• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 39
  • 12
  • Tagged with
  • 172
  • 103
  • 69
  • 58
  • 49
  • 36
  • 36
  • 34
  • 32
  • 29
  • 24
  • 22
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Etude de la sécrétion régulée par microscopie de fluorescence à excitation par onde évanescente.

Tran, S. 29 September 2008 (has links) (PDF)
La sécrétion régulée d'hormones est un processus décomposable en plusieurs étapes : migration des granules de sécrétion (GS) vers la membrane plasmique (MP), accostage et arrimage des GS à la MP, exocytose ou fusion des GS avec la MP permettant la libération du contenu des GS dans le milieu extracellulaire. Bien que très utiles, les méthodes électrophysiologiques et électrochimiques ne donnent d'informations ni sur la localisation ou les mouvements des GS avant fusion, ni sur le devenir de la membrane des GS après fusion. Plusieurs techniques d'imagerie in vivo cherchent à répondre à ces questions. La mieux adaptée est la microscopie de fluorescence à excitation par onde évanescente (TIRFM) qui permet d'observer les mouvements de GS individuels à proximité immédiate de la MP. Nous avons appliqué cette approche à l'étude de la sécrétion des cellules BON (lignée dérivée d'un carcinome). Leur stimulation a été faite par la technique du Ca cagé, appliquée pour la première fois en microscopie TIRF. Après exocytose, nous avons observé et quantifié le phénomène de persistance de la forme d'une partie des GS, ainsi que l'exocytose séquentielle de GS situés plus à distance de la MP. De manière surprenante, l'exocytose séquentielle représente ~25% des événements d'exocytose. L'analyse détaillée des trajectoires en 3 dimensions des GS avant leur fusion nous a montré qu'environ 40% des GS effectuent une transition de 20 nm vers la MP, puis fusionnent dans un délai de ~3 s. Cette observation originale de la transition entre l'accostage et l'arrimage des GS pourrait être la traduction d'évènements moléculaires impliqués dans l'amorçage des GS, nécessaire à la fusion.
22

Analyse des mouvements des granules de sécrétion à proximité de la membrane plasmique par microscopie de fluorescence à excitation par onde évanescente

Huet, Sébastien 30 June 2006 (has links) (PDF)
La sécrétion régulée d'hormones est un processus décomposable en plusieurs étapes. Les granules de sécrétion (GS) contenant ces hormones sont formés au niveau du réseau trans-golgien puis migrent jusqu'à la périphérie de la cellule. Ces hormones sont libérées dans le milieu extérieur par exocytose en cas de stimulation de la cellule. Grâce à l'observation des GS situés dans la région juxta-membranaire par microscopie de fluorescence à excitation par onde évanescente, les mouvements de ces organites ont été étudiés à l'échelle du granule unique. Une méthode d'analyse permettant la mise en évidence de comportements transitoires au sein des trajectoires tridimensionnelles des GS a été mise au point. Grâce à son application à l'étude des effets de drogues du cytosquelette et à des observations en double marquage, nous avons pu associer chaque type de mouvements décrit par les GS à un environnement particulier (GS lié à la membrane plasmique, au cytosquelette d'actine ou de microtubules). Nous avons de plus étudié le rôle du complexe protéique Rab27A/MyRIP/Myosine Va lors de la capture des GS en périphérie de la cellule et leur accrochage aux filaments d'actine.
23

Caractérisation moléculaire des signaux de sécrétion des protéines sécrétées par le système de sécrétion de type II de la bactérie phytopathogène Dickeya dadantii / Molecular characterization of secretion signals of proteins secreted by the type II secretion system of the phytopathogenic bacterium Dickeya dadantii

Guschinskaya, Natalia 03 June 2014 (has links)
Le système de sécrétion de type II (T2SS) assure le transport de protéines sous une forme repliée du périplasme dans le milieu extracellulaire. Ce système est largement exploité par les bactéries à Gram négatif pathogènes des plantes, des animaux et de l'homme où il permet la sécrétion de facteurs de virulence (des toxines et des enzymes lytiques). La bactérie phytopathogène Dickeya dadantii utilise le T2SS appelé Out, pour sécréter une douzaine de pectinases qui dégradent les parois des cellules végétales. Les protéines sécrétées par le T2SS n'ont pas de motif de sécrétion apparent et leur sécrétion implique plusieurs interactions transitoires avec les composants du système. La nature moléculaire de ces interactions n'est pas connue. Afin de capter ces interactions transitoires lors du processus de sécrétion, j'ai utilisé le pontage dirigé in vivo. Cette technique repose sur l'incorporation d'un analogue photoréactif d'un acide aminé (le para-benzoyl Lphénylalanine, pBpa) à la place des résidus soupçonnés de faire partie d'un site d'interaction. Le pontage est ensuite activé par une courte exposition des cellules aux UV ce qui permet la formation des complexes protéiques. Tout d'abord, cette technique a été utilisée pour introduire le pBpa dans plusieurs régions exposées à la surface d'une exoprotéine, PelI. Cette stratégie a permis de mettre en évidence qu'un élément structural, la boucle 3 du domaine Fn3 de PelI, est impliquée dans l'interaction avec la sécrétine OutD, le composant du T2SS situé dans la membrane externe, et avec le domaine PDZ d'OutC, un composant de la membrane interne. Ces résultats suggèrent que la boucle 3 fait partie d'un motif de sécrétion. Deux autres régions ont été identifiées au sein de PelI : le linker entre les deux domaines de PelI qui est impliqué dans l'interaction avec OutD et une région exposée du domaine catalytique qui interagit avec la protéine OutC. La même approche a été utilisée pour introduire le pBpa dans les deux composants du T2SS, OutC et OutD. Ces expériences ont suggéré que le domaine PDZ d'OutC interagit avec une autre exoprotéine, PelB. Cette étude, de façon complémentaire à d'autres approches, nous a permis de démontrer certains détails moléculaires essentiels de la sécrétion par le T2SS / The type II secretion system (T2SS) transports folded proteins from the periplasm through the outer membrane into the milieu. In many pathogenic Gram-negative bacteria, the T2SS secretes various virulence factors in host tissue and is directly involved in pathogenesis. The phytopathogen Dickeya dadantii secretes a dozen of pectinases through a T2SS named Out. The secreted proteins are lacking an obvious common signal and secretion is thought to involve multiple transient interactions of folded exoproteins with several T2SS components. Molecular nature of these interactions remains unknown. To address this question we used an in vivo sitespecific photo-crosslinking approach to capture such transient interactions within the functional T2SS of D. dadantii. In this technique, the photo-crosslinker para-benzoyl-L-phenylalanine, pBpa, is introduced in vivo in place of a residue of interest and UV-irradiation of living cells provokes the formation of complexes between the protein of interest and its partners. First, in a systematic approach, pBpa was introduced at several surface-exposed sites of the secreted protein PelI. This strategy permitted us to identify that one structural element, loop 3 of Fn3 domain in PelI, interacts both with the secretin, the outer membrane T2SS component, and with the PDZ domain of OutC, an inner membrane T2SS component. These results suggest that this loop 3 is a part of the secretion motif. The same approach permitted us to identify two other regions of PelI interacting with the T2SS: a linker situated between the two domains of PelI, which interacts with OutD, and an exposed region of the catalytic domain of PelI interacting with OutC. In another approach, pBpa was introduced into the T2SS components, OutC and OutD. These experiments suggested that the PDZ domain of OutC interacts with the secreted protein PelB. This study, in complement with other approaches, allowed us to uncover some important molecular features of the protein secretion by the T2SS
24

Le système de sécrétion de type II Hxc de P. aeruginosa, caractérisation et étude fonctionnelle de la liposécrétine HxcQ / The Pseudomonas Aeruginosa type II secretion system, Hxc : characterization and functional study of the liposecretin HxcQ

Viarre, Véronique 25 June 2010 (has links)
La bactérie Gram négative Pseudomonas aeruginosa produit un grand nombre d’exoprotéines remplissant de multiples fonctions. Pour rejoindre la surface ou le milieu extracellulaire, ces exoprotéines doivent franchir successivement la membrane interne, le périplasme et la membrane externe. De multiples systèmes de sécrétion ont été mis en place par P.aeruginosa pour réaliser ces différentes étapes. Ainsi, les exoprotéines peuvent traverser l’enveloppe par le système le plus approprié à leur transport. Un de ces systèmes, le système de sécrétion de type II (T2SS) est présent en deux exemplaires. Ces deux T2SS, complets et fonctionnels ont été appelés Xcp (« extracellular deficient protein ») et Hxc (« Homologue toXcp »). Si les éléments constitutifs des T2SSs sont bien identifiés, leur assemblage au sein de l’enveloppe ainsi que leur mode de sécrétion sont très peu documentés. Le modèle communément admis suggère cependant l’existence d’une plateforme de membrane interne, d’un composant demembrane externe et d’un pseudopilus, qui va tel un piston, pousser les substrats au travers du pore formé par l’unique composant de membrane externe, la sécrétine. Les sécrétines formentdans la membrane externe de larges pores homo-multimériques de 12 à 14 monomères.L’adressage et l’assemblage de telles structures nécessitent en général l’implication d’une petite lipoprotéine, connue sous le nom de pilotine. A ce jour, aucune protéine de ce type n’est connue pour assister les multiples sécrétines répertoriées chez P. aeruginosa dans leur adressage à lamembrane externe. Ce travail de thèse à principalement porté sur le second T2SS de P.aeruginosa, le système Hxc. Nous avons en particulier démontré que la sécrétine du système Hxc,HxcQ ne dépendait d’aucune pilotine pour son adressage à la membrane externe et que cette sécrétine était une lipoprotéine dont l’ancre lipidique N-terminale jouait le rôle de pilotine. / The Gram negative bacteria Pseudomonas aeruginosa produces a large number of exoproteins that have multiple functions. To reach the cell surface or the extracellular medium, an exoprotein must successively cross the inner membrane, the periplasm and the outer membrane.P. aeruginosa has developed a number of secretion systems that carry out these different steps.Thus, a specific exoprotein will cross the envelope using the most suitable secretion system. Oneof these systems, the type II secretion system (T2SS), is present in two copies on the P.aeruginosa genome. Both T2SS are complete and functional, and have been named Xcp(« extracellular deficient protein ») and Hxc (« Homologue to Xcp »). While the different components that make up each T2SS have been clearly identified, their assembly in the envelopeand their mode of secretion are poorly documented. Nevertheless, the commonly acceptedworking model suggests the existence of an inner membrane platform, a component in the outer membrane, and a pseudopilus which, acting as a piston, pushes the substrate through a pore formed by the sole component of the outer membrane, the secretin. Secretins form large homomultimeric pores (12 to 14 monomers) in the outer membrane. Targeting and assembly ofsuch structures requires the involvement of a small lipoprotein known as pilotin. To date, no suchprotein is known to assist the targeting of P. aeruginosa secretins to the outer membrane. This thesis work has mainly focused on the second T2SS of P. aeruginosa, the Hxc system. One of ourmajor findings is that the outer membrane targeting of the Hxc secretin, HxcQ, does not dependon any pilotin, but that instead HxcQ is a lipoprotein with a lipid anchor that acts as a pilotin.
25

La sécrétion de la protéine Tau : nouveau mécanisme de propagation de la pathologie de Tau dans la maladie d'Alzheimer

Plouffe, Vanessa 12 1900 (has links)
Tau est une protéine associée aux microtubules enrichie dans l’axone. Dans la maladie d’Alzheimer, Tau devient anormalement hyperphosphorylée, s’accumule dans le compartiment somato-dendritique et s’agrège pour former des enchevêtrements neurofibrillaires (NFTs). Ces NFTs se propagent dans le cerveau dans un ordre bien précis. Ils apparaissent d’abord dans le cortex transenthorinal pour ensuite se propager là où ces neurones projettent, c’est-à-dire au cortex entorhinal. Les NFTs s’étendent ensuite à l’hippocampe puis à différentes régions du cortex et néocortex. De plus, des études récentes ont démontré que la protéine Tau peut être sécrétée par des lignées neuronales et que lorsqu’on injecte des agrégats de Tau dans un cerveau de souris, ceux-ci peuvent pénétrer dans les neurones et induire la pathologie de Tau dans le cerveau. Ces observations ont mené à l’hypothèse que la protéine Tau pathologique pourrait être sécrétée par les neurones, pour ensuite être endocytée par les cellules avoisinantes et ainsi propager la maladie. L’objectif de la présente étude était donc de prouver la sécrétion de la protéine Tau par les neurones et d’identifier par quelle voie elle est secrétée. Nos résultats ont permis de démontrer que la protéine Tau est sécrétée par des neurones corticaux de souris de type sauvage ainsi que dans un modèle de surexpression dans des cellules HeLa et PC12. Nos résultats indiquent que la sécrétion de Tau se ferait par les autophagosomes. Finalement, nous avons démontré que la protéine Tau sécrétée est déphosphorylée et clivée par rapport à la protéine Tau intracellulaire non sécrétée. / Tau, a microtubule-associated protein, is enriched in the axon. In Alzheimer’s disease, Tau becomes hyperphosphorylated, redistributes to the somato-dendritic compartment and forms aggregates called neurofibrillary tangles (NFTs). The NFTs propagates in a predictable manner in particular neuronal networks. Indeed, they appear in the trans-entorhinal region and then propagate to the entorhinal cortex where the trans-entorhinal cortex projects. Then, the NFTs propagate to the hippocampus and to different regions of the cortex and neocortex. Recent studies have reported that Tau can be secreted by neuronal cell lines. Besides, when aggregates of Tau protein were injected in mouse brain, they could enter neurons and induced Tau pathology. Based on those observations, it was speculated that Tau could be secreted by neurons and then captured by neighbouring cells to propagate Tau pathology in the brain. The goal of the present study was to prove that Tau can be secreted by neurons and to find the secretory pathway involved in Tau secretion. Moreover, the phosphorylation state of Tau protein was examined and compared to intracellular non-secreted Tau. Our results showed that Tau is secreted by cortical neurons isolated from wild-type mice and by HeLa and PC12 cells overexpressing human Tau. Our results also indicated that autophagosomes would be involved in Tau secretion. Finally, we found that secreted Tau was dephosphorylated and cleaved compared to the non-secreted intracellular Tau.
26

Implication de la chaperone calnexine dans le processus de sécrétion et la survie de la levure Schizosaccharomyces pombe

Maréchal, Alexandre January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
27

Étude du rôle de la calnexine de Schizosaccharomyces pombe dans le repliement et la sécrétion de protéines

Tanguay, Pierre-Luc January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
28

Anomalies de la tolérance au glucose secondaires à la fibrose kystique : relations avec le statut clinique

Costa, Myriam January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
29

Etude du système de sécrétion de type VI chez Escherichia coli entéro-agrégatif : Caractérisation d'un sous complexe d'ancrage membranaires

Aschtgen, Marie-Stéphanie 16 December 2011 (has links)
Bacterial pathogenesis relies on a subset of mechanisms including adhesion to various matrices, antibiotic resistance, defence and action against surrounding microorganisms, and secretion of virulence factors. Among the secretion systems, the recently identified Type VI secretion system (T6SS) has been shown to be involved in both virulence against eukaryotic cells and inter-bacterial warfare. T6SS are composed of a minimum of 13 proteins called "core components". It is believe to form a macromolecular system that spans the envelope to assemble an extracellular structure composed of the Hcp protein with a trimer of VgrG located at the tip. This model has been built following in silico and structural analyses demonstrating the link between several T6SS subunits and bacteriophage T4 baseplate and tail elements. Other T6SS subunits include membrane proteins. Using enteroaggregative Escherichia coli as a bacterial model, the aim of my work is to understand how this system assembles in the cell envelope. I recently showed that four of these membrane proteins, SciP, SciS, SciN and SciZ make contact to form a complex [1]. These four subunits are critical components of the T6SS. I then delineated the interaction network, demonstrating that SciZ interacts with SciP, and that SciS interacts with both SciP and SciN. Further characterization of these subunits showed that SciN is a lipoprotein associated with the outer membrane [2, 4], whereas SciP and SciS are inner membrane proteins anchored through a single and three transmembrane segments respectively. SciZ is a polytopic inner membrane protein carrying a peptidoglycan-binding motif within its periplasmic domain. Mutagenesis and peptidoglycan binding experiments demonstrated that SciZ anchors the T6SS to the cell wall [1, 3]. Overall, we have identified and characterized a trans-envelope complex anchored in both membrane and to the peptidoglycan layer. / Bacterial pathogenesis relies on a subset of mechanisms including adhesion to various matrices, antibiotic resistance, defence and action against surrounding microorganisms, and secretion of virulence factors. Among the secretion systems, the recently identified Type VI secretion system (T6SS) has been shown to be involved in both virulence against eukaryotic cells and inter-bacterial warfare. T6SS are composed of a minimum of 13 proteins called "core components". It is believe to form a macromolecular system that spans the envelope to assemble an extracellular structure composed of the Hcp protein with a trimer of VgrG located at the tip. This model has been built following in silico and structural analyses demonstrating the link between several T6SS subunits and bacteriophage T4 baseplate and tail elements. Other T6SS subunits include membrane proteins. Using enteroaggregative Escherichia coli as a bacterial model, the aim of my work is to understand how this system assembles in the cell envelope. I recently showed that four of these membrane proteins, SciP, SciS, SciN and SciZ make contact to form a complex [1]. These four subunits are critical components of the T6SS. I then delineated the interaction network, demonstrating that SciZ interacts with SciP, and that SciS interacts with both SciP and SciN. Further characterization of these subunits showed that SciN is a lipoprotein associated with the outer membrane [2, 4], whereas SciP and SciS are inner membrane proteins anchored through a single and three transmembrane segments respectively. SciZ is a polytopic inner membrane protein carrying a peptidoglycan-binding motif within its periplasmic domain. Mutagenesis and peptidoglycan binding experiments demonstrated that SciZ anchors the T6SS to the cell wall [1, 3]. Overall, we have identified and characterized a trans-envelope complex anchored in both membrane and to the peptidoglycan layer.
30

Régulations de la sécrétion et de l’activité biologique de la protéine Tat du VIH-1 : rôles de la palmitoylation et de Gag / Regulations of HIV-1 Tat secretion and biological activity : role of palmitoylation and Gag

Chopard, Christophe 17 December 2014 (has links)
La protéine du VIH-1 est une protéine essentielle à la transcription et à la réplication du virus. Elle a donc un rôle crucial dans la cellule infectée. On sait qu'une partie de la Tat cellulaire peut être sécrétée, malgré l'absence de séquence signal. En effet, les 2/3 de la Tat cellulaire sont exportés par la cellule T-primaire infectée. Le mécanisme de sécrétion de Tat est non conventionnel et se produit directement à travers la membrane plasmique où Tat est recrutée grâce à sa très forte affinité pour le phosphatidylinositol(4,5)-biphosphate ou PI(4,5)P2 qui est exclusivement localisé à ce niveau. La Tat extracellulaire a un effet délétère sur de nombreux types cellulaires et agit donc comme une toxine virale. Elle constitue un facteur déterminant de l'évolution vers le SIDA. En accord avec cette efficacité de sécrétion par les cellules T primaires infectées, Tat est essentiellement localisée sur la membrane plasmique des T primaires infectées par le VIH-1. Une fraction importante de Tat est donc résidente à la membrane et nous avons recherché un mécanisme pouvant expliquer cette rétention et mis en évidence la palmitoylation. Nos travaux montrent que Tat est palmitoylée, dans des cellules T ainsi que dans les ‘cibles' comme les neurones et les macrophages. Cette palmitoylation, qui inhibe la sécrétion de Tat, est réalisée sur la cystéine 31 de Tat (qui possède 7 cystéines) par l'enzyme DHHC20 avec comme cofacteurs nécessaires les immunophilines (prolyl-isomérases), Cyclophiline A et FKBP12, qui interagissent avec Tat au niveau de la membrane. Nos résultats indiquent aussi qu'en présence de Gag, la palmitoylation de Tat est inhibée. Nous pensons que l'export de la CypA dû à son encapsidation diminuerait la quantité de CypA disponible pour Tat, inhibant la palmitoylation de Tat et permettant sa sécrétion efficace par les cellules infectées. En effet, le VIH-1 encapside 250 copies de CypA/virion, le taux de CypA régulant la virulence des virions produits. Dans les cellules cibles, Tat serait fortement palmitoylée ce qui induirait sa fixation quasi irréversible au PI(4,5)P2, l'empêchant de ressortir de la cellule et permet ainsi un effet cumulatif des doses reçues par la cellules. Cette accumulation de Tat perturbe des processus membranaires dépendant du PI(4,5)P2 tels que la phagocytose et la neurosécrétion. La palmitoylation de Tat est nécessaire pour ces effets. Ces actions de la Tat extracellulaire pourraient participer au développement des infections opportunistes et des troubles neurologiques observé lors du SIDA. / HIV-1 Tat is a small protein that is required for viral transcription and multiplication. It thus has a crucial role in the infected cell. It was known that Tat can be secreted despite its lack of signal sequence. In fact 2/3 of cellular Tat are exported by infected primary T-cells. The unconventional secretion of Tat relies on its interaction with phosphatidylinositol(4,5)-biphosphate or PI(4,5)P2, a lipid that is concentrated within the inner leaflet of the plasma membrane and is strictly required for Tat secretion. Exogenous Tat has deleterious effects on several cell types, indicating that extracellular Tat is involved in evolution to AIDS. Consistent with this secretion efficiency, Tat is mainly localized at the plasma membrane of primary T-cells infected by HIV-1. A large fraction of Tat is resident at the membrane and we looked for a mechanism that could explain this retention and discovered that Tat is palmitoylated. Our studies show that Tat is palmitoylated, both in T-cells and also in ‘target' cells such as neurons and macrophages. Tat palmitoylation inhibits its secretion and is performed on Tat cysteine 31 (Tat has seven cyteines) by the enzyme DHHC20 using immunophilins (prolyl ismerases), Cyclophilin A (CypA) and FKPB12, as cofactors. Our results also indicate that the presence of Gag inhibits Tat palmitoylation. We believe that the export of CypA due to its encapsidation will make less CypA available for Tat, thereby inhibiting Tat palmitoylation. Indeed, HIV-1 encapsidates 250 copies of CypA/virion and the amount of CypA regulates the virulence of produced virions. In target cells, Tat is strongly palmitoylated and this modification induces its almost irreversible binding to PI(4,5)P2, preventing its secretion and allowing cumulative effect of minute Tat doses.Tat palmitoylation enables Tat to severely inhibit various PI(4,5)P2-dependent processes such as phagocytosis and neurosecretion. These effects of extracellular Tat likely contribute to the development of opportunistic infections and neurological disorders observed during AIDS.

Page generated in 0.0591 seconds