• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Passive Mechanical Lysis of Bioinspired Systems: Computational Modeling and Microfluidic Experiments

Warren, Kristin M. 01 May 2016 (has links)
Many developed nations depend on oil for the production of gasoline, diesel, and natural gas. Meanwhile, oil shortages progress and bottlenecks in oil productions continue to materialize. These and other factors result in an energy crisis, which cause detrimental social and economic effects. Because of the impending energy crisis, various potential energy sources have developed including solar, wind, hydroelectric, nuclear, and biomass. Within the biomass sector for renewable energy sources, algae-based biofuels have become one of the most exciting, new feedstocks. Of the potential plant biofuel feedstocks, microalgae is attractive in comparison to other crops because it is versatile and doesn’t pose a threat to food sources. Despite its many advantages, the process to convert the microalgae into a biofuel is very complex and inefficient. All steps within the algae to biofuel production line must be optimized for microalgal biofuel to be sustainable. The production of biofuels from algae begins with selecting and cultivating an algae strain and giving it all the necessities to grow. The algae is then harvested and processed for specific uses. It is the harvesting or lysing step, which includes the extraction of the algal lipids, which is the biggest hindrance of algae being used as a cost effective energy source. The lysing step within the microalgal biofuel processing is of particular interest and will be the focus of this work. This work discusses the optimization of the biofuel production from microalgae biomass through computational and experimental approaches. With atomic force microscopy (AFM), a key mechanical property that would aid in the computational modeling of mechanical lysis in the in-house computational fluid dynamics (CFD) code, Particle-Surface Analysis Code (P-STAC), was determined. In P-STAC, various flow patterns were modeled that would most effectively lyse microalgal cells based on the shear stresses placed on the cells, which will be compared against microfluidic experiments using lipid specific dyes. These results would be influential in developing an energy-efficient method of processing microalgae for biofuel.
2

DETERMINATION OF GROWTH KINETICS, YIELD COEFFICIENTS AND BIODIESEL PROPERTIES FOR THE GREEN MICROALGAE Scenedesmus dimorphus IN FRESHWATER AND SALINE MEDIAS

Cohara, Morgan L. 23 August 2018 (has links)
No description available.
3

Cultivo de la microalga Scenedesmus Obliquus var. Dimorphus (TURPIN) para la obtención de biomasa y lípidos.

Mercado Tupiño, Estefanía January 2016 (has links)
Las microalgas han demostrado ser la fuente de energía más económica. Además, reduce el dióxido de carbono, también tienen una mayor producción en un corto tiempo y menor espacio a diferencia de otros cultivos. Entre las más de 100 especies de microalgas, el Scenedesmus dimorphus es el que tiene mayor potencial. El objetivo de este trabajo de tesis fue determinar de qué manera con un medio de cultivo para Scenedesmus obliquus var. dimorphus (Turpin) se obtiene cantidad de biomasa y contenido de aceite. Inicialmente, el trabajo experimental consistió en la obtención de la cepa pura de Scenedesmus dimorphus (14 mL). Seguidamente, se realizó el escalamiento de cultivo desarrollándose de la siguiente manera: 100 mL, 250 mL, 500 mL, 1L, 2L y 5L, con el fin de determinar las curvas de crecimiento mediante el conteo celular de S. dimorphus con el uso de la cámara de Neubauer, obteniendo los siguientes resultados: 3’ 451,500 unidades celulares en 120 horas (Bayfolan Forte), 2’ 472,500 unidades celulares en 192 horas (BG-11) y 327,500 unidades celulares en 96 horas (Guillard). Concluyendo que el Bayfolan Forte se obtuvo un mejor resultado. A continuación, se realizó 5 cosechas, luego se usó el método de floculación mediante la utilización del sulfato de aluminio Al2(SO4)3 y posteriormente, para la extracción de aceites, se molió la biomasa seca (36.5 g) seguido por la extracción con disolvente en hexano/ isopropanol, y se obtuvo un total de 30 mL de lípidos. Finalmente, en la parte estadística se comprobó la validez de las hipótesis utilizando diferentes métodos, tales como: Anova, Tukey y T. Student.
4

Effects of digestate, magnesium sulfate, and dipotassium hydrogen phosphate/potassium dihydrogen phosphate on microalga, <i>Scenedesmus dimorphus<i>

HE, ZHUOHUI JOE 10 November 2016 (has links)
No description available.
5

Efficient Flocculation of Microalgae for Biomass Production Using Cationic Starch

Hansel, Philip A. 03 October 2011 (has links)
No description available.
6

Modification and Validation of a Novel Solid-Liquid Separation Technique Using a Microscreen and Capillary Belt System

Burke, Thomas A. 18 April 2012 (has links)
No description available.
7

SALINE ADAPTATION OF THE MICROALGA Scenedesmus dimorphus FROM FRESH WATER TO BRACKISH WATER

Gigante, Bethany Marie 24 October 2013 (has links)
No description available.

Page generated in 0.0491 seconds