11 |
Analyse du comportement non-linéaire d'inserts de structures sandwichs : application à une méthode de dimensionnement innovante / Analysis of the nonlinear behavior of inserts in sandwich structures : application to an innovative sizing methodRodriguez, Juan de dios 18 October 2018 (has links)
Le dimensionnement des inserts pour les structures sandwich se fait usuellement par les méthodes proposées par le « Insert design handbook » de l'ESA, ou le « Military handbook 23A ». Ces méthodes analytiques basées sur la formulation développée par Ericksen en 1953 mènent à des erreurs de la charge admissible à l’arrachement d’environ ±20 % pour certains cas. Dans cette thèse, les principaux modes de rupture d’inserts sont étudiés ; l’endommagement du nid d’abeille Nomex® en cisaillement et la rupture du potting. Une analyse fine du postflambement en cisaillement du nid d’abeille Nomex® est effectuée qui permet de proposer un modèle d'endommagement à 2 paramètres.Puis, les résultats obtenus sont utilisés pour développer un modèle virtuel d’insert qui est validé par comparaison à des essais d'arrachement puis utilisé pour tracer des cartographies des modes de rupture. En utilisant cette méthode, la charge admissible à l’arrachement peut être estimée plus précisément. Cette méthode peut être une alternative face aux modèles analytiques pour le dimensionnement des inserts. Les graphiques obtenus peuvent être fournis aux ingénieurs pour le dimensionnement des inserts comme un outil qui peut réduire le temps de conception-validation. / The insert sizing for sandwich structures is usually made using the methods proposed in the “Insert design handbook” of the ESA and the “Military handbook 23A”. These analytical methods based in the in the research carried by Ericksen in 1953 could lead to errors of the pull-out allowable load prediction in the range of ±20 % for some cases.In this thesis, the principal failure modes of inserts are investigated; the core shear damage of the Nomex honeycomb core, and the potting failure. A detailed analysis of the shear postbuckling of the Nomex honeycomb core is made, allowing to propose a two variables damage model. Then, the obtained results are used to develop an insert virtual model that is validated through comparison with pull-out tests, and then used to draw failure mode maps of inserts. Using this method, the admissible pull-out load of inserts can be estimated more precisely. This method could be an alternative to using the analytical methods for the insert sizing. The resulting charts could be given to engineers as a tool for the insert sizing which could reduce the insert’s design-validation time.
|
12 |
Conception architecturale appliquée aux matériaux sandwichs pour propriétés multifonctionnelles. / Optimal design of architectured sandwich panels for multifunctional propertiesLeite, Pierre 16 October 2013 (has links)
Cette thèse suit une démarche « materials-by-design » avec pour objectif le développement d'une méthode de conception dédiée aux panneaux sandwichs architecturés pour l'obtention de propriétés multifonctionnelles. Cette méthode s'appuie sur l'utilisation d'un algorithme génétique permettant simultanément une sélection de matériaux (variables discrètes) et un pré-dimensionnement du panneau (variables continues). Trois architectures de cœur ont été étudiées : les mousses, les nids-d'abeilles hexagonaux et les treillis tétraédriques. Dans cette thèse, on définit deux approches différentes de sélection des matériaux. Dans un premier temps, les matériaux architecturés sont considérés comme des matériaux existants, dont les propriétés sont référencées dans une base de données fermée. Cette approche est appelée optimisation par « voie réelle ». Afin d'ouvrir les possibilités en termes de sélection de matériaux, la deuxième approche considère une description semi-continue des matériaux architecturés et est appelée optimisation par « voie virtuelle ». Le matériau cœur est décrit par un matériau constitutif (variable discrète) et par une ou plusieurs variables géométriques continues représentant l'architecture. Utilisant ces deux approches, différentes propriétés d'emploi des panneaux sandwichs sont évaluées : rigidité et résistance en flexion, atténuation acoustique, résistance et isolation thermique, et enfin résistance aux chocs impulsionnels. Chaque fonction est optimisée à masse minimale par optimisation bi-objectifs. Différents cas d'optimisation tri-objectifs sont également présentés afin d'évaluer la compatibilité entre propriétés. En effet, la forme de la surface de compromis obtenue donne une indication sur la compatibilité entre les différents critères. Cette étape d'optimisation permet également l'identification des paramètres de conception optimaux. Dans le cas d'une optimisation par « voie virtuelle », une comparaison directe entre architectures est aussi possible. Cependant, la démarche d'optimisation mise en place est complexe car globale et travaillant avec des variables mixtes. Deux méthodes mixtes, couplant l'algorithme génétique avec d'autres approches, sont proposées pour permettre un accroissement de la complexité de l'analyse tout en garantissant une complexité raisonnable de l'optimisation. / The present thesis aims at developing a design method dedicated to the optimization of architectured sandwich panels for multifunctional properties following a “materials-by-design” approach. This method is based on a genetic algorithm which enables to deal with materials selection (discrete variables) and geometrical dimensioning (continuous variables) simultaneously. Three core architectures have been investigated: foams, hexagonal honeycombs and tetrahedral truss structures. In this thesis, two main paths for material selection are defined. In the first one, architectured materials are considered as existing materials with properties referenced in a closed materials database. This is called the “real path” optimization. In order to expand the range of possibilities in terms of materials selection, a semi-continuous description of the architectured materials is considered in the second path, which is called “virtual path” optimization. The core material is described by a constitutive material (discrete variable) and a set of continuous geometrical variables representing the architecture. Using these two aforementioned approaches, several working properties of sandwich panels have been evaluated: flexural stiffness and strength, acoustic damping, thermal resistance and insulation, and finally blast mitigation. Bi-objective optimizations were performed in order to optimize each property in a minimal weight design. Some tri-objective cases are also presented, thus assessing the compatibility between different specifications. Indeed, this is achieved by relating trade-off surface shape to the compatibility between specifications. The optimization results also help identify the optimal design regarding the different criteria. Using the “virtual path” approach, a direct comparison between the different core architectures is achievable. Nevertheless, by being global and dealing with mixed variables, the obtained optimization process is complex. Two mixed methods where genetic algorithm is coupled with other approaches are proposed in order to increase the analysis complexity while providing a reasonable optimization complexity.
|
13 |
Analise de estruturas sanduiche : parametros de projeto / Sandwich structures analysis : design parametersGagliardo, Debora Pierini 21 August 2008 (has links)
Orientador: Nilson Tadeu Mascia / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-11T20:02:44Z (GMT). No. of bitstreams: 1
Gagliardo_DeboraPierini_M.pdf: 2748592 bytes, checksum: 3f4f2274fa55f9b27f8663ca912c32fc (MD5)
Previous issue date: 2008 / Resumo: As estruturas sanduíche têm despertado grande interesse e já estão bastante difundidas em diversos segmentos industriais, sendo suas principais utilizações nas indústrias aeroespacial, militar, naval e civil. Este fato se deve à sua propriedade de combinar alta rigidez à flexão e baixo peso, resultando em uma estrutura muito eficiente. Neste sentido, a análise e cálculo das estruturas sanduíche são de extrema importância no desenvolvimento de projetos de aplicação do mesmo. Neste trabalho, foram analisados os critérios de falha dos painéis, bem como os materiais e suas propriedades mecânicas, considerando as alterações e considerações que devem ser feitas nos projetos de acordo com as características do material. Na parte final dessa pesquisa, são apresentadas a teoria de cálculo e a rotina para elaboração de projetos relacionados com a construção civil utilizando as estruturas sanduíche, com ênfase em estruturas planas, tais como vigas e placas. Por fim emprega-se uma ferramenta, planilha eletrônica, para analisar e avaliar a aplicação de diversos materiais de construção em estruturas sanduíche. / Abstract: The sandwich structures have aroused great interest and have already been very widespread in several branches in industries, such as in the aerospace, military, naval and civil construction industries. This is due to their property to combine both high bending rigidity and the low weight, resulting in a very efficient structure. Thus, the analysis and also the calculation of sandwich structures are very important in developing the application projects. In this work, it was reviewed the failure criteria of the panels, as well as the materials and their mechanical properties, considering the changes and considerations that have to be performed in the project in accordance with the characteristics of the material. At the final part of this research, the theory of calculation and also the routine for development projects related with the civil construction using the sandwich structures are presented, with emphasis on flat structures, such as beams and plates. Finally employs is a tool, spreadsheet, to analyse and evaluate the implementation of various building materials in sandwich structures. / Mestrado / Estruturas / Mestre em Engenharia Civil
|
14 |
Impact behaviour of sandwich structures with nanoparticle reinforced composite face sheets / Analyse des structures en sandwich de type panneaux composites renforcés en nanoparticules soumises à un impact mécaniqueRamakrishnan, Karthik Ram 06 November 2014 (has links)
Les structures sandwich sont des structures légères composées de deux peaux superficielles minces, relativement denses, à haute résistance qui sont collées de part et d'autre d'une âme, épaisse, de faible densité telle que les mousses ou nids d'abeilles. Les matériaux sandwich à peau composite renforcée de fibres plastiques et à cœur en matériaux polymère représentent aujourd'hui une classe importante des matériaux structuraux légers dans de nombreux domaines de l'ingénierie tels que l'aéronautique et l'aérospatiale, l'automobile et les structures marines. Toutefois, certaines de ces structures sandwich ont des capacités d'absorption d'énergie très limitées. Cette limitation devient critique lorsque ces structures sont susceptibles d'être soumises à un impact. L'endommagement par impact dans le cas de structures sandwich peut être dû, notamment, à des chutes d'outils, des vols de débris sur piste d'atterrissage, des chocs à oiseaux, des averses de grêles ou des impacts balistiques.Les résines utilisées en tant que matrice dans le cas des sandwiches à peaux en composites stratifiés sont généralement des résines thermodurcissables comme les résines époxy. En raison de la nature fragile de la matrice, même la présence d'un léger délaminage interne se propage essentiellement à angle droit par rapport à la contrainte de compression appliquée ayant alors des résultats désastreux pour la structure sandwich. Une des solutions proposées est alors la modification des résines thermodurcissables avec l'ajout de particules organiques et inorganiques de taille nanométrique. Une nouvelle méthode de synthèse de copolymères par blocs qui s'auto-assemblent à l'échelle nanométrique permettrait de réduire sensiblement les problèmes liés à la dispersion des nanoparticules.L'objectif de ce travail est d'étudier et de mieux comprendre l'amélioration de la résistance à l'impact des panneaux sandwich à peau en stratifiés composites grâce à l'ajout de copolymère tribloc (Nanostrength®) dans la matrice Epoxy du composite Fibres/Epoxy. L'effet des nanoparticules sur les performances mécaniques des panneaux sandwich à peau Kevlar/Epoxy ou Verre/Epoxy et âme en mousse Rohacell® sera investigué : pour cela une comparaison des résultats entre résine pure et résine modifiée par l'ajout de 10% de Nanostrength sera effectuée en utilisant des essais expérimentaux et une modélisation numérique. Ce travail portera sur deux types de chargement d'impact différents ; des impacts à faible vitesse dont l'angle d'incidence est normal à la surface de l'échantillon et des impacts à faible vitesse et à trajectoire parabolique. Un dispositif d'impact tridimensionnel adossé à un hexapode de mouvement a été développé pour étudier la réponse mécanique d'un panneau sandwich soumis à une trajectoire parabolique.La méthode des éléments finis est un moyen largement usité pour étudier l'impact sur les structures et notamment les structures sandwich. Un modèle LS-Dyna a été développé pour la simulation de l'impact normal sur plaque de composites stratifiés et sur plaques sandwich Kevlar/Epoxy – mousse Rohacell®. Une loi de comportement basée sur la mécanique de l'endommagement, disponible dans la bibliothèque de modèles matériaux proposés par LS-Dyna et dénommé « Laminated Composite Fabric » (MAT58) a été utilisée pour représenter le comportement des plaques composites. Les paramètres d'entrée du modèle MAT58 ont été obtenus par combinaison d'essais et études paramétriques. Le modèle « CRUSHABLE FOAM » (MAT63) a été utilisé pour le cœur. Le modèle macroscopique avec une loi de comportement phénoménologique est capable de simuler la réponse macroscopique de composites stratifiés et plaques sandwich soumis à des impacts de faible vitesse.On peut souligner que le développement de panneaux sandwich à matrice renforcée de copolymère tribloc est un domaine prometteur de l'étude. / Sandwich structures are lightweight structures composed of two thin, relatively dense, high strength facesheets that are glued on either side of a thick, low density core, such as foams or honeycombs. Sandwich panels with fibre reinforced plastic skins and core of polymer foam represent an important class of lightweight structural materials in many areas of such as aeronautics and aerospace, automotive and marine structures. However, some of these sandwich structures have very limited energy absorption capacity. This limitation becomes critical because these structures are susceptible to be subjected to impact. The impact damage in the case of sandwich structures may be due, in particular, to dropped tools, flights debris, bird strike, hailstorms or ballistic impacts.The resins used as the matrix in the case of sandwich panels with laminated composite facesheets are usually thermosetting resins such as epoxy resins. Due to the fragile nature of the matrix, the presence of even a slight internal delamination spreads at right angles to the applied compressive stress with disastrous results for the sandwich structure. One of the proposed solutions is the modification of the thermosetting resins with the addition of organic and inorganic particles of nanometric size. A new method of synthesis of block copolymers that self-assemble at the nanoscale would substantially reduce the problems associated with the dispersion of nanoparticles.The objective of this work is to study and better understand the improvement of impact resistance of sandwich panels with skin laminates with the addition of tri-block copolymer (Nanostrength®) in the epoxy matrix of fibre / epoxy composite. The effect of nanoparticles on the mechanical performance of the sandwich Kevlar / epoxy or glass / epoxy facesheets and Rohacell® foam core panels will be investigated by comparing the results between pure resin and resin modified by the addition of 10% Nanostrength performed using experimental testing and numerical modelling. This work will focus on two different types of impact loading; low velocity impacts with normal angle of incidence to the sample surface and low velocity impacts with parabolic trajectory. A device for three-dimensional impact has been developed to study the mechanical response of sandwich panels subjected to a parabolic trajectory impact.The finite element method is a widely used method to study the impact on structures including sandwich structures. An LS-Dyna model was developed to simulate the normal impact of composite laminates and Kevlar / Epoxy - Rohacell® foam sandwich plates. A constitutive law based on damage mechanics, available in the material library of LS-Dyna called "Composite Laminated Fabric" (MAT58) was used to represent the behaviour of composite facesheets. The input parameters of the model MAT58 were obtained by combination of tests and parametric studies. The model "Crushable foam" (MAT63) was used for the core. The macroscopic model with a phenomenological law is able to simulate the mechanical response of composite laminates and sandwich plates subjected to low velocity impacts. It may be noted that the development of sandwich panels reinforced with triblock copolymer in the matrix is a promising field of study.
|
15 |
The effects of damping treatment on the sound transmission loss of honeycomb panelsRamanathan, Sathish Kumar January 2010 (has links)
In the industry, all passenger vehicles are treated with damping materials to reduce structure-borne sound. Though these damping materials are effective to attenuate structure-borne sound, they have little or no effect on the air-borne sound transmission.The lack of effective predictive methods for assessing the acoustic effects due to added damping on complex industrial structures leads to excessive use of damping materials.Examples are found in the railway industry where sometimes the damping material applied per carriage is more than one ton. The objective of this thesis is to provide a better understanding of the application of these damping materials in particular when applied to lightweight sandwich panels. As product development is carried out in a fast pace today, there is a strong need for validated prediction tools to assist in the design process. Sound transmission loss of sandwich plates with isotropic core materials can be accurately predicted by calculating the wave propagation in the structure. A modified wave propagation approach is used to predict the sound transmission loss of sandwich panels with honeycomb cores. The honeycomb panels are treated as being orthotropic and the wave numbers are calculated for the two principle directions. The orthotropic panel theory is used to predict the sound transmission loss of panels. Visco-elastic damping with a constraining layer is applied to these structures and the effect of these damping treatment on the sound transmission loss is studied. Measurements are performed to validate these predictions. Sound radiated from vibrating structures is of great practical importance.The radiation loss factor represents damping associated with the radiation of sound as a result of the vibrating structure and can be a significant contribution for structures around the critical frequency and for composite structures that are very lightly damped. The influence of the radiation loss factor on the sound reduction index of such structures is also studied. / QC 20100519 / ECO2-Multifunctional body Panels
|
16 |
Effects of Low Velocity Impact on the Flexural Strength of Composite Sandwich StructuresCarter, Jeffrey Scott 01 October 2014 (has links) (PDF)
The use of composite sandwich structures is rapidly increasing in the aerospace industry because of their increased strength-to-weight and stiffness-to-weight characteristics. The effects of low velocity impacts on these structures, however, are the main weakness that hinders further use of them in the industry because the damages from these loadings can often be catastrophic. Impact behavior of composite materials in general is a crucial consideration for a designer but can be difficult to describe theoretically. Because of this, experimental analysis is typically used to attempt to describe the behavior of composite sandwiches under impact loads. Experimental testing can still be unpredictable, however, because low velocity impacts can cause undetectable damage within the composites that weaken their structural integrity. This is an important issue with composite sandwich structures because interlaminar damage within the composite facesheets is typical with composites but the addition of a core material results in added failure modes. Because the core is typically a weaker material than the surrounding facesheet material, the core is easily damaged by the impact loads. The adhesion between the composite facesheets and the core material can also be a major region of concern for sandwich structures. Delamination of the facesheet from the core is a major issue when these structures are subjected to impact loads.
This study investigated, through experimental and numerical analysis, how varying the core and facesheet material combination affected the flexural strength of a composite sandwich subjected to low velocity impact. Carbon, hemp, aramid, and glass fiber materials as facesheets combined with honeycomb and foam as core materials were considered. Three layers of the same composite material were laid on the top and bottom of the core material to form each sandwich structure. This resulted in eight different sandwich designs. The carbon fiber/honeycomb sandwiches were then combined with the aramid fiber facesheets, keeping the same three layer facesheet design, to form two hybrid sandwich designs. This was done to attempt to improve the impact resistance and post-impact strength characteristics of the carbon fiber sandwiches. The two and one layer aramid fiber laminates on these hybrid sandwiches were always laid up on the outside of the structure. The sandwiches were cured using a composite press set to the recommended curing cycle for the composite facesheet material. The hybrid sandwiches were cured twice for the two different facesheet materials. The cured specimens were then cut into 3 inch by 10 inch sandwiches and 2/3 of them were subjected to an impact from a 7.56 lbf crosshead which was dropped from a height of 38.15 inches above the bottom of the specimen using a Dynatup 8250 drop weight machine.
The impacted specimen and the control specimen (1/3 of the specimens not subjected to an impact) were loaded in a four-point bend test per ASTM D7250 to determine the non-impacted and post-impact flexural strengths of these structures. Each sandwich was tested under two four-point bend loading conditions which resulted in two different extension values at the same 100 lbf loading value. The span between the two supports on the bottom of the sandwich was always 8 inches but the span between the two loading pins on the top of the sandwich changed between the two loading conditions. The 2/3 of the sandwiches that were tested after being impacted were subjected to bending loads in two different ways. Half of the specimens were subjected to four-point bending loads with the impact damage on the top facesheet (compressive surface) in between the loading pins; the other half were subjected to bending loads with the damage on the bottom facesheet (tensile surface).
Theoretical failure mode analysis was done for each sandwich to understand the comparisons between predicted and experimental failures. A numerical investigation was, also, completed using Abaqus to verify the results of the experimental tests. Non-impacted and impacted four-point bending models were constructed and mid-span deflection values were collected for comparison with the experimental testing results. Experimental and numerical results showed that carbon fiber sandwiches were the best sandwich design for overall composite sandwich bending strength; however, post-impact strengths could greatly improve. The hybrid sandwich designs improved post-impact behavior but more than three facesheet layers are necessary for significant improvement. Hemp facesheet sandwiches showed the best post-impact bending characteristics of any sandwich despite having the largest impact damage sizes. Glass and aramid fiber facesheet sandwiches resisted impact the best but this resulted in premature delamination failures that limited the potential of these structures. Honeycomb core materials outperformed foam in terms of ultimate bending loads but post-impact strengths were better for foam cores. Decent agreement between numerical and experimental results was found but poor material quality and high error in material properties testing results brought about larger disagreements for some sandwich designs.
|
17 |
Free Vibrations and Static Deformations of Composite Laminates and Sandwich Plates using Ritz MethodAlanbay, Berkan 15 December 2020 (has links)
In this study, Ritz method has been employed to analyze the following problems: free vibrations of plates with curvilinear stiffeners, the lowest 100 frequencies of thick isotropic plates, free vibrations of thick quadrilateral laminates and free vibrations and static deformations of rectangular laminates, and sandwich structures. Admissible functions in the Ritz method are chosen as a product of the classical Jacobi orthogonal polynomials and weight functions that exactly satisfy the prescribed essential boundary conditions while maintaining orthogonality of the admissible functions. For free vibrations of plates with curvilinear stiffeners, made possible by additive manufacturing, both plate and stiffeners are modeled using a first-order shear deformation theory. For the thick isotropic plates and laminates, a third-order shear and normal deformation theory is used. The accuracy and computational efficiency of formulations are shown through a range of numerical examples involving different boundary conditions and plate thicknesses. The above formulations assume the whole plate as an equivalent single layer. When the material properties of individual layers are close to each other or thickness of the plate is small compared to other dimensions, the equivalent single layer plate (ESL) theories provide accurate solutions for vibrations and static deformations of multilayered structures. If, however, sufficiently large differences in material properties of individual layers such as those in sandwich structure that consists of stiff outer face sheets (e.g., carbon fiber-reinforced epoxy composite) and soft core (e.g., foam) exist, multilayered structures may exhibit complex kinematic behaviors. Hence, in such case, C<sub>z</sub>⁰ conditions, namely, piecewise continuity of displacements and the interlaminar continuity of transverse stresses must be taken into account. Here, Ritz formulations are extended for ESL and layerwise (LW) Nth-order shear and normal deformation theories to model sandwich structures with various face-to-core stiffness ratios. In the LW theory, the C⁰ continuity of displacements is satisfied. However, the continuity of transverse stresses is not satisfied in both ESL and LW theories leading to inaccurate transverse stresses. This shortcoming is remedied by using a one-step well-known stress recovery scheme (SRS). Furthermore, analytical solutions of three-dimensional linear elasticity theory for vibrations and static deformations of simply supported sandwich plates are developed and used to investigate the limitations and applicability of ESL and LW plate theories for various face-to-core stiffness ratios. In addition to natural frequency results obtained from ESL and LW theories, the solutions of the corresponding 3-dimensional linearly elastic problems obtained with the commercial finite element method (FEM) software, ABAQUS, are provided. It is found that LW and ESL (even though its higher-order) theories can produce accurate natural frequency results compared to FEM with a considerably lesser number of degrees of freedom. / Doctor of Philosophy / In everyday life, plate-like structures find applications such as boards displaying advertisements, signs on shops and panels on automobiles. These structures are typically nailed, welded, or glued to supports at one or more edges. When subjected to disturbances such as wind gusts, plate-like structures vibrate. The frequency (number of cycles per second) of a structure in the absence of an applied external load is called its natural frequency that depends upon plate's geometric dimensions, its material and how it is supported at the edges. If the frequency of an applied disturbance matches one of the natural frequencies of the plate, then it will vibrate violently. To avoid such situations in structural designs, it is important to know the natural frequencies of a plate under different support conditions. One would also expect the plate to be able to support the designed structural load without breaking; hence knowledge of plate's deformations and stresses developed in it is equally important. These require mathematical models that adequately characterize their static and dynamic behavior. Most mathematical models are based on plate theories. Although plates are three-dimensional (3D) objects, their thickness is small as compared to the in-plane dimensions. Thus, they are analyzed as 2D objects using assumptions on the displacement fields and using quantities averaged over the plate thickness. These provide many plate theories, each with its own computational efficiency and fidelity (the degree to which it reproduces behavior of the 3-D object). Hence, a plate theory can be developed to provide accurately a quantity of interest. Some issues are more challenging for low-fidelity plate theories than others. For example, the greater the plate thickness, the higher the fidelity of plate theories required for obtaining accurate natural frequencies and deformations. Another challenging issue arises when a sandwich structure consists of strong face-sheets (e.g., made of carbon fiber-reinforced epoxy composite) and a soft core (e.g., made of foam) embedded between them. Sandwich structures exhibit more complex behavior than monolithic plates. Thus, many widely used plate theories may not provide accurate results for them. Here, we have used different plate theories to solve problems including those for sandwich structures. The governing equations of the plate theories are solved numerically (i.e., they are approximately satisfied) using the Ritz method named after Walter Ritz and weighted Jacobi polynomials. It is shown that these provide accurate solutions and the corresponding numerical algorithms are computationally more economical than the commonly used finite element method. To evaluate the accuracy of a plate theory, we have analytically solved (i.e., the governing equations are satisfied at every point in the problem domain) equations of the 3D theory of linear elasticity. The results presented in this research should help structural designers.
|
18 |
Vacuum Assisted Resin Transfer Molding of Foam Sandwich Composite Materials: Process Development and Model VerificationMcGrane, Rebecca Ann 17 July 2002 (has links)
Vacuum assisted resin transfer molding (VARTM) is a low cost resin infusion process being developed for the manufacture of composite structures. VARTM is being evaluated for the manufacture of primary aircraft structures, including foam sandwich composite materials. One of the benefits of VARTM is the ability to resin infiltrate large or complex shaped components. However, trial and error process development of these types of composite structures can prove costly and ineffective. Therefore, process modeling of the associated flow details and infiltration times can aide in manufacturing design and optimization.
The purpose of this research was to develop a process using VARTM to resin infiltrate stitched and unstitched dry carbon fiber preforms with polymethacrylimide foam cores to produce composite sandwich structures. The infiltration process was then used to experimentally verify a three-dimensional finite element model for VARTM injection of stitched sandwich structures.
Using the processes developed for the resin infiltration of stitched foam core preforms, visualization experiments were performed to verify the finite element model. The flow front progression as a function of time and the total infiltration time were recorded and compared with model predictions. Four preform configurations were examined in which foam thickness and stitch row spacing were varied. For the preform with 12.7 mm thick foam core and 12.7 mm stitch row spacing, model prediction and experimental data agreed within 5%. The 12.7 mm thick foam core preform with 6.35 mm row spacing
experimental and model predicted data agreed within 8%. However, for the 12.7 mm thick foam core preform with 25.4 mm row spacing, the model overpredicted infiltration times by more 20%. The final case was the 25.4 mm thick foam core preform with 12.7 mm row spacing. In this case, the model overpredicted infiltration times by more than 50%. This indicates that the model did not accurately describe flow through the needle perforations in the foam core and could be addressed by changing the mesh elements connecting the two face sheets. / Master of Science
|
19 |
Low-Velocity Impact Behavior of Sandwich Panels with 3D Printed Polymer Core StructuresTurner, Andrew Joseph 06 June 2017 (has links)
No description available.
|
20 |
Développement d'un procédé d'enroulement filamentaire adapté aux matériaux composites sandwichs et caractérisation mécanique des matériaux / Development of a filament winding process adapted to sandwich composite materials and mechanical characterization of materialsHaddad, Mohamed 23 October 2017 (has links)
Les matériaux composites, et en particulier les sandwichs, sont très étudiés depuis des décennies. En effet, l'alliance entre légèreté et résistance de ces structures entraîne le développement de leur utilisation. Leur méthode de fabrication et éventuellement leur caractérisation restent des points essentiels dans la plupart des études. Ce travail s’inscrit dans le projet FUI SOLLICITERN qui vise à développer une citerne routière en matériau composite sandwich pour un véhicule d’hydrocurage. Comme première étape, et à partir du principe de l’enroulement filamentaire classique, l’objectif consiste à chercher des conceptions qui sont les mieux adaptées à l’enroulement d’un matériau sandwich sur un mandrin cylindrique, tout en respectant les paramètres de l’enroulement et leur influence sur la structure et les propriétés. La solution optimale étant validée, les matériaux constitutifs ont été étudié en mesurant de nombreuses propriétés mécaniques. L’objectif est de pouvoir aider le bureau d’étude à valider une solution de fabrication et de vérifier que les propriétés sont celles attendues. Pour ce faire, des caractérisations statique et dynamique ont menée sur des échantillons incurvés fabriqués par le procédé optimisé pour notre application. Cette partie comporte notamment différents essais expérimentaux dans le but de valider le comportement de la structure visée avec les dimensions et les combinaisons de matériaux les plus appropriées, en tenant compte du processus de fabrication. La meilleure configuration structurelle est retenue à la fin pour la fabrication de la citerne routière prototype. / Composite materials, and especially sandwich structures, have been studied for decades. Indeed, the association between lightness and resistance of these structures leads to the development of their use. Their manufacturing method and their characterization remain as essential points in most studies. This work is part of the FUI SOLLICITERN project, which aims to design a composite water treatment tank for vehicles intended for this purpose. As a first step, and based on the classical filament winding principal, we aim to search designs that are best adapted to the fabrication of a curved sandwich material on a cylindrical mandrel, while respecting the process parameters of and their influence on structural properties. Since an optimal solution was validated, the constituent materials were studied by measuring mechanical properties. The objective is to help our industrial partner to validate a manufacturing solution and verify that such properties are the expected ones. For that, several static and dynamic characterizations were carried out on curved samples manufactured by the optimized process designed for our application. This part includes various experimental tests in order to validate the structure behavior with the most appropriate dimensions and material combinations, taking into account the manufacturing process. At the end, the best structural configuration is retained for the first tank prototype fabrication.
|
Page generated in 0.0841 seconds