• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 478
  • 254
  • 139
  • 90
  • 71
  • 36
  • 35
  • 10
  • 10
  • 10
  • 10
  • 10
  • 6
  • 5
  • 5
  • Tagged with
  • 1410
  • 166
  • 164
  • 101
  • 100
  • 98
  • 94
  • 93
  • 81
  • 80
  • 77
  • 77
  • 74
  • 67
  • 63
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
791

Influence of Sample Preparation Methods and Interlocking on Sand Behaviour: An Experimental Investigation

Su, Xubin January 2007 (has links)
<p>This thesis investigates the effects of sample preparation methods, which has substantial influence on the internal structure or fabric of the sample, and interparticle locking on the behaviour of sand through experimental study. Extensive laboratory tests were conducted on two sands (namely, Ottawa sand and crushed limestone) with distinct particle shape and surface texture, using a Bishop-type triaxial testing system.</p><p>A total of eight sample preparation methods were used to fabricate specimens with different initial fabric, with specimens being fabricated using water pluviation, moist tamping, and moist rodding. The experimental data reveal that sample preparation methods have significant effect on both deformation characteristics and shear strength of sand, in addition to the density and the effective confining pressure applied to the specimens. More specifically, water pluviation and moist tamping tend to yield specimens of high anisotropy and large dilation, which in turn results in higher friction angle in conventional triaxial compression. The effect of sample preparation methods was also observed from undrained tests on saturated sand.</p><p>Laboratory tests on crushed limestone consisting of angular particles demonstrate that strong interparticle locking may develop owing to particle angularity. The shear resistance of sand with angular particles has contributions from interparticle friction, dilatation and interparticle locking. Moreover, interparticle locking, which largely exists at the peak shear resistance of sand but vanishes with dilation at large deformation, exists under both low and high stress levels investigated in this study. A conceptual model was proposed to take into account the energy consumption associated with breaking interparticle locking during deformation when estimating the dilatancy and strength of granular soils.</P><P>The behaviour of sand along proportional strain paths was also investigated, with the focus being placed on strain softening and material instability in the context of Hill's second order work. Depending on the strain path or the deformation history, a dilatant sand displaying hardening and stable behaviour under isochronic (undrained) conditions, which is often used as a reference in soil mechanics, may succumb to unstable flow type behaviour along dilative strain paths. More specifically, when the imposed rate of dilation exceeds the inherent rate of dilation of the material, a dense sand specimen will have flow failure similar to that of a saturated loose specimen subjected to undrained compression. On the other hand, a loose sand may not have a flow failure when it is forced to have contractive volume change along imposed strain paths.</P> / Thesis / Master of Science (MSc)
792

La Thématique du Mariage dans une Vie de Maupassant et Mauprat de Sand

Tabet, Karen January 1995 (has links)
Note:
793

An experimental study of wind ripples

Walker, James Douglas January 1981 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND LINDGREN. / Bibliography: leaves 138-141. / by James Douglas Walker. / M.S.
794

Pollutant advective spreading in beach sand exposed to high-energy tides

Itugha, O.D., Chen, D., Guo, Yakun 13 August 2016 (has links)
yes / This paper presents field measurements in which dye solute was injected into coastal sand to investigate contaminant advection in intertidal beach sand. The measurements show the pathways of a contaminated plume in the unsaturated zone during both the flood and ebb tides. A prescribed amount of dye tracer solution was directly injected through the topsoil, with average porosity 0.3521±0.01, at predetermined locations of the River Mersey’s outer estuarial beach during ebb-tide. The injected dye was monitored, sampled and photographed over several tidal cycles. The distinctive features of the plume (full two dimensional cross-sections), sediments and water-table depth were sampled in-situ, close to the injection point (differing from previous contaminant monitoring tests in aquifers). The advective movement is attributed to tidal impact which is different from contaminant transport in aquifers. The experimental results show that plumes have significantly large spatial variability, diverging upwards and converging downwards, with a conical geometric shape which is different from the usual spherical/elliptical shape reported in literature. The mean vertical motion of the plume reaches three times the top-width within ten tidal cycles, exceeding the narrow bottom-width by a factor of order 2. The observed transport features of the plume within the beach sand have significant relevance to saltwater intrusion, surface water and groundwater quality. The field observations are unique and can serve as a valuable benchmark database for relevant numerical studies. / China Ministry of Science and Technology 973 program (2014CB745001), Special Program of future development in Shenzhen (201411201645511650) and Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment(ZDSY20130402163735964).
795

Unconfined Compression Strength of Reinforced Clays with Carpet Waste Fibers

Mirzababaei, M., Miraftab, M., Mohamed, Mostafa H.A., McMahon, P. January 2013 (has links)
no / This paper presents results of a comprehensive investigation on the utilization of carpet waste fibers in reinforcement of clay soils. Effects of adding proportionate quantities of two different types of shredded carpet waste fibers to clay soils (i.e., 1, 3, and 5% by dry weight of the soil) were investigated and evaluated. The investigation was conducted on specimens prepared at their maximum dry unit weight and optimum moisture content, as well on specimens prepared at variable conditions of dry unit weight and moisture content. A comparison was also made on specimens prepared at the same fiber content by changing dry unit weight while moisture content was kept unchanged or by changing both dry unit weight and moisture content. The investigation revealed that inclusion of carpet waste fibers into clay soils prepared at the same dry unit weight can significantly enhance the unconfined compression strength (UCS), reduce postpeak strength loss, and change the failure behavior from brittle to ductile. The results also showed that the relative benefit of fibers to increase the UCS of the clay soils is highly dependent on initial dry unit weight and moisture content of the soil. Failure patterns were gradually transformed from the apparent classical failure for unreinforced soil specimens to barrel-shaped failures for reinforced specimens at 5% fiber content.
796

Modelling study of wave damping over a sandy and a silty bed

Tong, L., Zhang, J., Zhao, L., Zheng, J., Guo, Yakun 23 July 2020 (has links)
Yes / Laboratory experiments have been carried out to investigate wave damping over the seabed, in which the excess pore pressure and free surface elevations are synchronously measured for examining the wave-induced soil dynamics and wave kinematics. Two types of soil, namely fine sand and silt, are tested to examine the role of soil in the wave damping. Observation of experiments shows that (i) soil liquefaction takes place for some tests with silty bed and soil particles suspend into the water layer when the bed is made of silt; (ii) sand ripples can be generated for experiments with sand bed. Measurements reveal that the wave damping greatly depends on the soil dynamic responses to wave loading and the wave damping mechanism over the silty seabed differs from that over the sand bed. On the one hand, the wave damping rate is greatly increased, when soil liquefaction occurs in the silty bed. On the other hand, the presence of sand ripples generated by oscillatory flow in the sand bed experiments also increases the wave damping to some extent. Furthermore, experimental results show that soil particle suspension in the silt bed test contributes to the wave damping. Theoretical analysis is presented to enhance discussions on the wave damping. The theoretical calculations demonstrate that the wave damping is mainly induced by the shear stress in the boundary layer for the cases when no liquefaction occurs. While for the cases when soil liquefaction takes place, the viscous flow in the liquefied layer contributes most towards to the wave damping. / the National Science Fund for Distinguished Young Scholars (Grant No. 51425901), the National Key Research and Development Program of China (2017YFC1404200), the Marine Renewable Energy Research Project of State Oceanic Administration (GHME2015GC01), and the 111 Project (Grant No. B12032)
797

Micromechanical Aspects of Aging in Granular Soils

Suarez Zambrano, Nestor Ricardo 09 November 2012 (has links)
Granular soils exhibit a generally beneficial change in engineering properties with time after deposition or densification, during a process commonly known as aging. Soil properties reported to change during aging include the small strain modulus and stiffness, penetration resistance, liquefaction resistance, and pile setup. Different hypotheses have been proposed to explain the occurrence of aging in granular soils, including cementation induced by dissolution of silica and precipitation at the particle contacts, cementation due to microbiological activity, internal stress redistribution caused by particle crushing, and buckling of the load chains due to particle slippage. New evidence points out that internal and time-dependent changes in the soil structure caused by particle slippage and rearrangement as the source of the time-dependent variations in soil properties. This investigation is focused on the study of aging at the particle scale to determine its main driving mechanism and define the factors which affect it. Results from an extensive laboratory testing program and computer simulations based on the discrete element method provide insight into the causes of aging and its effects on the macroscopic properties of sands based on the analysis of the interaction between sand grains. / Ph. D.
798

Cast Metal-Ceramic Composite Lattice Structures for Lightweight, Energy Absorbing, and Penetration Resistant Applications

Umanzor, Manuel Enrique 14 February 2023 (has links)
In this work, we sought to provide a deeper understanding of the energy-absorbing capabilities of cast lattice structures. These structures absorb large amounts of energy via plastic deformation, but their most attractive characteristic from a structural standpoint is the favorable energy absorption-to-weight ratio. Conventional machining techniques are not well suited for manufacturing such complex features; therefore, we combined additive manufacturing (AM) with a well-known understanding of the metalcasting process. We used AM to produce sand molds in different sizes and with additional features for various applications — these molds were then filled with molten metal. Current literature suggests that this when appropriately applied, this methodology results in complex geometries castings comparable properties to parts made with traditionally produced sand molds. We chose to study periodic lattice structures for their repeatability and subsequent ease of making predictions via computer simulations. We first produced lightweight cast metal-ceramic composite panels of 225 x 225 x 60 mm. Our AM molds included provisions to install ceramic or hard metal tiles before pouring the molten metal. The tiles were encapsulated in the final casting to yield a composite structure. The initial material selection consisted of an aluminum A356-T6 alloy matrix with silicon carbide tiles. The composite lattice structures were tested against high-velocity projectiles — 0.30 caliber armor-piercing (AP M2) and NATO 7.62 mm ball rounds. We anticipated that the metal matrix alone would not be able to defeat these threats. However, the panels did reduce the striking velocity by approximately 20%. The thickness of the ceramic tiles varied from 4 mm to 8 mm at 2 mm increments. As expected, the hard ceramic tiles proved effective at improving the penetration resistance of the composite lattice structures — the impacts on regions with 4 mm thick tiles resulted in the reduction of striking velocity up to 49%; moreover, as the thickness was increased to 8 mm, the panels defeated the projectiles. We used these results to produce and validate a finite element (FE) model capable of replicating the experimental data within 5%. This model was later used to study how the ceramic material interacts with the lattice to absorb large amounts of kinetic energy from incident projectiles. Following, we manufactured smaller versions of these panels—50 x 50 x 90 mm test specimens for uniaxial compression testing for this instance. Once again, we relied on the capabilities of the FE method to replicate the test results within 10% for peak load and maximum displacement. We utilized computer simulations to optimize the design of the lattice structure. Its energy-absorbing capabilities were improved significantly — in this case, a 30% increase in the specific internal energy (internal energy per unit mass) as the evaluating criteria. The FE model was also used to study the performance of several other truss topologies. Lastly, we used computer simulations to evaluate the feasibility of making these cast lattice structures with ferrous alloys. We chose to work with Fe30Mn4Al0.9C due to its lower density and higher toughness than other steel grades. The first challenge was the lack of thermophysical property data in the literature for this alloy system. Hence, we used the CALPHAD method to calculate all the datasets needed to perform the mold filling and solidification simulation. Several of these calculations were validated experimentally. The location and severity of porosity between the model and the casting were in good agreement. / Doctor of Philosophy / The advent of additive manufacturing (AM), commonly known as 3D printing is a group of different digital-era technologies that has facilitated the production of complex designs that are not feasible to manufacture using conventional techniques. In the realm of metallic components one such technique involves the use of a laser beam to consolidate metallic powders via a layer-by-layer deposition process. Despite its advantages, this process has unique challenges, such as limited material selection and relatively small part volume. In this work, we have employed a hybrid approach that combines the use of AM with expertise in metalcasting to produce lightweight components with complex geometries. We used 3D printed sand molds that are then filled with molten metal of different alloy systems such as aluminum and steel. At first, we incorporate hard ceramic materials to increase the performance of the final parts under ballistics testing. Our aim is to upscale the size of current designs such that these devices can be used in various applications that require high absorption of kinetic energy, and that are lightweight and easy to replace.
799

A Framework for Assessing Lower-Bound Bearing Capacity of Sandy Coastal Sediments from Remotely Sensed Imagery

Paprocki, Julie Anna 28 April 2022 (has links)
With advances in modern technology, satellite-based data is rapidly becoming a viable option for geotechnical site characterization. Commercial satellite data offers high resolution (~25-200 cm), increased spatial coverage on the order of kilometers, short revisit times leading to high temporal coverage, and allows for data to be analyzed rapidly and remotely without the need for physical site access. These advantages are particularly attractive for characterizing coastal sites, where both the strength properties and moisture content can change rapidly in response to tidal stages, wave runup, and storm events. To date, there have been limited investigations into the use of satellite-based data for characterizing geotechnical properties of sandy beach sediments. Furthermore, the use of these moisture contents to estimate the soil strength of beaches has been limited. The goal of this research was to develop pathways to estimate the moisture content of sandy beach sites utilizing satellite-based data. For this study, both optical and synthetic aperture radar (SAR) images were collected at two sites: the Atlantic beach near the US Army Corps of Engineers Field Research Facility in Duck, North Carolina and three distinct sites located near Yakutat, Alaska (Cannon Beach, Ocean Cape, and Point Carrew). During satellite overflight, ground measurements of moisture content, grain size, unit weight, porosity, and bearing capacity were collected. Using the field measurements, this research (1) developed a framework to estimate the moisture content of sandy beach sediments from satellite-based optical images; (2) investigated the necessary collection parameters to estimate the moisture content from SAR images; and (3) developed a framework to estimate the bearing capacity of sandy beaches using moisture contents derived from satellite-based images. The results of this study demonstrated that optical images can produce reasonable estimates of the moisture content when compared to field measurements and are strongly influenced by local morphology. Additionally, SAR images with incidence angles of 30°-50° produced the best results when compared to field measurements. Finally, using the spatial estimates moisture content produced from satellite data and standard sediment, maps of bearing capacity can be developed to predict beach trafficability. / Doctor of Philosophy / The strength of sandy beaches is impacted by the density, particle size and shape, distribution of grain sizes, mineralogy, and moisture content. For coastal sites, which typically have a dominant mineralogy and a limited range of grain sizes, a main factor changing is the moisture content. This varying moisture content can result in the increase or decrease in soil strength, and impacts modelling for coastal challenges such as erosion or beach trafficability (i.e., the ability to drive on the beach) on large scales. It is common to measure moisture content through sampling or moisture probes, but these represent point measurements and may not accurately capture the spatial and temporal moisture contents at a beach. Recently, satellite-based images have become popular for assessing processes and environmental changes over large areas. However, their use for mapping moisture content at sandy beaches has been limited, and the proper models are unknown. As such, the goal of this research is to investigate the use of satellite images to map moisture content over large areas. For this study, measurements were conducted at two sites: an Atlantic beach located near the US Army Corps of Engineers Field Research Facility in Duck, North Carolina and three distinct sites located near Yakutat, Alaska (Cannon Beach, Ocean Cape, and Point Carrew). Simultaneously with ground measurements, two different types of images were collected. The first, optical data, collects data over the visible (400-700 nm) and near infrared (700-1300 nm) regions of the electromagnetic spectrum. These satellites use the sun to light the scene and the amount of energy reflected back to the satellite is used to estimate the moisture content. The second, X-band synthetic aperture radar (SAR) data (wavelengths of 3.1 cm), sends its own energy source to the ground and uses the returned energy to estimate the moisture content. Both optical and SAR are able to produce reasonable estimates of moisture content when compared to field measurements. These estimated values of moisture content are then tested in a model to estimate the sand strength, with those estimated values also following the expected trends. Ultimately, this work can be used to contribute to understanding how moisture content varies at sandy beaches and improve trafficability predictions in sandy beach environments.
800

Experimental Study on the Mobility of Lightweight Vehicles on Sand

Worley, Marilyn Elizabeth 15 August 2007 (has links)
This study focuses on developing a better comprehension of the mobility of lightweight autonomous vehicles with varying locomotion platforms on sand. This research involves four segments. The first segment is a review of military criteria for the development of lightweight unmanned ground vehicles, followed by a review a review of current methodologies for evaluating the terramechanic (vehicle-ground interaction) mobility measures of heavyweight wheeled and tracked vehicles, and ending with a review of the defining properties of deformable terrain with specific emphasis on sand. These present a basis for understanding what currently defines mobility and how mobility is quantified for traditional heavyweight wheeled and tracked vehicles, as well as an understanding of the environment of operation (sandy terrain) for the lightweight vehicles in this study. The second segment involves the identification of key properties associated with the mobility and operation of lightweight vehicles on sand as related to given mission criteria, so as to form a quantitative assessment system to compare lightweight vehicles of varying locomotion platforms. A table based on the House of Quality shows the relationships&#8212;high, low, or adverse&#8212;between mission profile requirements and general performance measures and geometries of vehicles under consideration for use. This table, when combined with known values for vehicle metrics, provides information for an index formula used to quantitatively compare the mobility of a user-chosen set of vehicles, regardless of their methods of locomotion. This table identifies several important or fundamental terramechanics properties that necessitate model development for robots with novel locomotion platforms and testing for lightweight wheeled and tracked vehicles so as to consider the adaptation of counterpart heavyweight terramechanics models for use. The third segment is a study of robots utilizing novel forms of locomotion, emphasizing the kinematics of locomotion (gait and foot placement) and proposed starting points for the development of terramechanics models so as to compare their mobility and performance with more traditional wheeled and tracked vehicles. In this study several new autonomous vehicles&#8212;bipedal, self-excited dynamic tripedal, active spoke-wheel&#8212;that are currently under development are explored. The final segment involves experimentation of several lightweight vehicles and robots on sand. A preliminary experimentation was performed evaluating a lightweight autonomous tracked vehicle for its performance and operation on sand. A bipedal robot was then tested to study the foot-ground interaction with and sinkage into a medium-grade sand, utilizing a one of the first-developed walking gaits. Finally, a comprehensive set of experiments was performed on a lightweight wheeled vehicle. While the terramechanics properties of wheeled and tracked vehicles, such as the contact patch pressure distribution, have been understood and models have been developed for heavy vehicles, the feasibility of extrapolating them to the analysis of light vehicles is still under analysis. A wheeled all-terrain vehicle was tested for effects of sand gradation, vehicle speed, and vehicle payload on measures of pressure and sinkage in the contact patch, and preliminary analysis is presented on the sinkage of the wheeled all-terrain vehicle. These four segments&#8212;review of properties of sandy terrain and measures of and criteria for the mobility of lightweight vehicles operating on sandy terrain, the development of the comparison matrix and indexing function, modeling and development of novel forms of locomotion, and physical experimentation of lightweight tracked and wheeled vehicles as well as a bipedal robot&#8212;combine to give an overall picture of mobility that spans across different forms of locomotion. / Master of Science

Page generated in 0.0508 seconds