• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • Tagged with
  • 13
  • 13
  • 13
  • 10
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anorganische Salzhydratschmelzen

Fischer, Steffen 13 July 2009 (has links) (PDF)
Im Rahmen der Untersuchungen konnten zunächst Salzhydrate bezüglich ihrer Reaktionsfähigkeit auf Cellulose klassifiziert werden. Dabei kann die Reaktion zwischen Cellulose und der Salzschmelze zu einer Verteilung, Zersetzung, Quellung oder zur Lösung des Polymers führen. Unter einer Vielzahl von neuen Quellungs- und Lösemitteln, welche als Resultat der Untersuchungen vorliegen und die zur Verfügung stehenden Systeme erheblich erweitern, sind die kongruent schmelzenden Salzhydrate LiClO4·3H2O und Cu(ClO4)2·6H2O hervorzuheben. Diese Systeme sind in der Lage, Cellulose ohne Aktivierung faserfrei innerhalb kurzer Zeit zu lösen. Für die Lösefähigkeit einer Schmelze sind die spezifischen Koordinationsverhältnisse in der Hydratschmelze, der Wasseranteil sowie die Acidität von Bedeutung. Der Lösungszustand von Cellulose in einer Salzhydratschmelze wurde mit Hilfe der Lichtstreuung untersucht. Cellulose ist in den Schmelzen LiClO4·3H2O und ZnCl2+4H2O in aggregierter Form gelöst. Die Lösungsstrukturen von Cellulose in dem aciden LiClO4·3H2O und dem basischen NMMNO·MH sind vergleichbar. Unter Verwendung der 13C-NMR Spektroskopie konnte der chemische Zustand von Cellulose in Salzhydratschmelzen näher beschrieben werden. Im gelösten Zustand liegt keine partielle Substitution an den Hydroxylgruppen vor, die Hydratschmelzen können in die Gruppe der nichtderivatisierenden Lösemittel für Cellulose eingeordnet werden. Die 7Li-1H HOESY NMR Spektroskopie erbrachte den Beweis für eine direkte Wechselwirkung zwischen Cellulose und den Lithiumkationen, wobei die Hydroxylgruppen an C-2 und C-3 bevorzugt am Kation koordinieren, die an C-6 gebundene Hydroxylgruppe ist nicht in die Wechselwirkung einbezogen. Im gelösten Zustand befindet sich Cellulose in den Hydratschmelzen in einem amorphen Zustand, wobei die Wasserstoffbrücken aufgespalten sind. Aus dem amorphen Zustand im Salzhydrat erfolgt die Regeneration von Cellulose II durch Entfernen des Salzes. Die regenerierte Cellulose zeigt charakteristische strukturelle Veränderungen in Abhängigkeit vom verwendeten Salzhydrat. In Folge des Lösevorgangs kann eine Verringerung der Molmasse festgestellt werden, welche zum einen durch die Hydratschmelze bestimmt wird, zum anderen durch die Lösezeit, die Temperatur sowie die Molmasse der eingesetzten Cellulose. Die Morphologie von regenerierter Cellulose, welche durch die Anordnung der Cellulosefibrillen bestimmt ist, kann unter Verwendung verschiedener Salzhydrate sowie in Abhängigkeit des verwendeten Abkühlregimes in weiten Grenzen eingestellt werden. Neben der Applikation für Löse- und Regenerationsprozesse von Cellulose sind Salzhydratschmelzen auch als effektive Reaktionsmedien zur chemischen Modifizierung einsetzbar, was für eine Veretherung sowie Veresterung gezeigt werden konnte. Die Synthese von Carboxymethylcellulose kann sowohl in einer lösenden als auch in einer quellenden Hydratschmelze erfolgen. Die Produkte zeichnen sich durch hohe Substitutionsgrade sowie einer statistischen Verteilung entlang der Polymerkette aus. Die Veresterung unter Bildung von Celluloseacetat kann in Thiocyanatschmelzen durchgeführt werden. Der erreichte Substitutionsgrad wird durch die molaren Verhältnisse bei der Reaktion sowie durch die Reaktionszeit bestimmt. Salzhydratschmelzen sind geeignet, synthetische Polymere zu lösen. In der Thiocyanat-schmelze sind Polymermischungen von Cellulose und Polyacrylnitril hergestellt worden. Die Struktur und die Eigenschaften der erhaltenen Polymerblends sind mit TMDSC sowie FT-Ramanspektroskopie untersucht worden. Sowohl der Gang der Glasübergangstemperaturen als auch die Intensitätsverhältnisse im Ramanspektrum zeigen eine Wechselwirkung bis zur molekularen Ebene an.
2

Verfahren zur Abtrennung von einwertigen Anionen aus alkalischen Prozesslösungen

Mishina, Olga 15 July 2009 (has links) (PDF)
Ziel dieser Arbeit ist die Abtrennung von monovalenten Anionen wie Chlorid, Fluorid, Bromid und Nitrat aus hochkonzentrierten alkalischen wässrigen Lösungen, die als Matrix zweiwertigen Anionen (Carbonat und Sulfat) besitzen. Nach Auswertung der Literatur eignen sich vor allem die Verfahren Ionenaustausch und Nanofiltration für diesen Zweck. Die untersuchten Ionenaustauscher weisen eine geringe Selektivität für die einwertigen Anionen auf, so dass die für einwertige Anionen nutzbare Kapazität mit steigendem Gehalt an zweiwertigen Anionen sinkt. Dabei steigt die Kapazität in der Reihenfolge Fluorid→Chlorid→Bromid→Nitrat. Die beobachteten Selektivitäten bei der Nanofiltration steigen in der gleichen Reihenfolge, wobei die Trennrate zwischen ein- und zweiwertigen Anionen vom Membrantyp abhängt. Es konnte ein Zusammenhang zwischen den Kapazitäten der untersuchten stark basischen Anionenaustauscher für monovalente Anionen und den Rückhalten für diese Anionen bei den Nanofiltrationsmembranen mit den Ionenhydratationsparametern festgestellt werden.
3

Synthese neuer Silazan- und Borazinverbindungen

Lehnert, Christian 23 July 2009 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung neuer Verbindungen in für die Erzeugung nichtoxidischer multinärer Hochleistungskeramiken aussichtsreichen Materialsystemen. Hierzu wurden Reaktionen von Silazanen mit Boran-Donor-Addukten, Tetrakis(dialkylamino)metallaten und Tetrachloriden von Elementen der 4. und 14. Gruppe des PSE sowie Hydroborierungen zwischen N-Trialkylborazinen und Vinylsilanen untersucht. Sowohl in Reaktionen mit Silazanen als auch in denen von Borazinen wurden neue Reaktionswege erschlossen, die vielfältige Optionen für eine Variation der Atomverhältnisse und der molekularen Struktur potenzieller Precursoren für multinäre Keramiken eröffnen. Insbesondere das cyclische Silazan 1,1,3,3,5,5-Hexamethylcyclotrisilazan erwies sich als Quelle zahlreicher neuer Verbindungen. Ausgewählte Moleküle der Elementsysteme SiCNB und SiCNTi wurden durch Hochtemperaturpyrolyse in thermischen Plasmen erstmals erfolgreich in keramische Schichten überführt.
4

Synthese und Reaktivität von Übergangsmetallkomplexen mit Alkinylsilyl-Liganden

Hoffmann, Florian 23 July 2009 (has links) (PDF)
Ziele der Arbeit waren die Synthese von Übergangsmetallkomplexen mit alkinylsilylgruppenhaltigen Liganden (M-Si-CC, M-Cp-Si-CC, M-Ph-Si-CC), die Aufdeckung von Struktur-Eigenschaft-Beziehungen und die Durchführung erster Reaktivitätsstudien. Die Synthese der Zielverbindungen gelingt durch Salzeliminierung, oxidative Addition, Ligandsubstitution oder Ligandmodifizierung. Die CC-Dreifachbindung der Alkinylsilyl-Gruppe kann hydrosilyliert oder unter Bildung mehrkerniger Verbindungen komplexiert werden. Weiterhin können durch C-C-Bindungsknüpfungsreaktionen Cyclobutadien-, Cyclopentadienon- oder Hydroxycyclopentadienyl-Komplexe entstehen. Diese Reaktionen zeigen, daß die Alkinylsilyl-Komplexe als Bausteine für die Konstruktion komplexerer Strukturen geeignet sind, was potentielle Anwendungsfelder in der Synthesechemie und der Materialwissenschaft eröffnet.
5

Synthese hierarchisch poröser Kohlenstoffmaterialien durch Carbochlorierung

Leifert, Winfried 18 July 2017 (has links) (PDF)
Poröse Kohlenstoffmaterialien zeichnen sich durch hohe spezifische Oberflächen und Porenvolumina, eine gute elektrische Leitfähigkeit sowie hohe mechanische und chemische Stabilität aus. Sie werden in Anwendungen wie der Gasspeicherung oder der elektrochemischen Energiespeicherung eingesetzt. Besondere Aufmerksamkeit erfährt momentan die Energiespeicherung, unter anderem durch die fortschreitende Verbreitung der Elektromobilität. Als besonders effizient haben sich elektrochemische Energiespeichermaterialien, zum Beispiel für Doppelschichtkondensatoren (EDLCs) und Batterien, herausgestellt. Ein vielversprechendes Batteriesystem ist die Lithium-Schwefel-Batterie (LiS-Batterie). Mit diesem System können wesentlich höhere gravimetrische Energiedichten als mit Lithium-Ionen-Batterien erreicht werden. Poröser Kohlenstoff stellt aufgrund der hohen Porosität, der guten elektrischen Leitfähigkeit und der chemischen Beständigkeit ein ideales Elektrodenmaterial für die Anwendung sowohl in EDLCs als auch in LiS-Batterien dar. Bei den im industriellen Maßstab am häufigsten eingesetzten Aktivkohlen ist nachteilig, dass während der Synthese nur begrenzte Kontrolle über das Porensystem vorhanden ist. Zudem sind die Poren oft flaschenhalsartig, was zu einer schlechten Zugänglichkeit des Porensystems führt und dadurch den Stofftransport limitiert. Eine verbesserte Kontrolle über das Porennetzwerk bieten das Templatverfahren oder die Synthese von Kohlenstoffen aus Carbiden. Diese Methoden ermöglichen es zudem, Poren unterschiedlicher Größe, das heißt, ein hierarchisches Porensystem, einzubringen. Dies ist vorteilhaft für Prozesse, in denen sowohl eine hohe Adsorptionskapazität als auch ein schneller Stofftransport notwendig sind. Die meisten dieser Synthesen haben die Nachteile, dass sie komplex sind und viel Abfall produzieren. Eine vergleichbar neue Methode zur Herstellung von hierarchischen Kohlenstoffen ist die Synthese von Kroll-Kohlenstoffen über eine reduktive Carbochlorierung. Dieses Verfahren ist dem Schlüsselschritt des Kroll-Prozesses zur Herstellung von Titan nachempfunden. Dafür werden oxidische Nanopartikel mit Kohlenstoff beschichtet und durch Behandlung mit heißem Chlorgas in Kohlenstoff überführt. Diese Synthese ermöglicht neben der Kontrolle der Mesoporengröße über die Größe der Nanopartikel gleichzeitig die Einbringung von Mikroporen durch das Ätzen von Kohlenstoff während der Carbochlorierung, sodass in wenigen Syntheseschritten ein hierarchisches Porensystem generiert werden kann. In dieser Arbeit wurde untersucht, ob sich der Ansatz der Carbochlorierung auf weitere Systeme übertragen lässt. Durch postsynthetische Aktivierung wurde die Porosität von Kroll-Kohlenstoff unter Erhalt der Porenstruktur gesteigert. So war es möglich, Kohlenstoffe mit spezifischen Oberflächen von mehr als 2700 m²/g und Porenvolumina von 3 cm³/g zu synthetisieren. Die Mesoporenstruktur konnte aufrechterhalten werden, während sowohl der Anteil von Meso- als auch Mikroporen erhöht werden konnte. Aktivierter Kroll-Kohlenstoff wurde in EDLCs als Elektrodenmaterial untersucht. Mit 1 M Schwefelsäure als Elektrolyt konnten spezifische Kapazitäten von 160 F/g über galvanostatische Lade-/Entlademessungen erreicht werden, wobei bei hohen Lade-/Entladeströmen von 10 A/g noch 87 % der Maximalkapazität abgerufen werden konnten. Weiterhin wurde der Frage nachgegangen, ob mittels Carbochlorierung geordnete mesoporöse Kohlenstoffe synthetisiert werden können. Dafür wurden sowohl Harttemplat- als auch Weichtemplatmethoden eingesetzt. Im Harttemplatverfahren war es möglich, geordneten mesoporösen Kohlenstoff DUT-118 zu synthetisieren.7 DUT-118 weist eine höhere spezifische Oberfläche und ein höheres Porenvolumen im Vergleich zu Kohlenstoff auf, der über das klassische „Nanocasting“ hergestellt wird. Durch die Carbochlorierung kann zudem der Mikroporenanteil des Materials im Vergleich zur klassischen Templatentfernung gesteigert werden, was durch Präadsorptionsexperimente mit n-Nonan nachgewiesen wurde. In einer weichtemplatgestützten Synthese konnte geordneter mesoporöser Kohlenstoff DUT-119 aus Oxid/Kohlenstoff-Kompositen mittels Carbochlorierung synthetisiert werden. DUT-119 verfügt über eine spezifische Oberfläche von über 2200 m²/g, ein Porenvolumen von mehr als 2 cm³/g und ein hierarchisches Porensystem. Aufgrund des hierarchischen Mikro-/Mesoporensystems ist DUT-119 hervorragend als Kathodenmatrix in LiS-Batterien geeignet. Besonders hervorzuheben ist die geringe Menge an eingesetztem Elektrolyt von nur 5 μL/mgSchwefel. Die gefertigte Zelle ist über 50 Zyklen stabil und verfügt über eine herausragende Flächenkapazität von 3,7 mAh/cm² nach 50 Zyklen. Verstärkt im Fokus der Forschung stehen Kohlenstoffe, welche mit Heteroatomen dotiert sind. Durch Dotierung können die Eigenschaften der Kohlenstoffe hinsichtlich Polarität oder elektrochemischer Eigenschaften optimiert werden.8,9 Deshalb wurde untersucht, ob über die Carbochlorierung stickstoffdotierter Kohlenstoff synthetisiert werden kann. Dafür wurde ein metallorganisches Netzwerk (MOF) zu Kroll-Kohlenstoff DUT-127 umgesetzt. In Abhängigkeit von der Synthesetemperatur von 600–900 °C konnten spezifische Oberflächen von 1450–2750 m²/g und Porenvolumina zwischen 0,8 und 2 cm³/g erreicht werden. Da das eingesetzte MOF Aminogruppen enthielt, sind in DUT-127 Stickstoffdotierungen vorhanden, was zu einer verringerten Hydrophobie führt. DUT-127 wurde als Elektrodenmaterial in EDLCs eingesetzt. Mit 1 M Schwefelsäure konnten spezifische Kapazitäten von 165 F/g, ermittelt über galvanostatische Lade-/Entlademessungen, erreicht werden. Besonders bei hohen Lade-/Entladeströmen von 12,5 A/g konnten über 90 % der maximalen Kapazität abgerufen werden. Weiterhin ist die hohe Arbeitsfrequenz von über 25 Hz hervorzuheben. Beides wird durch die gute Benetzbarkeit, das ausgeprägte Transportporensystem sowie die geringe Partikelgröße ermöglicht. Der große Vorteil der Synthese von Kroll-Kohlenstoffen über die Carbochlorierung ist der Verzicht auf Lösemittel während der Templatentfernung. Wünschenswert ist es, zukünftig ebenfalls die Synthese der Präkursoren und Template möglichst lösemittelfrei zu gestalten. Die Porenstruktur (Textur) eines porösen Materials bestimmt in großem Maße die Leistungsfähigkeit in einer bestimmten Anwendung. Deshalb wird der exakten Charakterisierung des Porensystems viel Aufmerksamkeit gewidmet. Neben Methoden wie der Gasadsorption sind bildgebende Verfahren ein wichtiges Hilfsmittel, um Informationen über Porengröße, -geometrie und -konnektivität zu erhalten. In einem ersten „Proof of Concept“ wurden die Porensysteme nanoporöser Materialien mit definierter Porenstruktur durch Röntgenmikroskopie untersucht. Dabei konnten Poren bis zu einer Größe von etwa 60 nm aufgelöst werden. Weiterhin war es möglich, aus den aufgenommenen Bilderserien Rekonstruktionen zu erstellen, wodurch Einblicke in das Innere des Partikels möglich wurden. Für die erfolgreiche Rekonstruktion einer Bilderserie ist es notwendig, dass diese optimal ausgerichtet ist. Aufgrund der hohen Uniformität der untersuchten Proben ist dies ein anspruchsvoller Prozess, der noch weiter optimiert werden muss. Dadurch könnten weitere Einblicke in die untersuchten Proben, beispielsweise durch eine quantitative Diskussion der Porosität, gewonnen werden.
6

Zur Herstellung der Erdalkalimetallchlorate und zu den Lösungsgleichgewichten in den reziproken Salzpaaren MCl2 + 2NaClO3 = M(ClO3)2 + 2NaCl/H2O (M = Mg2+, Ca2+, Sr2+, Ba2+)

Supriatna, Asep 28 July 2009 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit Untersuchungen zur Herstellung der Erdalkalimetallchlorate und zu den Lösungsgleichgewichten in den reziproken Salzpaaren MCl2 + 2NaClO3 = M(ClO3)2 + 2NaCl/H2O (M = Mg2+, Ca2+, Sr2+, Ba2+) bei 25°C, 50°C und 75°C. Neben den Löslichkeiten und Bodenkörperparagenesen sind die Dichten und Viskositäten bestimmt worden. Auf der Basis der erarbeiten Daten erfolgte die Bilanzierung der Herstellungsprozesse der Erdalkalimetallchlorate durch reziproke Umsetzung. Zusammenfassend kann eingeschätzt werden, dass mit etwa 0,2 bis 0,5 kg wasserfreies Chlorat pro kg Umlauflösung durchaus effektive Prozesse der polythermen reziproken Umsetzung vorliegen. Über die IR- und Raman-Spektroskopie und die Thermoanalyse wurden die Erdalkalimetallchlorate bzw. Erdalkalimetallchlorat-Hydrate näher charakterisiert, u.a. bezüglich ihres Zersetzungsverhaltens bis zum Erdalkalimetallchlorid.
7

Synthesis and Characterization of Mn-rich Heusler alloys for magnetocaloric applications / Synthese und Charakterisierung Mn-reicher Heuslerverbindungen für magnetokalorische Anwendungen

Fichtner, Tina 13 October 2016 (has links) (PDF)
New magnetocaloric Heusler alloys with larger magnetocaloric effects need to function in relatively low applied magnetic fields ≤ 1 T. Therefore, the emphasis of this Ph.D. thesis was to understand how the first order magnetostructural transformation in Mn-rich Ni-based rare-earth free magnetocaloric Heusler alloys works and to use this understanding for the design of new Mn-rich Ni-based rare-earth free magnetocaloric Heusler alloys. In this context, the rare-earth free, non-toxic, and environmentally friendly Heusler series: Ni2−xMn1+xSn, Mn50Ni50−ySny, and Ni-(Co-)Mn-In were systematically studied. In detail, it pointed out that in the Heusler series Ni2−xMn1+xSn, the structure and the disorder character can be predicted by using simple rules. On the other hand, an isoplethal section of the Heusler series Mn50Ni50−ySny was derived, which is very useful for the design of new magnetocaloric materials. In addition to it, in the Heusler alloy Ni49.9Mn34.5In15.6 a large saturated magnetic moment and a reversible magnetocaloric effect at its purely second order magnetic phase transition was present, which is in reasonable agreement with ab initio calculations. Finally, the effect of post-annealing on the Heusler alloy Ni45.2Co5.1Mn36.7In13 revealed that the magnetocaloric effect could be tuned and improved significantly. Consequently, this work shows that the Heusler alloys are promising candidates for magnetocaloric applications.
8

Synthese hierarchischer carbidabgeleiteter Kohlenstoffe aus Holztemplaten und deren Anwendung

Adam, Marion 22 June 2016 (has links) (PDF)
Poröse Kohlenstoffe stellen aufgrund ihrer hohen chemischen und physikalischen Belastbarkeit, hohen spezifischen Oberfläche und einstellbaren Porengrößen eine wichtige Materialklasse in der chemischen Industrie dar. Dabei finden Kohlenstoffe sowohl in der Katalyse, in Adsorptions- und Separationsprozessen und in der Abwasserbehandlung, wie auch in elektrochemischen Energiespeichern Anwendung. In all diesen Applikationen ist eine hohe spezifische Oberfläche des Materials, welche durch das Vorhandensein von Mikroporen erreicht wird, essentiell für eine gute Performance. Rein mikroporöse Systeme weisen allerdings aufgrund der sehr langsamen Diffusion in den kleinen Poren große Probleme im Stofftransport auf, welche zu erheblichem Druckverlust, Verlust an Kapazität und Selektivitätsänderungen führen können. In vielen Anwendungen ist daher die Kombination einer hohen spezifischen Oberfläche und eines guten Stofftransports unabdingbar, woraus das besondere Interesse an der Synthese von hierarchisch strukturierten Kohlenstoffen mit einem hohen Mikroporenanteil für eine hohe spezifische Oberfläche und großen Transportporen (Meso- und/oder Makroporen) resultiert. Carbidabgeleitete Kohlenstoffe (carbide-derived carbons - CDC) [1, 2], welche einen vorrangig mikroporösen Charakter besitzen, werden durch selektive Ätzung von Metall- oder Halbmetallatome aus Carbiden dargestellt. Die Einführung von Transportporen erfolgt über verschiedene Templatverfahren, wobei synthetische Template meist sehr aufwendig und teuer synthetisiert werden müssen. Aufgrund des hohen synthetischen, finanziellen und materiellen Aufwandes sind daher nur Synthesen im kleinen Maßstab möglich, welche den breiten Einsatz in verschiedenen Anwendungsfeldern stark limitieren. Dem gegenüber stehen Biotemplate, welche sich durch ihre hohe Verfügbarkeit, ihre Nachhaltigkeit und ihre geringen Kosten, welche bis zu 3000-fach [3-6] geringer als synthetische Template sind, auszeichnen. Zudem besitzt Holz als Bio-Templat eine über Jahrmillionen auf Stofftransport optimierte Struktur, welche Holz zu einem vielversprechenden Templat für die Synthese hierarchischer Kohlenstoffe nicht nur aus ökologischer und ökonomischer, sondern vor allem auch aus wissenschaftlicher Sicht macht. Über die Verknüpfung des CDC-Prozesses mit Holz als Bio-Templat können so hierarchisch strukturierte Kohlenstoffmaterialien mit hohen Oberflächen und einem guten Transportsystem synthetisiert werden, welche die Möglichkeit zum Einsatz in einem breiten Anwendungsbereich bieten. Durch einen einfachen Zwei-Stufen-Prozess bestehend aus Imprägnierung eines flüssigen SiC-Präkursors und anschließender Hochtemperturchlorierung (Abbildung 1) war es möglich, hierarchisch strukturierte Kohlenstoffe unter Erhalt der typischen Holzmikrostruktur mit großen Transportporen und zusätzlichem mikoporösem Charakter, durch den eingebrachten CDC-Kohlenstoff, zu synthetisieren. Die Porengrößen und -verteilung sind dabei stark von der Holzart, der Chlorierungstemperatur und den Parametern des Imprägnierprozesses abhängig. Es konnte ein linearer Zusammenhang zwischen eingebrachter Siliziumcarbidmenge und der spezifischen Oberfläche des resultierenden Kohlenstoffmaterials ermittelt werden, welcher ein gezieltes Design der Holz-CDC-Materialien in Bezug auf Oberfläche und Porenvolumen/-größe ermöglicht. Neben der makroporösen Zellstruktur des Holzes konnte zudem die makroskopische Form während des gesamten Prozesses vollständig erhalten werden, welches die gezielte Synthese von Formkörpern, wie Monolithen, ermöglicht. Die Synthese von Holz-CDC-Materialien bietet daher einen großen ökonomischen Vorteil gegenüber herkömmlichen Kohlenstoffsynthesen, in denen meist pulverförmige Produkte entstehen, welche dann zur Nutzung in verschiedenen Anwendungen durch Presswerkzeuge oder den Zusatz von Bindermaterialien in Formkörper gebracht werden müssen. Zur weiteren Steigerung der Oberfläche und des Porenvolumens wurden Voraktivierungen am Holztemplat durchgeführt. Hierbei wurden sowohl physikalische Aktivierungsmethoden mit Wasserdampf oder Kohlenstoffdioxid, wie auch chemische Aktivierungsmethoden mit Säuren und Basen untersucht. Über den Aktivierungsprozess wurde eine zusätzliche Porosität in die Holzmatrix eingebracht, wodurch nach anschließendem Imprägnierprozess und Hoch-temperaturhalogenierung Holz-CDC-Materialien mit trimodalem Porensystem bestehend aus Mikro-, Meso- und Makroporen mit Oberflächen von bis zu 1800 m^2/g und Porenvolumina bis zu 1,0 cm^3/g erzielt werden konnten. Aufgrund ihrer guten Leitfähigkeit, hohen Oberfläche und porösen Eigenschaften stellen Kohlenstoffe interessante Kathodenmaterialien für die Lithiumschwefelbatterie dar. Trotz intensiver Forschungen in den letzten 10 Jahren konnten die Herausforderungen einer hohen Zyklenstabilität, Ratenstabilität und Zellkapazität, sowie geringer Elektrolytmengen bis heute nicht zufriedenstellend gelöst werden. Hierarchisch strukturierte Kohlenstoffmaterialien, welche „Reaktions- und Transportporen“ besitzen, stellten sich als vorteilhaftes Kathodenmaterial heraus. Die longitudinal ausgerichteten Makroporen (Transportporen) der Holz-CDCs ermöglichen einen schnellen Ionentransport, welcher auch bei hohen Lade- und Entladeraten stabile Kapazitäten ermöglicht. Dem gegenüber setzen die Mikroporen (Reakionsporen) die Löslichkeit der Polysulfide herab, welches eine gute Ratenstabilität über 100 Zyklen zur Folge hat. Es konnten mit den synthetisierten Holz-CDC-Materialien stabile Kapazitäten über 580 mAh/gSchwefel mit hohen Stromdichten von 20 mA/cm^2 (2C) und sehr geringen Elektrolytmengen von nur 6,8 µl/mgSchwefel erzielt werden. Diese Daten zeigen eine deutliche Verbesserung zu den in der Literatur bisher veröffentlichten Werten [3,7]. Neben dem Einbringen einer zusätzlichen Porosität werden durch den chemischen Aktivierungsprozess Oberflächenfunktionalitäten an der Kohle gebildet. Diese Oberflächen-funktionalitäten können vor allem in der Adsorption von polaren Verbindungen essentiell für eine hohe Adsorptionskapazität sein. Quecksilber stellt ein giftiges Element dar, welches anthropogen durch die Kohleindustrie jährlich mit ca. 4000 t freigesetzt wird. Die Entfernung von Quecksilber aus Industrieabgasen erfolgt über dessen Lösung in Wasser und anschließende adsorptive Prozesse, wobei Kohle als Adsorbens Einsatz findet. Untersuchungen der Holz-CDC-Materialien zeigten hohe Quecksilber-Adsorptionskapazitäten von 242 mgHg/gKohle. Gegenüber herkömmlichen kommerziellen Aktivkohlen [8] mit 12 mg/g und neuartigen Aktivkohlen auf Bio-Basis [8] mit 150 mg/g, zeigen die untersuchten Holz-CDC-Materialien 1,5- bis 200-fach höhere Aufnahmekapazitäten. Bei diesen ersten proof-of-principle-Untersuchungen konnte das hohe Potential holzbasierter CDC-Materialien für die Anwendung in Adsorptionsprozessen gezeigt werden, welches eine deutliche Steigerung der Kapazität durch weitere zukünftige Optimierungen des Materials verspricht. Holz kann ebenfalls Anwendung zur Synthese hochporöser Kohlenstoffstäbchen finden. Hierbei wird die Holzstruktur vollständig mit Siliziumcarbid gefüllt. Nach der anschließenden Entfernung des Holztemplates über Calcination bleibt die Negativstruktur des Holzgerüstes als stäbchenförmige Strukturen erhalten. Durch nachfolgende Reinigung und Hochtemperatur-chlorierung können die SiC-Stäbchen in rein mikroporöse CDC-Stäbchen umgewandelt werden, welche sehr hohe spezifische Oberflächen von bis zu 3680 m^2/g und Porenvolumina von bis zu 1,6 cm^3/g besitzen. Aufgrund ihres unpolaren Charakters und der hohen spezifischen Oberfläche sind diese Strukturen besonders für die Adsorption von aromatischen, gering bzw. nicht polaren Verbindungen geeignet. Das adsorptive Verhalten der Stäbchenstrukturen wurde bei der Adsorption von Methylenblau, einer in der Literatur häufig verwendeten Beispielsubstanz für die Adsorption voluminöser aromatischer Verbindungen, und von Diclofenac untersucht. Diclofenac ist ein Schmerzmittel, welches vor allem bei Rheuma eingesetzt wird und mit ca. 63 t/Jahr in Deutschlands Wassersysteme eingetragen wird. Die schlechte Abbaubarkeit und die unzureichende Entfernung von Diclofenac über herkömmliche Abwasseraufbereitungsanlagen haben in den letzten Jahren zu einer deutlichen Anreicherung des Medikamentes in der Umwelt geführt. Die Entfernung von Diclofenac hat, neben der Entfernung anderer aromatischer Medikamente, wie Ibuprofen und Carbamazepin, in den letzten 10 Jahren daher deutlich an Bedeutung gewonnen. CDC-Stäbchen zeigen im Vergleich zu herkömmlichen Kohlenstoffen, wie Printex oder Hydraffin P800, fast doppelt so hohe Aufnahmekapazitäten für Methylenblau unter ähnlich schnell ablaufender Adsorptionkinetik. Auch Diclofenac kann an den CDC-Stäbchen mit 580 mg/g deutlich besser adsorbieren als an Hydraffin P800, welche eine Kapazität von 490 mg/g zeigt. Bedenkt man, dass es sich bei Hydraffin P800 (Firma: Donau Carbon) um eine für die Adsorption von organischen Wasserschadstoffen optimierte Aktivkohle handelt, wird das hohe Potential der unoptimierten CDC-Stäbchen deutlich. [1] V. Presser, M. Heon, Y. Gogotsi, Adv. Funct. Mat., 2011, 21, 810. [2] L. Borchardt, M. Oschatz, S. Kaskel, Materials horizon , 2014, 1, 157. [3] C. Hoffmann, S. Thieme, J. Brückner, M. Oschatz, T. Biemelt, G. Mondin, H. Althues, S. Kaskel, ACS Nano, 2014, 8, 12, 12130. [4] M. Oschatz, L. Borchardt, M. Thommes, K.A. Cychosz, I. Senkovska, N. Klein, R. Frind, M. Leistner, V. Presser, Y. Gogotsi, S. Kaskel, Angew. Chem. Int. Ed., 2012, 51 (13), 7577. [5] M. Adam, P. Strubel, L. Borchardt, H. Althues, S. Dörfler, S. Kaskel, Journal of Materials Chemistry A, 2015, accepted, DOI: 10.1039/C5TA06782K [6] M. Adam, M. Oschatz, W. Nickel, S. Kaskel, Micro. Meso. Mater., 2015, 210, 26. [7] Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu , Y. Cui , Nat. Commun., 2013, 4 , 1331. [8] M. Zahibi., A. Ahmadpour, A. Haghighi Asl, J. Hazard. Mater., 2009, 167, 230.
9

Beiträge zur Silicium-Chalcogen-Chemie einschließlich analoger Germanium-, Zinn- und Bleiverbindungen

Herzog, Uwe 14 July 2009 (has links) (PDF)
Hauptziel dieser Arbeit ist die Synthese und Charakterisierung neuer Organosilicium-Chalcogen-Verbindungen (Chalcogen: Schwefel, Selen, Tellur), sowohl mit acyclischen, als auch mono- und polycyclischen Strukturen. Dabei konnten in vielen Fällen auch isostrukturelle Verbindungen mit Germanium- oder Zinnatomen anstelle von Silicium aufgebaut werden. Insgesamt wurden 42 der dargestellten Verbindungen auch durch Röntgenkristallstrukturanalysen charakterisiert. In cyclischen und polycyclischen Verbindungen war es damit auch möglich, die auftretenden Konformationen der Ringe- bzw. Ringsysteme zu bestimmen und die Resultate mit den Ergebnissen von DFT-Berechnungen zu vergleichen. Die NMR-Spektroskopie war parallel zu Kristallstrukturanalysen und GC/MS Messungen die Methode der Wahl zur Charakterisierung der dargestellten Verbindungen. Dabei boten sich neben der 1H und 13C NMR auch die 29Si, 119Sn, 207Pb, 77Se, und 125Te NMR Spektroskopie an, da man direkt die Elemente analysiert, die die Ringsysteme aufbauen, was zu einer weit höheren Strukturempfindlichkeit führt. Vor allem beim Vergleich von 77Se und 125Te NMR Daten analoger Selen- und Tellurverbindungen ergaben sich lineare Korrelationen sowohl der chemischen Verschiebungen als auch der Kopplungskonstanten 1JSiE bzw. 1JSnE mit Faktoren von ca. 2.5. Ähnliche Korrelationen konnten auch zwischen 29Si und 119Sn bzw. 119Sn und 207Pb NMR chemischen Verschiebungen gezogen werden. Von einigen Verbindungen konnten durch 29Si MAS NMR Spektroskopie auch die Tensorhauptwerte der chemischen Verschiebung ermittelt werden. Parallel dazu wurden mittels GIAO und IGLO Verfahren die 29Si NMR chemischen Verschiebungen ausgehend von den aus den Kristallstrukturanalysen zugänglichen Geometrien berechnet. Neben cyclischen Verbindungen konnten unter Verwendung des sperrigen Hypersilylrestes auch eine Reihe acyclischer Verbindungen mit der Sequenz Si–E–Si bzw. Si–E–Sn dargestellt und z. T. auch strukturell charakterisiert werden.
10

Synthese und Charakterisierung neuartiger Donor-Akzeptor substituierter Oligosilane

Beyer, Christian 29 July 2009 (has links) (PDF)
Von generellem Interesse für potentielle Anwendungsmöglichkeiten sind Materialien mit speziellen elektrischen bzw. nichtlinearen optischen Eigenschaften. Im Rahmen dieser Arbeit wurden neue dipolare Verbindungen synthetisiert und charakterisiert, welche eine zentrale Organosilanspacereinheit (-SiMex-,-(SiMe2)6-), ein terminales Metallkomplexfragment (potentieller Donor, FcN-) sowie eine terminale organische Akzeptoreinheit (-PhF, -PhBr, -PhCHO) enthalten und gleichzeitig eine große Variationsbreite gewünschter Eigenschaften aufweisen. Aus Photo-EMK-Messungen, UV/VIS-, NMR-Spektroskopie, Mößbauer- und cyclovoltammetrischen Untersuchungen kann auf eine im Festkörper auftretende temperaturabhängig variierende intermolekulare Kopplung zwischen dem Donor und dem organischen Akzeptor geschlossen werden. Photo-EMK- und Einkristallröntgenstrukturanalysen der Salze (Hydrochloride, Pikrate) offenbaren starke intermolekulare Wechselwirkungen (C-H···π, D-C-H···A) mit entscheidendem Einfluß auf Festkörpereigenschaften (supramolekulare MO's).

Page generated in 0.0637 seconds