Spelling suggestions: "subject:"schéma aux différences définies""
1 |
Sur les équations d'ondes amorties dérivées de la modélisation cérébraleJradeh, Mouhamad 15 December 2008 (has links) (PDF)
Dans ce travail, on s'est intéressé à une équation d' ondes amorties intervenant dans un modèle de l'activité cérébrale . Nous nous sommes attachés à 1. justifier l'origine physiologique de cette équation et affiner le modèle pour des cas plus réalistes. 2. démontrer l'existence et l'unicité d'une solution et discuter le cas ou l'énergie de la solution décroît exponentiellement vers zéro à l'infini. 3. construire un schéma numérique stable, et le valider avec des simulations numériques. 4. étudier un problème d'identification de l'impulsion thalamique
|
2 |
Identification de sources temporelles pour les simulations numériques des équations de Maxwell / Source identification in time domain for numerical simulations of Maxwell’s equationsBenoit, Jaume 11 December 2012 (has links)
Les travaux effectués durant cette thèse s’inscrivent dans le cadre d’une collaboration entre l’équipe CEM de l’Institut Pascal et l’équipe EDPAN du Laboratoire de Mathématiques de l’Université Blaise Pascal de Clermont-Ferrand. Nous présentons ici une étude qui, partant de l’analyse du processus de Retournement Temporel en électromagnétisme, a débouché sur le développement d’une méthode originale baptisée Linear Combination of Configuration Fields (LCCF) ou, en français, Combinaison Linéaire de Configurations de Champs. Après avoir introduit l’ensemble des outils et méthodes utilisés dans ces travaux, ce mémoire détaille le processus de Retournement Temporel de base ainsi qu’un ajout apporté à celui-ci. Par la suite, la méthode LCCF s’étant révélée applicable à plusieurs problèmes d’identification de sources en électromagnétisme, nous nous consacrons à la présentation détaillée des différentes variantes de celle-ci et nous illustrons son utilisation sur de nombreux exemples numériques. / This Ph.D thesis is the result of a collaboration between the CEM team of Pascal Institute and the EDPAN team of the Laboratory of Mathematics of the Blaise Pascal University in Clermont-Ferrand. We present here a study based on Time Reversal process in Electromagnetics. This work led to the development of a novel method called Linear Combination of Configuration Field (LCCF). This thesis first introduces the tools and the numerical methods used during this work. Then, we describe the Time Reversal process and a possible improvement to the basic technic. Afterwards, several possible applications of the LCCF method to electromagnetic source identification problems are detailed and we illustrate each of it on various numerical examples.
|
3 |
Limite singulière de quelques problèmes de Réaction Diffusion: <br />Analyse mathématique et numériqueKarami, Fahd 08 June 2007 (has links) (PDF)
Ce travail est une contribution à l'étude de la limite singulière des équations et des systèmes de Réaction-Diffusion. Ces derniers modélisent des problèmes issus de la physique, de la chimie, de la biologie et des sciences de la technologie. En effet, ce type de problème se présente dans la nature et sont caractérisés par la présence de paramètres qui, lorsqu' ils sont suffisamment grands, donnent lieu généralement à un phénomène appelé couches limites. Cette thèse est composée de cinq chapitres traitant les limites singulières des équations et des systèmes de Réaction Diffusion ainsi que l' existence et l'unicité de solution pour un problème d'obstacle et de quelques EDPs elliptique-parabolique doublement non linéaire avec un opérateur de type Leray Lions. Dans le premier chapitre, nous présentons des résultats théoriques et abstraits sur les limites singulières, où nous traitons aussi la compétition entre deux ou plusieurs opérateurs. Nous appliquons ces résultats dans le contexte des équations aux dérivées partielles et nous étudions le comportement de la solution d'un modèle, lorsque les coefficients de diffusion et/ou de réaction deviennent très grands. Dans les deux chapitres qui suivent, nous considérons un système de réaction diffusion intervenant dans des modèles (macroscopiques) de diffusion dans un milieu hétérogène. Nous présentons d'abord une analyse mathématique (existence et unicité de la solution), ensuite nous étudions le comportement de la solution lorsque le paramètre d'homogénéité devient très grand sur un sous domaine. Le chapitre trois est dédié à l'analyse numérique d'un modèle linéaire, nous prouvons l' existence d'une solution approchée satisfaisant des propriétés de stabilité et de convergence vers la solution du problème continu indépendamment du paramètre d'homogénéité. Le chapitre quatre a pour objet l'étude de l'existence et l'unicité de la solution d'un problème d'obstacle doublement non linéaire avec des contraintes bilatérales, dépendantes de l'espace. Enfin, dans le cinquième chapitre, nous présentons une généralisation des résultats du chapitre trois au cas d'un opérateur de type Leray-Lions et une réaction qui dépend de l'espace.
|
4 |
Sur quelques modèles mathématiques issus du micromagnétisme / Some mathematical problems arising in micromagnetismMoumni, Mohammed 14 March 2017 (has links)
Cette thèse est consacrée à l'étude de quelques problèmes mathématiques issus du micromagnétisme. Le but est d'analyser le comportement des modèles en fonction de différents paramètres physiques, dont les fines variations sont parfois difficilement mesurables. Nous adoptons des approches numériques, asymptotiques ou d'homogénéisation. Les modèles considérés reposent sur l'utilisation de l'équation de Landau-Lifshitz-Gilbert (LLG) décrivant l'évolution du champ d'aimantation dans un matériau ferromagnétique. Nous rappelons d'abord quelques notions importantes en ferromagnétisme. Ensuite, nous menons une étude numérique d'un modèle de la dynamique d'aimantation avec effets d'inertie. Nous proposons un schéma aux différences finies semi-implicite qui respecte de façon intrinsèque les propriétés du modèle continu. Des simulations numériques sont réalisées pour cerner l'effet du paramètre d'inertie. Ces simulations montrent aussi la performance du schéma et confirment l'ordre de convergence obtenu théoriquement. Nous étudions ensuite un modèle de la dynamique de l'aimantation avec amortissement non local. La sensibilité de la dynamique d'aimantation au paramètre d'amortissement est étudiée en donnant le problème limite pour de petites et de grandes valeurs du paramètre. Enfin, nous étudions l'homogénéisation de l'équation LLG dans deux types de matériau, à savoir les composites présentant un fort contraste des propriétés magnétiques et les matériaux périodiquement perforés avec énergie d'anisotropie de surface. Des modèles homogénéisés sont d'abord obtenus formellement puis une dérivation rigoureuse est établie en se basant principalement sur les concepts de la convergence à double échelle et de la convergence à double échelle en surface. Pour traiter les non-linéarités, nous introduisons une nouvelle méthode basée sur le couplage d'un opérateur de dilatation calibré sur les contrastes d'échelle et d'un outil de réduction de dimension, par construction de grilles emboitées adaptées à la géométrie du domaine microscopique. / This thesis is devoted to the study of some mathematical problems arising in micromagnetism. The models considered here are based on the Landau-Lifshitz-Gilbert equation (LLG) describing the evolution of the magnetization field in a ferromagnetic material. Our aim is the analysis of the behavior of the models regarding the slight variations of some physical parameters. We first recall some important notions about ferromagnetism. Then, we carry out a numerical study of a model of magnetization dynamics with inertial effects. We propose a semi-implicit finite difference scheme which intrinsically respects the properties of the continuous model. Numerical simulations are provided for emphasizing the effect of the inertia parameter. These simulations also show the performance of the scheme and confirm the order of convergence obtained theoretically. We then study a model of magnetization dynamics with a non-local damping. The sensitivity of the magnetization dynamics to the damping coefficient is studied by giving the limiting problem for small and large values of the parameter. Finally, we study the homogenization of the LLG equation in two types of structures, namely a composite material with strongly contrasted magnetic properties, and a periodically perforated material with surface anisotropy energy. The homogenized models are first obtained formally. The rigorous derivation is then performed using mainly the concepts of two-scale convergence, two-scale convergence on surfaces together with a new homogenization procedure for handling with the nonlinear terms. More precisely, an appropriate dilation operator is applied in a embedded cells network, the network being constrained by the microscopic geometry.
|
Page generated in 0.0839 seconds