Spelling suggestions: "subject:"rules""
1 |
Blending of ruled surfacesChen, Yih-Jen. January 1983 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1983. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 73-75).
|
2 |
Die infinitesimale Deformation der abwickelbaren und RegelflächenWenzl, Aloys, January 1913 (has links)
Thesis (doctoral)--Ludwig-Maximilians Universität München, 1912. / Vita.
|
3 |
The classification of ruled surfaces and rank 2 vector bundles over a curve of genus O or 1 /Malard, Joël. January 1983 (has links)
No description available.
|
4 |
Conjugate nets of ruled surfaces in a congruence ...Magee, Gordon Richard, January 1931 (has links)
Thesis (Ph. D.)--University of Chicago, 1933. / Vita. Lithographed. "Private edition, distributed by the University of Chicago libraries, Chicago, Illinois."
|
5 |
The classification of ruled surfaces and rank 2 vector bundles over a curve of genus O or 1 /Malard, Joël. January 1983 (has links)
No description available.
|
6 |
Generation of Globoidal Cam Surfaces with Conical RollersLin, Sheng-yang 07 February 2006 (has links)
This thesis presents a geometry design method to generate the surfaces of the globoidal cam with the conical roller follower. Based on the trace of the rigid body and the theory of differential geometry, the conjugate surfaces can be the offset surfaces of the ruled surface.
With different roller¡¦s axial height, its radius and the meshing vector also be changed. For this reason, the contact points on the outward roller are hard to find. To overcome this problem, we propose the triangular graph with meshing angle, it can present the vector quantity caused from the motion angle. We replace it into the procedures of the rigid body transformation method to derive the cam surfaces with the conical roller follower. Furthermore, two models with modified sine and constant velocity motion curves are generated and analyzed.
|
7 |
Hipersuperfícies regradas e de Weingarten no espaço hiperbólico / Ruled and Weingarten hypersurfaces in hyperbolic space.Lymberopoulos, Alexandre 16 June 2009 (has links)
Neste trabalho apresentamos uma classificação das hipersuperfícies regradas e de Weingarten no espaço hiperbólico. / In this work we provide a classification for ruled and Weingarten hypersurfaces in hyperbolic space.
|
8 |
Topologia e singularidades das superfícies regradas em \' R POT.3\" / Singularity and topology of ruled surface in \'R POT.3\'Martins, Rodrigo 26 March 2007 (has links)
Neste trabalho estudamos a topologia local, trivialidade topolóogica e as singularidades de superfícies regradas em \'R POT.3\'. O objetivo do trabalho é comparar as singularidades que ocorrem no conjunto das superfícies regradas com as singularidades de germes de aplicações de \'R POT.2\' em \'R POT.3\', fazer a classificação topológica local e estudar a trivialidade topológica de famílias de superfícies regradas. Finalmente, discutimos possíveis generalizações de superfícies regradas para altas dimensões / We study the local topology, topological triviality and singularities of ruled surfaces in \'R POT.3\'. In this work we compare the singularities of germs from \'R POT.2\' to \'R POT.3\' with the singularities appearing in the set of ruled surfaces, doing a local topology classification of the ruled surface and study the topological triviality of families of ruled surfaces. Finally we will try to give possible generalizations of ruled surfaces for higher dimensions.
|
9 |
HÉLICES, CURVAS DE BERTRAND E SUPERFÍCIES REGRADAS / HELICES, BERTRAND CURVES AND RULED SURFACESFlôres, Marcia Viaro 27 February 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work is designed to study helices and Bertrand curves. A circular helix is characterized by having constant curvature k 6= 0 and constant torsion t . If the ratio t k is constant, the curve is called generalized helix. A curve g : I −→R3 is called a Bertrand curve if there is another curve g : I −→R3 such that the normal lines of g and g at s ∈ I are equal. Generalized helices and Bertrand curves can be viewed as generalizations of the circular helix. In this work, we obtain important characterizations of these curves. Besides, we also study these curves from the view point of the theory of curves on ruled surfaces. / O presente trabalho destina-se a um estudo sobre hélices e curvas de Bertrand. Uma hélice circular
é caracterizada por ter curvatura k 6= 0 e torção t constantes. Se a razão t k for constante, a curva é chamada hélice generalizada. Uma curva g : I −→ R3 é chamada curva de Bertrand se existe
uma outra curva g : I −→ R3 tal que as retas normais de g e g em s ∈ I são iguais. Tanto a hélice generalizada como a curva de Bertrand podem ser vistas como generalizações da hélice circular. Neste trabalho, além de obtermos importantes caracterizações destas curvas, realizamos também um estudo destas do ponto de vista da teoria de curvas em superfícies regradas.
|
10 |
Topologia e singularidades das superfícies regradas em \' R POT.3\" / Singularity and topology of ruled surface in \'R POT.3\'Rodrigo Martins 26 March 2007 (has links)
Neste trabalho estudamos a topologia local, trivialidade topolóogica e as singularidades de superfícies regradas em \'R POT.3\'. O objetivo do trabalho é comparar as singularidades que ocorrem no conjunto das superfícies regradas com as singularidades de germes de aplicações de \'R POT.2\' em \'R POT.3\', fazer a classificação topológica local e estudar a trivialidade topológica de famílias de superfícies regradas. Finalmente, discutimos possíveis generalizações de superfícies regradas para altas dimensões / We study the local topology, topological triviality and singularities of ruled surfaces in \'R POT.3\'. In this work we compare the singularities of germs from \'R POT.2\' to \'R POT.3\' with the singularities appearing in the set of ruled surfaces, doing a local topology classification of the ruled surface and study the topological triviality of families of ruled surfaces. Finally we will try to give possible generalizations of ruled surfaces for higher dimensions.
|
Page generated in 0.0231 seconds