel diameter have been discussed.
2

Physicochemical aspects of colloid deposition in a rotating disk system: implications for contaminant transport

Cramer, Michael Christian January 2005 (has links)
Application of conventional theory of transport and deposition to small particles or large colloids, on the order of 1 micron in diameter, has received surprisingly little attention in colloid science. While the favorable deposition of colloidal particles ( < 0.5 micron diameter) has repeatedly been shown to agree with the Smoluchowski-Levich approximation for a convective-diffusion process, larger particles are known to deviate from this solute-like mass transfer behavior. The rotating disk, used in the experiments performed in this work, is a model experimental system that has been employed in the past to de-convolute and quantify the mechanisms of particle transport. Experimental evidence shows that particle transport to the rotating disk deviates from the predictions of the complete three-dimensional convective-diffusion equation, including hydrodynamic and surface-surface interaction forces, in that non-uniform deposition is observed over the surface of the disk. Fluid inertial effects, observed to be significant in capillary flow, have been suggested in the literature as an explanation of non-uniform deposition on the rotating disk. Calculations performed in this work show that while inertial lift forces are significant, they are not the dominant cause of non-uniform deposition. Instead, hydrodynamic blocking of available deposition surface area is shown to accurately describe experimental deposition profiles. The effect of particle size on surface area exclusion and hydrodynamic scattering are separately assessed to demonstrate that the blocking model is not only phenomenologically accurate, but also an important part of the mechanistic description of transport in the rotating disk system.
3

Extraction of caprolactam in a rotating disk contactor extractor

Cato, David A. January 1900 (has links)
Master of Science / Department of Chemical Engineering / Larry E. Erickson / Caprolactam (C₆H₁₁NO) is produced in industry primarily as a monomer to be converted to nylon-6 via a polymerization reaction. More demanding purity requirements for nylon-6 have increased the performance requirements of extraction columns in the purification train of caprolactam production. Caprolactam is produced by performing a Beckmann Rearrangement on cyclohexanone oxime followed by a neutralization of the excess oleum post reaction. The resulting side product is ammonium sulfate in water with a residual amount of caprolactam that has to be extracted with benzene from the aqueous ammonium sulfate solution to reduce product losses. The aqueous caprolactam liquor is extracted in another column into benzene which purifies the product from water soluble impurities. The resulting caprolactam dissolved in benzene is back extracted into water where the final purification steps are completed prior to storage. Rotating disk contactor (RDC) extraction columns were invented by Royal Dutch Shell in the early 1950’s. The columns have a rotor in the center that is driven by an electric motor to rotate equally spaced flat disks inside the column. There are equally spaced annulus shaped stators that serve to provide mixing-separation compartments for each of the mounted disks on the rotor. Of the variables to consider for the optimum performance of the extraction in the RDC extraction column is the rotor speed. Rotor speed curves are generated for the 3 RDC extraction columns of the caprolactam purification as well as calculations of the number of theoretical stages for each of the columns based on actual performance data. Benzene is the solvent of choice in this purification process however recent push by environmental groups and agencies as well as tightening regulations have driven a desire to find a more benign alternative to benzene for this process. A review of the research and literature on potential alternative solvents for caprolactam purification is summarized with positives and drawbacks for each possible alternative.
4

Flow of a non-Newtonian Bingham plastic fluid over a rotating disk

Rashaida, Ali A 19 August 2005
Even though fluid mechanics is well developed as a science, there are many physical phenomena that we do not yet fully understand. One of these is the deformation rates and fluid stresses generated in a boundary layer for a non-Newtonian fluid. One such non-Newtonian fluid would be a waxy crude oil flowing in a centrifugal pump. This type of flow can be numerically modeled by a rotating disk system, in combination with an appropriate constitutive equation, such as the relation for a Bingham fluid. A Bingham fluid does not begin to flow until the stress magnitude exceeds the yield stress. However, experimental measurements are also required to serve as a database against which the results of the numerical simulation can be interpreted and validated. The purpose of the present research is to gain a better understanding of the behavior of a Bingham fluid in the laminar boundary layer on a rotating disk. For this project, two different techniques were employed: numerical simulation, and laboratory investigations using Particle Image Velocimetry (PIV) and flow visualization. Both methods were applied to the flow of a Bingham fluid over a rotating disk. In the numerical investigations, the flow was characterized by the dimensionless yield stress Bingham number, By, which is the ratio of the yield and viscous stresses. Using von Kármáns similarity transformation, and introducing the rheological behavior of the fluid into the conservation equations, the corresponding nonlinear two-point boundary value problem was formulated. A solution to the problem under investigation was obtained by numerical integration of the set of Ordinary Differential Equations (ODEs) using a multiple shooting method. The influence of the Bingham number on the flow behavior was identified. It decreases the magnitude of the radial and axial velocity components, and increases the magnitude of the tangential velocity component, which has a pronounced effect on the moment coefficient, CM, and the volume flow rate, Q. In the laboratory investigations, since the waxy crude oils are naturally opaque, an ambitious experimental plan to create a transparent oil that was rheologically similar to the Amna waxy crude oil from Libya was developed. The simulant was used for flow visualization experiments, where a transparent fluid was required. To fulfill the demand of the PIV system for a higher degree of visibility, a second Bingham fluid was created and rheologically investigated. The PIV measurements were carried out for both filtered tap water and the Bingham fluid in the same rotating disk apparatus that was used for the flow visualization experiments. Both the axial and radial velocity components in the (r-z) plane were measured for various rotational speeds. Comparison between the numerical and experimental results for the axial and radial velocity profiles for water was found to be satisfactory. Significant discrepancies were found between numerical results and measured values for the Bingham fluid, especially at low rotational speeds, mostly relating to the formation of a yield surface within the tank. Even though the flow in a pump is in some ways different from that of a disk rotating in a tank, some insight about the behavior of the pump flow can be drawn. One conclusion is that the key difference between the flow of a Bingham fluid in rotating equipment from that of a Newtonian fluid such as water relates to the yield surface introduced by the yield stress of the material, which causes an adverse effect on the performance and efficiency of such equipment.
5

Flow of a non-Newtonian Bingham plastic fluid over a rotating disk

Rashaida, Ali A 19 August 2005 (has links)
Even though fluid mechanics is well developed as a science, there are many physical phenomena that we do not yet fully understand. One of these is the deformation rates and fluid stresses generated in a boundary layer for a non-Newtonian fluid. One such non-Newtonian fluid would be a waxy crude oil flowing in a centrifugal pump. This type of flow can be numerically modeled by a rotating disk system, in combination with an appropriate constitutive equation, such as the relation for a Bingham fluid. A Bingham fluid does not begin to flow until the stress magnitude exceeds the yield stress. However, experimental measurements are also required to serve as a database against which the results of the numerical simulation can be interpreted and validated. The purpose of the present research is to gain a better understanding of the behavior of a Bingham fluid in the laminar boundary layer on a rotating disk. For this project, two different techniques were employed: numerical simulation, and laboratory investigations using Particle Image Velocimetry (PIV) and flow visualization. Both methods were applied to the flow of a Bingham fluid over a rotating disk. In the numerical investigations, the flow was characterized by the dimensionless yield stress Bingham number, By, which is the ratio of the yield and viscous stresses. Using von Kármáns similarity transformation, and introducing the rheological behavior of the fluid into the conservation equations, the corresponding nonlinear two-point boundary value problem was formulated. A solution to the problem under investigation was obtained by numerical integration of the set of Ordinary Differential Equations (ODEs) using a multiple shooting method. The influence of the Bingham number on the flow behavior was identified. It decreases the magnitude of the radial and axial velocity components, and increases the magnitude of the tangential velocity component, which has a pronounced effect on the moment coefficient, CM, and the volume flow rate, Q. In the laboratory investigations, since the waxy crude oils are naturally opaque, an ambitious experimental plan to create a transparent oil that was rheologically similar to the Amna waxy crude oil from Libya was developed. The simulant was used for flow visualization experiments, where a transparent fluid was required. To fulfill the demand of the PIV system for a higher degree of visibility, a second Bingham fluid was created and rheologically investigated. The PIV measurements were carried out for both filtered tap water and the Bingham fluid in the same rotating disk apparatus that was used for the flow visualization experiments. Both the axial and radial velocity components in the (r-z) plane were measured for various rotational speeds. Comparison between the numerical and experimental results for the axial and radial velocity profiles for water was found to be satisfactory. Significant discrepancies were found between numerical results and measured values for the Bingham fluid, especially at low rotational speeds, mostly relating to the formation of a yield surface within the tank. Even though the flow in a pump is in some ways different from that of a disk rotating in a tank, some insight about the behavior of the pump flow can be drawn. One conclusion is that the key difference between the flow of a Bingham fluid in rotating equipment from that of a Newtonian fluid such as water relates to the yield surface introduced by the yield stress of the material, which causes an adverse effect on the performance and efficiency of such equipment.
6

A comparative study between Pt and Rh for the electro-oxidation of aqueous SO₂ and other model electrochemical reactions / Marcelle Potgieter

Potgieter, Marcelle January 2014 (has links)
The ever increasing demand for a clean and renewable energy source has stimulated research for alternatives for the use of fossil fuels, which contribute significantly to global warming. The SO2 oxidation reaction was studied for production of hydrogen as a clean and renewable energy carrier. This reaction occurs at a lower standard electrode potential (0.158 V vs. SHE) than normal water electrolysis (1.23 V vs. SHE). This is a theoretical indication that the SO2 oxidation reaction has possible potential when compared to normal water electrolysis, since hydrogen production may occur at lower potentials and therefore lower cost. Rh was compared with Pt for the SO2 oxidation reaction since little research has been done on this catalyst and many studies exist in which Pt was used as catalyst. The oxygen reduction reaction and ethanol oxidation reaction were also included in this study to create a foundation for the catalysts studied, since the SO2 oxidation reaction is complicated by different adsorbed species that can form according to various mechanisms. The electrochemical techniques employed in this study to characterize the catalysts included cyclic voltammetry from which onset potentials and limiting current densities were determined, as well as from which some qualitative analysis was done. Linear polarization experiments were used during rotating disk electrode studies from which Levich and Koutecky-Levich analyses were done and the number of electrons transferred calculated and compared between the two catalysts. From the Koutecky-Levich analysis the kinetic current density was also obtained for use in Tafel analysis for further comparison between catalysts. It was found that Rh showed good behaviour for the oxygen reduction reaction when compared to Pt with similar onset potentials and limiting current densities. From Levich analysis it was concluded that both catalysts achieved diffusion limitation at high overpotentials. However, from the calculated number of electrons transferred it was evident that a difference in mechanism existed between catalysts and that the mechanism for both changed in the potential range studied, which is confirmed by the Tafel slopes. For the ethanol oxidation reaction it was shown that Rh exhibited very low catalytic activity in comparison with Pt. However, it was concluded from cyclic voltammetry and rotating disk electrode studies that more adsorbed species were present on the surface of Rh than on Pt. These results confirmed the possibility of using Rh as a co-catalyst together with Pt since it was shown from rotating disk electrode studies that low adsorption of ethanol and its oxidation products caused species to be transported away from the surface of the electrode during rotation. For the SO2 oxidation reaction it was found that Rh exhibited very poor catalytic activity together with being very susceptible to poisoning by adsorbed species. Pt showed very good behaviour, which corresponded well with what had been observed in literature. Levich analysis revealed that Pt did not exhibit diffusion limitation and Koutecky-Levich analysis revealed that a 2 electron reaction occurred on Pt, which corresponds with the SO2 oxidation reaction during which 2 electrons are transferred. It was, therefore, shown that Rh could exhibit good behaviour and act as a suitable catalyst in certain circumstances. However, for the SO2 oxidation reaction, which was the main focus of this study it was shown that Rh is not a suitable catalyst, either alone or as co-catalyst. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
7

A comparative study between Pt and Rh for the electro-oxidation of aqueous SO₂ and other model electrochemical reactions / Marcelle Potgieter

Potgieter, Marcelle January 2014 (has links)
The ever increasing demand for a clean and renewable energy source has stimulated research for alternatives for the use of fossil fuels, which contribute significantly to global warming. The SO2 oxidation reaction was studied for production of hydrogen as a clean and renewable energy carrier. This reaction occurs at a lower standard electrode potential (0.158 V vs. SHE) than normal water electrolysis (1.23 V vs. SHE). This is a theoretical indication that the SO2 oxidation reaction has possible potential when compared to normal water electrolysis, since hydrogen production may occur at lower potentials and therefore lower cost. Rh was compared with Pt for the SO2 oxidation reaction since little research has been done on this catalyst and many studies exist in which Pt was used as catalyst. The oxygen reduction reaction and ethanol oxidation reaction were also included in this study to create a foundation for the catalysts studied, since the SO2 oxidation reaction is complicated by different adsorbed species that can form according to various mechanisms. The electrochemical techniques employed in this study to characterize the catalysts included cyclic voltammetry from which onset potentials and limiting current densities were determined, as well as from which some qualitative analysis was done. Linear polarization experiments were used during rotating disk electrode studies from which Levich and Koutecky-Levich analyses were done and the number of electrons transferred calculated and compared between the two catalysts. From the Koutecky-Levich analysis the kinetic current density was also obtained for use in Tafel analysis for further comparison between catalysts. It was found that Rh showed good behaviour for the oxygen reduction reaction when compared to Pt with similar onset potentials and limiting current densities. From Levich analysis it was concluded that both catalysts achieved diffusion limitation at high overpotentials. However, from the calculated number of electrons transferred it was evident that a difference in mechanism existed between catalysts and that the mechanism for both changed in the potential range studied, which is confirmed by the Tafel slopes. For the ethanol oxidation reaction it was shown that Rh exhibited very low catalytic activity in comparison with Pt. However, it was concluded from cyclic voltammetry and rotating disk electrode studies that more adsorbed species were present on the surface of Rh than on Pt. These results confirmed the possibility of using Rh as a co-catalyst together with Pt since it was shown from rotating disk electrode studies that low adsorption of ethanol and its oxidation products caused species to be transported away from the surface of the electrode during rotation. For the SO2 oxidation reaction it was found that Rh exhibited very poor catalytic activity together with being very susceptible to poisoning by adsorbed species. Pt showed very good behaviour, which corresponded well with what had been observed in literature. Levich analysis revealed that Pt did not exhibit diffusion limitation and Koutecky-Levich analysis revealed that a 2 electron reaction occurred on Pt, which corresponds with the SO2 oxidation reaction during which 2 electrons are transferred. It was, therefore, shown that Rh could exhibit good behaviour and act as a suitable catalyst in certain circumstances. However, for the SO2 oxidation reaction, which was the main focus of this study it was shown that Rh is not a suitable catalyst, either alone or as co-catalyst. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
8

Study of pulsed electric fields (PEF) assisted inulin extraction from chicory root and chicory juice purification / L'extraction de l'inuline assistée par champs électriques pulsés : purification des jus de chicorées par filtration

Zhu, Zhenzhou 10 March 2014 (has links)
Le procédé industriel d’extraction d'inuline consiste en une diffusion de longue durée et à température élevée. Ce procédé induit l’extraction des sucres mais également des impuretés. Les étapes de purification de jus deviennent alors plus complexes. Pour pallier à ces problèmes, il est essentiel de réduire la température de diffusion pour limiter l’extraction des impuretés. Récemment, la technique de champs électriques pulsés (CEP) a démonté ses avantages dans le domaine sucrier et également dans d’autres applications agro-alimentaires. L’objectif de ce travail de thèse est de d’optimiser et valider la faisabilité de cette techniques dans le cas de la chicorée. Une purification par filtration dynamique est envisagée et proposée pour remplacer la purification classique. Les résultats de l’extraction montrent qu’il est possible d’intensifier l’extraction de l’inuline par application de CEP. Le prétraitement des cossettes de chicorées à 600 V/cm et 50 ms, réduit de 20°C la température de diffusion (60°C au lieu de 80°C actuellement). Une économie d’énergie importante est réalisée (gain 90 kJ/kg chicory juice). La combinaison innovante d’un prétraitement électrique et un traitement thermique (chauffage ohmique) provoque une perméabilisation importante des cellules et permet de réaliser des diffusions « à froid ». Les analyses qualitatives de jus de diffusion classique et jus CEP montrent que la pureté des extraits CEP est plus élevée (87.2% vs 86.7%). Les essais de filtration sur membrane montrent que les performances de la filtration (pureté, flux, colmatage,…) dépendent énormément de l’origine de l’extrait. Le jus CEP contient moins d’impureté que le jus thermique, est donc plus facile à filtré. Cependant, col matage de membrane restent dans les deux cas important. Un module de filtration dynamique avec disque rotatif a été utilisé pour améliorer les performances de la filtration. Ce module a permit de réduire le colmatage des membranes, améliorer la pureté des extraits et atteindre des facteurs de réduction volumique important (10). / Industrial inulin extraction requires high temperature and long duration to ensure inulin productivity. In addition complex steps are necessary to purify extracted chicory juice and to obtain inulin with desirable purity. In order to avoid the extracting of inulin at high temperature, to obtain chicory juice with better quality and to purify chicory juice with more simple operation, pulsed electric fields (PEF) and membrane filtration were applied to this study : PEF was used to intensify inulin extraction from chicory roots. By pre-treatment of chicory slices at 600 V/cm, diffusion temperature at pilot scale can be decreased to 60oC from about 80oC (industrial extraction condition) to obtain comparable juice inulin concentration. Moreover, this moderate temperature diffusion brought out interesting energy savings compared to that of conventional diffusion. For the goal of extracting inulin at “cold” condition (for example 30oC) PEF induced combined electroporation/ohmic heating pretreatment was applied for chicory tissue denaturation. Better solute extraction was observed after effective damage of chicory tissue diffusivity.Juice extracted from PEF assisted diffusion (PEF juice) was confirmed had higher inulin purity and less impurity in comparison to juice from conventional thermal diffusion process. The juice was purified by membrane filtration in order to investigate a simple chicory juice purification method. Since it contains less impurity, dead-end filtration performance of PEF juice was significantly improved, with less membrane fouling and higher inulin purity in filtrate. However, permeate flux of membrane filtration was seriously restricted by the membrane fouling. In order to improve filtration flux, rotating disk module was introduced in this study for clarification and purification of chicory juice. Elevated shear rate of rotating disk (1500–2000 rpm) could effectively control or even eliminate membrane fouling and lead to satisfying carbohydrate transmission (98%) and desirable permeate flux even at high volume reduction ratio (10). In view of energy saving, optimization of RDM assisted chicory juice filtration was carried out and yielded optimal operation conditions to maximize average flux and minimize specific energy consumption.
9

Radial flow effects on a retreating rotor blade

Shankare Gowda, Vrishank Raghav 08 June 2015 (has links)
This work studies the effects of radial flow on the aerodynamic phenomena occurring on a retreating blade with a focus on dynamic stall and reverse flow as applied to both a helicopter rotor in forward flight and a wind turbine operating at a yaw angle. While great progress has been made in understanding the phenomenon of two-dimensional dynamic stall, the effect of rotation on the dynamic stall event is not well understood. Experiments were conducted on a rigid two bladed teetering rotor at high advance ratios in a low speed wind tunnel. Particle image velocimetry (PIV) measurements were used to quantify the flow field at several azimuthal angles on the rotating blade during the dynamic stall event. The effect of centrifugal forces induced ``pure'' radial velocity on the dynamic stall event at 270 degrees azimuth was studied in detail. Further investigation of the radial flow field suggested that the mean radial velocity attenuated on moving outboard due to an apparent shear layer instability and it was demonstrated to be of first order importance in the flow field. These radial flow results prompted an exploration of the flow over a rotating disk to establish similarities of the radial flow over rotating blade in separated flow to that over a rotating disk in separated flow. While a greater part of this work focused on aspects of dynamic stall on the retreating blade, the final parts focus on the exotic flow regime of reverse flow (characterized by flow from the trailing edge to the leading edge of the blade). Aerodynamic loads measurement and surface flow visualization via tufts are used to first quantify the behavior of a static yawed blade in reverse flow. PIV measurements are then used on a static yawed blade and a rotating blade in reverse flow conditions to ascertain the effects of rotation on reverse flow.
10

Analysis of mass transfer by jet impingement and study of heat transfer in a trapezoidal microchannel

Ojada, Ejiro Stephen 01 June 2009 (has links)
This thesis numerically studied mass transfer during fully confined liquid jet impingement on a rotating target disk of finite thickness and radius. The study involved laminar flow with jet Reynolds numbers from 650 to 1500. The nozzle to plate distance ratio was in the range of 0.5 to 2.0, the Schmidt number ranged from 1720 to 2513, and rotational speed was up to 325 rpm. In addition, the jet impingement to a stationary disk was also simulated for the purpose of comparison. The electrochemical fluid used was an electrolyte containing 0.005moles per liter potassium ferricyanide (K3(Fe(CN6)), 0.02moles per liter ferrocyanide (FeCN6?4), and 0.5moles per liter potassium carbonate (K2CO3). The rate of mass transfer of this electrolyte was compared to Sodium Hydroxide (NaOH) and Hydrochloric acid (HCl) electrochemical solutions. The material of the rotating disk was made of 99.98% nickel and 0.02% of chromium, cobalt and aluminum. The rate of mass transfer was also examined for different geometrical shapes of conical, convex, and concave confinement plates over a spinning disk. The results obtained are found to be in agreement with previous experimental and numerical studies. The study of heat transfer involved a microchannel for a composite channel of trapezoidal cross-section fabricated by etching a silicon wafer and bonding it with a slab of gadolinium. Gadolinium is a magnetic material that exhibits high temperature rise during adiabatic magnetization around its transition temperature of 295K. Heat was generated in the substrate by the application of magnetic field. Water, ammonia, and FC-77 were studied as the possible working fluids. Thorough investigation for velocity and temperature distribution was performed by varying channel aspect ratio, Reynolds number, and the magnetic field. The thickness of gadolinium slab, spacing between channels in the heat exchanger, and fluid flow rate were varied. To check the validity of simulation, the results were compared with existing results for single material channels. Results showed that Nusselt number is larger near the inlet and decreases downstream. Also, an increase in Reynolds number increases the total Nusselt number of the system.

Page generated in 0.0685 seconds