541 |
Analysis Of The Physical Forcing Mechanisms Influencing Salinity Transport For The Lower St. Johns RiverGiardino, Derek 01 January 2009 (has links)
The focus of this thesis is the forcing mechanisms incorporated with salinity transport for the Lower St. Johns River. There are two primary analyses performed: a historical data analysis of primary forcing mechanisms to determine the importance of each individual influence, and a tidal hydrodynamics analysis for the Lower St. Johns River to determine the required tidal constituents for an accurate resynthesis. This thesis is a preliminary effort in understanding salinity transport for the Lower St. Johns River for engineering projects such as the dredging of navigation canals and freshwater withdrawal from the river. The analysis of the physical forcing mechanisms is performed by examining the impact of precipitation, tides, and wind advection on historical salinity measurements. Three 30-day periods were selected for the analysis, to correspond with representative peak, most-variable, and low-salinity periods for 1999. The analysis displays that wind advection is the dominant forcing mechanism for the movement of salinity over a 30 day duration; however all mechanisms have an impact at some level. The dominant forcing mechanism is also dependent on the period of record examined where tidal influence is vital for durations of hours to a day, while freshwater inflow has more significance over a longer period due to climatological variation. A two-dimensional finite difference numerical model is utilized to generate a one month tidal elevations and velocities simulations that incorporates geometry, nonlinear advection and quadratic bottom friction. Several combinations of tidal constituents are extracted from this modeled tidal signal to investigate which combination of tidal constituents produces an accurate tidal resynthesis for the Lower St. Johns River. The analysis displays the need for 39 total tidal harmonic constituents to accurately resynthesize the original tidal signal. Additionally, due to the nonlinear nature of shallow water, the influence of the overtides for upstream or downstream locations in the Lower St. Johns River is shown to be spatially variable for different frequencies depending on the geometry. The combination of the constituent analysis and the historical analysis provides the basis information needed for the development of an accurate salinity transport model for the Lower St. Johns River.
|
542 |
Effects of Recycled Water on Landscape PlantsMiranda, Casey R 01 June 2010 (has links) (PDF)
ABSTRACT EFFECTS OF RECYCLED WATER ON LANDSCAPE PLANTS Casey Ray Miranda Recycled water is water that has been previously used, has suffered a loss of quality, and has been properly treated for redistribution (Wu et al. 2001). The use of recycled water as an alternative to fresh water in the landscape can have positive and negative effects. Experimentation on 40 different plant species during a 32 week period (2 phases of 16 weeks), was conducted to analyze the effects of recycled water irrigation on the appearance of landscape plants. Each species of plant was planted into 10 individual number 2 pots and irrigated with recycled water daily. Media and water were tested for nutrients and other constituents. In phase I there were four different species of grasses and grass-like plants, five different perennials, five species of shrubs, and four annuals tested; while phase II tested four species of herbaceous perennials, eight different species of shrubs, six species of groundcovers, and four species of annuals. All tests were conducted at the Paso Robles Waste Water Treatment Plant. Of the grasses and grass like species Yucca spp. and Buchloe spp. performed best. Osteospermum fruticosum, Lavandula angustifolia, Rosmarinus officinalis, Phormium tenax, and Pennisetum setaceum had the best appearance of the herbaceous perennials tested. For the shrubs, Coprosma repens, Cistus purpureus, Dodonea viscosa, Eleagnus pungens, Baccharis pilularis, Ceanothus thysiflorus, Thuja orientalis, and Nerium oleander had the best appearance when irrigated with recycled water. The best annuals were Senecio cineraria, Antirrhinum majus, Primula spp., Viola spp., and Calendula officinalis. Of the groundcovers Heuchera spp., Lonicera japonica, Vinca major, Hedera helix, and Ceanothus griseus had the best results. From the experiment a list of tolerant and non-tolerant plants was compiled (Appendices 1 and 2). While many plants were capable of developing and growing normally, other plants were sensitive to recycled water irrigation. In order to prevent salt damage to plants and expand the use of recycled water, salt tolerance of landscape plant material must be identified (Niu et.al, 2006).
|
543 |
Interfacial phenomena in mixed-wet oil reservoirs: 2-phase fluid dynamics and chemo-rheology at pore-scaleSaad, Ahmed Mohamed 10 1900 (has links)
Asphaltenic crude oil is a complex fluid containing various components with different chemical properties. When it comes in contact with water, its polar components adsorb at the oil/water interface, reducing the interfacial tension and eventually developing viscoelastic films. The interfacial films impact emulsion stability and adhere to the oil-bearing reservoirs rocks, altering their wettability and thus hindering oil mobilization. Here, we investigate the formation of crude oil/water interfacial films. We measure both the time-dependent shear and extensional interfacial rheology moduli, and we relate it to the chemical composition of the films, highlighting the role of polar aromatic molecules in film formation. Varying chemical composition of the aqueous phase, we show that the properties of the interfacial films depend not only on the concentration of ionic species in water but also on their chemical nature. In particular, we highlight the role of sulfate salt in promoting interfacial viscoelasticity and in altering the composition of fully developed films.
To study the rock/fluid interaction, we fabricate mixed-wet capillaries with angular cross-sections inspired by the naturally occurring primary drainage of pore-filling brine by invading crude oil. After employing our novel coating procedure, we experimentally investigate water invasion in mixed-wet capillaries and compare it with predictions of dynamic and quasi-static (Mayer-Stowe-Princen (MSP)) meniscus-invasion models. None of the dynamic models built for uniformly-wet pores can fully describe our experimental data in mixed-wet capillaries. However, the experimental results agree with predictions of MSP theory. To our knowledge, this is the first direct experimental validation of MSP theory under mixed-wet conditions. We confirm the possibility of spontaneous piston-type imbibition with high ($> 90^{\circ}$) advancing contact angles into mixed-wet pores, given that the contact angle is lowered below a critical value that is a function of pore geometry and residual water saturation. In oil reservoirs, injection of specific brines would be required to change the contact angle to values below the imbibition threshold. Finally, we extend our study and introduce a powerful 3D high-speed laser imaging of dynamic fluid flow in angular capillaries and investigate its capability to capture non-equilibrium shapes of fluid interfaces.
|
544 |
Characterizing the Impact of Freshwater Salinization on Engineered Ecosystems: Implications for Performance, Resilience, and Self-Repair Through PhytoremediationLong, Samuel Bowen 15 June 2023 (has links)
Stormwater detention basins are commonly used in the Eastern United States to temporarily store and attenuate stormwater runoff, and also serve as habitats for native and exotic plants. However, during winter, these basins receive saline runoff from road salt application, which contributes to Freshwater Salinization Syndrome (FSS). Since limited research has connected direct measurement of soil and stormwater salinities to biodiversity and phytoremediation potential of salt-tolerant plant species, this thesis aimed to fill this gap. We selected a set of detention basins draining mostly pervious areas, parking lots, or roads in Northern Virginia and measured temporal variations in stormwater and soil salinities, depth profiles of soil salinities, plant community composition, and plant tissue ion concentration. The results indicated elevated levels of sodium, chloride, electrical conductivity (EC), and exchangeable sodium percentage (ESP)/sodium adsorption ratio (SAR) in soil and stormwater after road salt application during winter, followed by a decrease during the growing season for basins draining parking lots and roads. A subsequent increase at the end of the season was observed for all site types. While some stormwater samples exceeded toxicity thresholds, most soil samples did not exceed their respective thresholds nor reach saline or sodic conditions, and native and exotic plant species of both salt-sensitive and salt-tolerant classifications were observed at almost all sites, although proportions of each varied by site type. Tissue analysis of select plants revealed ionic concentrations that generally coincided with observed soil and stormwater concentrations at each major site type. These findings have implications for future detention basin planting regimes to mitigate FSS, and the thesis discusses native plants found to provide the most benefit for phytoremediation. / Master of Science / Stormwater detention basins are commonly used in the Eastern United States. They slowly release stormwater runoff and serve as habitats for native and exotic plants. However, during winter, these basins receive saline runoff from road salt application. This contributes to Freshwater Salinization Syndrome (FSS). Limited research has connected direct measurement of soil and stormwater salinities to biodiversity and plants' ability to uptake salts, so this thesis aimed to fill this gap. A set of detention basins draining mostly pervious areas, parking lots, or roads in Northern Virginia were selected. Next, stormwater and soil salinities over time, depth profiles of soil salinities, plant community composition, and plant tissue ion concentration were measured. The results showed higher levels of standard salinity benchmarks in soil and stormwater after road salt application during winter, followed by a decrease during the growing season for parking lot and road sites. A final increase in the fall was observed for all site types. While some stormwater samples were toxic to plants, most soil samples were not toxic, saline, or sodic. Also, native and exotic plant species of both salt-sensitive and salt-tolerant classifications were observed at almost all sites, but proportions of each varied by site type. Plant tissues contained ionic concentrations that reflected observed soil and stormwater concentrations at each site type. These findings can inform future detention basin planting regimes to mitigate FSS. The thesis also discusses native plants that provide benefits for phytoremediation.
|
545 |
Determining Factors that Influence Smooth Cordgrass (Spartina alterniflora Loisel) Transplant Success In Community-Based Living Shoreline ProjectsCarrion, Steven A 01 January 2016 (has links)
Efforts to mitigate shoreline erosion through living shoreline methods along the USA Atlantic seaboard have often incorporated the cultivation and transplantation of smooth cordgrass, Spartina alterniflora. Assessments of these transplants at several sites in the Indian River Lagoon have shown that survival is variable after a year (survival: 10-93%). Lower survival has been attributed to environmental variables such as dislodgement by wave energy, and transplant shock due to salinity changes from cultivation to estuarine conditions. To improve living shoreline projects, we examined the effects of cultivation salinity (0 ppt, 15ppt) on transplantation success, and the success of anchoring plants to biodegradable mats (Jute mesh, 5 individuals per 50 cm2) and utilizing oyster bags as breakwaters in facilitating reestablishment of new transplants. Spartina alterniflora individuals were grown under salinity treatments for 20 weeks; plants grown in 15 ppt produced new shoots with significantly greater heights than those grown in freshwater. The plants were then transplanted to two sites in the IRL, and monitored after four weeks. After four weeks there was a greater net increase in stem density and larger decrease in plant height for plants grown in 15 ppt. Jute-mesh mats and oyster bags did not impact growth or survival of transplants. Low-saline (15 ppt) conditions increased shoot growth of the project by 50% in four weeks at a cost of 30 cents per additional shoot produced by an individual. Longer-term monitoring will determine if benefits persist or decrease over time, and if the cost is justified by the benefits.
|
546 |
Paleoenvironmental Approaches in Arid Geoarchaeology: Assessment of Former Habitation Zones and LandscapesMcCool, Jon-Paul 07 June 2018 (has links)
No description available.
|
547 |
OXIDATIVE STRESS AND METABOLIC RESPONSES OF ACUTE WATERBORNE COPPER EXPOSURE IN KILLIFISH, FUNDULUS HETEROCLITUSRANSBERRY, K. E. January 2013 (has links)
<p>Copper (Cu) is an essential trace metal, but many aspects of its toxicity remain unclear, particularly in seawater (SW) and little is known regarding the interaction effects of Cu and hypoxia. Few studies have examined the effects of excessive waterborne metals, like Cu, on fish species under saline environment conditions and in combination with other natural stressors, like hypoxia. I first examined the acute effects of sublethal waterborne Cu and hypoxia on the oxidative stress response in freshwater (FW)-acclimated adult killifish (<em>Fundulus heteroclitus</em>), a model euryhaline teleost, which highlighted the need to investigate metabolic responses including oxygen consumption rates (MO<sub>2</sub>). I found that hypoxia had no effect on Cu accumulation and that Cu induced antioxidant protection pathways and reduced oxidative capacity in a tissue-specific manner. I found that hypoxia may have an antagonistic effect on Cu-induced lipid peroxidation, although this pattern was not observed in all tissues.</p> <p>I then examined the acute effects of sublethal waterborne Cu on oxidative stress and metabolic responses in FW- and SW-acclimated adult killifish. I found that the oxidative stress and metabolic responses induced by Cu in killifish acclimated to SW differed only slightly from those in FW. I found that Cu had no effect on oxygen consumption rates after 96-h exposure in both FW and SW-acclimated fish, however Cu greatly reduced opercular frequency. In addition, we found that Cu-induced antioxidant protection pathways, although the response differed depending on the specific enzyme. This thesis has advanced our understanding of Cu toxicology in terms of oxidative stress and metabolic responses in freshwater and marine environments and emphasized the importance of utilizing multiple physiological endpoints. Hopefully, this work will contribute to the future development of Cu water quality criteria and building more accurate predictive and regulatory models.</p> / Master of Science (MSc)
|
548 |
Development and calibration of “calcite rafts” as a proxy for Holocene aquifer conditions in anchialine settings, Quintana Roo, Yucatán Peninsula, MexicoKovacs, Shawn E. January 2017 (has links)
Coastal karst aquifers are important water resources, often providing the only source of freshwater to coastal communities for agriculture, industrial usage and human consumption. In order to implement management strategies and preventative measures for future perseveration of this resource, it is imperative to understand how coastal groundwater conditions are controlled by the interaction of freshwater/seawater on local and regional scales, but also over recent and past time periods. However, there is a limited resource of published hydrological data on recent aquifer conditions. In the Yucatán Peninsula and other anchialine environments, this lack of information inhibits the understanding of the spatial and temporal interaction of the meteoric and marine water masses. Documenting how the aquifer is responding to forcing mechanisms such as large precipitation events, seasonal cycles and short-term sea level rise (e.g. storm surge) will assist in understanding modern aquifer condition but also the interpretation of paleo-records.
Utilization of water level and salinity sensors in strategic positions in the aquifer demonstrate that meteoric water mass salinity varies over wet and dry seasons with the movement of the halocline, but also on a short-term basis though large rainfall events. Salinity in the meteoric water mass is influenced by mixing with the marine water mass during intense precipitation events associated with Hurricane Ingrid (2013), Tropical Storm Hanna (2014) and a series of unnamed events in 2015. During wet periods, induced flow from increase precipitation causes turbulent mixing with the marine water mass, increasing salinity in the upper meteoric lens. On the contrary, during dry periods, mixing is reduced, therefore making the meteoric lens less saline.
This contemporary understanding of meteoric/marine water mass dynamics can be applied to developing and calibrating the geochemical record of calcite rafts, calcite precipitation at the air-water interface of cave pools, as a hydrological proxy for aquifer conditions. Our monitoring of calcite raft formation, deposition and geochemistry shows that raft accumulations (e.g., raft piles/cones) can offer a good paleoenvironmental archive of changing hydrological conditions. Based on a 2-year observational record, results indicate that calcite raft precipitation/formation occurs continuously but with only minor biases with intense rainfall events altering supersaturation conditions in the surface waters. Testing the use of calcite rafts in sediment cores from Hoyo Negro show that geochemical analyses (87Sr/86Sr, δ18O, δ13C, Sr/Ca and Cl/Ca) show that meteoric water mass salinity varied during the Holocene (~ 8.5 Ka – present) likely due to changing rainfall and or cave passage geomorphology, which is coherent with other independent climate records. Prior to this study, calcite rafts have never been considered a paleo-hydrological archive for aquifer conditions, however, the consistency and cross-validation with independent records demonstrates great potential for future paleohydrological reconstructions. / Thesis / Doctor of Philosophy (PhD)
|
549 |
LATE HOLOCENE PALEOCLIMATIC RECORDS FROM LAKE PAC CHEN AND CARWASH CENOTE, QUINTANA ROO, MEXICOKrywy-Janzen, Anya January 2018 (has links)
The disintegration of the Classic Maya throughout the Terminal Classic (750-900 C.E.) is a complex loss of human population that has presented many questions about climate change and its impact on humanity. With droughts proposed as a prominent cause, understanding the quality and availability of groundwater resources at the time is pivotal to further determining the spatial and temporal distributions of population deterioration. The Yucatan aquifer consists of karstic cave systems, with a small number of inland lakes, which have previously been termed closed to the aquifer. It is important to understand how both of these types of water bodies react to long- and short-term forcing mechanisms such drying climate, sea-level rise and precipitation events. Using a variety of spatial and temporal records to determine aquifer evolution, changes and connectivity throughout the Holocene it will further understanding of how the aquifer reacts to changes in climate and the implications this may have had on the Classic Maya.
Four sediment cores from Pac Chen Lake and two sediment cores from Carwash Cenote were collected to investigate Holocene paleoclimatic trends on the Yucatan Peninsula in Mexico. Records of past climate, groundwater conditions and flooding history at both sites were determined through microfossil and micro X-Ray fluorescence data. In Pac Chen Lake, elevation and timing of flooding of the lake coincided with sea-level rise. Using Ti, Fe and K records to determine wet vs dry conditions, dry periods through the terminal classic coincided with other paleoclimate records, but with no evidence of draw-down within the lake. Both of these observations imply connection of the lake to the aquifer. The Cl record from Carwash was used alongside a core from the Yax Chen cave system to observe spatial and temporal potability of the aquifer. An overall freshening trend in the coastal groundwater occurred throughout the Holocene. The largest amount of this freshening transpired through the Terminal Classic. At this time, populations inland were experiencing deterioration, while coastal populations along the coast continued to survive. Comparing Cl records at various depths and distances from the coast proved that Cl is impacted by proximity to the halocline. / Thesis / Master of Science (MSc)
|
550 |
Macroinvertebrate Community Response to Spatial Patterns of Water Quality and Habitat within Mining-influenced Headwater Streams of AppalachiaMcMillan, Melanie 07 June 2023 (has links)
Benthic macroinvertebrates are heavily relied on to indicate stream condition because of their ease of sampling, broad span of sensitivities to pollution among taxa, and diverse life histories that utilize various habitats and environmental conditions. Surface-coal mining in central Appalachia often results in salinization of headwater streams, with documented responses in macroinvertebrate communities across streams that vary in specific conductance (SC), an index of degree of salinization. Mining-influenced headwater streams can also exhibit within-stream spatial variation in SC, frequently via dilution with downstream distance from mining. However, the extent to which coal-mining alters downstream patterns in water chemistry and macroinvertebrate communities is largely unknown. This study aimed to determine macroinvertebrate community responses to physical and chemical gradients within six Appalachian headwater streams (four mining-impacted, two reference). Streams were sampled for benthic macroinvertebrates, habitat characteristics, and water chemistry in fall 2021 and spring 2022 at six-to-nine locations per stream over a range of 1.5 – 3 km. Mining-impacted streams exhibited greater spatial variation in macroinvertebrate community composition compared to reference streams, particularly in spring. Bray-Curtis Community similarity determined highly-impacted streams experienced the greatest within-stream shifts in community similarity. Metrics of macroinvertebrate communities and community similarity showed some correlation with SC at within-stream scales, particularly in highly impacted streams in spring; however, such trends were much fewer and weaker compared to relationships among streams when collectively examining communities. Redundancy Analysis (RDA) and Variation Partitioning (VP) indicated water quality, habitat, and location do overlap in explanation of community variation although they often additionally explain variance in unique ways. Significant variables identified by RDA within at least two of the six streams include channel slope, streamwater nutrients and hardness, stream channel embeddedness, and percent fines comprising the streambed. Redundancy Analysis also indicated 18 key macroinvertebrate taxa in study streams responding to location within stream, habitat, and water quality. Of those 18 taxa shredders, collectors, and clingers were most frequently impacted. Improved understanding of the spatial scale of coal-mining influences on headwater stream characteristics will help inform bioassessment protocols to most accurately assess stream condition, and inform remediation efforts within the central Appalachian region and in other salinized stream systems. / Master of Science / Small streams (or headwater streams) originating in the central Appalachian Mountains harbor a variety of unique organisms and are essential to the quantity and quality of downstream freshwater for fishing, recreation, and other uses. Coal mining processes, including disturbance of coal-bearing bedrock, often increases the streams salinity by adding pollutants that elevate dissolved minerals, or salts. Salinization of streams can come from a variety of sources in addition to coal mining such as de-icing road salts and crop irrigation and is of growing concern regarding its impacts to the quality of freshwater available for wildlife and human use. A common way to determine stream health is by identifying which aquatic insects (or macroinvertebrates) are present in a stream, because different groups are present based on the type and intensity of a variety of pollutants. Previous studies determined stream health by identifying insects from one location in a stream and comparing it to others. Stream's habitat and water quality naturally change as they join with larger rivers and flow to lower elevations causing different macroinvertebrates to be present at locations within streams. This study aimed to determine how changes along stream distances may be different in streams salinized from coal mining. The objectives of this study were to determine if one sample is adequate to represent the entire condition of a headwater stream. Six streams were sampled for macroinvertebrate, water quality, and habitat at six-to-nine locations within each stream over distances of ca. 2,000 m. Four streams were impacted by mining, of which two were highly impacted and two were impacted to a low-level; the last two streams were unimpacted to represent reference condition. The study found the type and number of macroinvertebrates within streams were changing least within reference streams and most in highly impacted streams. Macroinvertebrate communities in highly-impacted streams changed more within streams because they had high concentrations of dissolved salts upstream near the source of coal-mining pollution and these salts diluted with distance downstream, most likely due to fresh spring water contributions with minimal dissolved salts. Therefore, highly-impacted headwater streams experience greater environmental and macroinvertebrate variability indicating more than one sample location may be helpful in accurately assessing what macroinvertebrates inhabit the stream length of interest. Ensuring accurate sampling technique to determine stream condition is essential to our understanding of stream health and how to remediate and monitor impacts of salinization on our freshwater resources.
|
Page generated in 0.0559 seconds