• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation et simulation numérique des écoulements diphasiques

Seguin, Nicolas 22 November 2002 (has links) (PDF)
On s'intéresse dans ce travail à la simulation des écoulements diphasiques. Différents modèles, tous hyperboliques, sont considérés suivant les configurations étudiées. Dans un premier temps, plusieurs schémas Volumes Finis sont comparés pour l'approximation du modèle HEM (Homogeneous Equilibrium Model), notamment en présence de faibles densités. Ensuite on démontre l'existence et l'unicité de la solution faible entropique d'une loi de conservation scalaire gouvernant l'évolution de la saturation d'un écoulement diphasique dans un milieu poreux. On propose alors deux schémas Volumes Finis tenant compte du caractère résonnant de cette équation. La troisième partie concerne les écoulements en eaux peu profondes et l'approximation des termes sources raides. Une méthode permettant le maintien d'états au repos ainsi que le recouvrement et l'apparition de zones sèches, est présentée et comparée aux méthodes habituellement utilisées dans l'industrie. Enfin, une classe de modèles hyperboliques non conservatifs se basant sur l'approche bifluide à deux vitesses et deux pressions est proposée. Une étude des solutions discontinues du système convectif permet d'exhiber une classe de fermetures sur la vitesse interfaciale et sur la pression interfaciale, tout en permettant de définir de manière unique les produits non conservatifs. L'approximation se fait à l'aide d'une méthode de splitting d'opérateur. On utilise deux schémas Volumes Finis, le schéma de Rusanov et le schéma de Godunov approché VFRoe-ncv pour l'étape de convection. Plusieurs cas tests sont présentés et commentés : tubes à choc, conditions limites de paroi, robinet d'eau, sédimentation.
2

Schémas d'ordre élevé pour la méthode SPH-ALE appliquée à des simulations sur machines hydrauliques

Renaut, Gilles-Alexis 17 December 2015 (has links)
Ce travail traite des méthodes de calcul numérique pour les simulations hydrodynamiques appliquées principalement sur des produits développés par ANDRITZ HYDRO. Il s’agit ici de mettre en place des schémas d’ordre élevé pour des simulations CFD en utilisant le code de calcul ASPHODEL développé et utilisé par ANDRITZ HYDRO. Les principales motivations sont l’augmentation de la fiabilité des résultats de calculs numériques avec un coût de calcul raisonnable. Cette fiabilité s’exprime à travers l’augmentation de la précision et de la robustesse des schémas numériques. Le code de calcul ASPHODEL est basé sur la méthode sans maillage SPH-ALE. Mélange entre les volumes finis et la méthode SPH (Smoothed Particle Hydrodynamics), la méthode SPH-ALE emploie un ensemble de points appelés particules servant à la discrétisation du domaine fluide. Elle permet en particulier de par son caractère sans maillage, un suivi des surfaces libres sans effort de calcul supplémentaire. Cet aspect est véritablement attrayant pour bon nombre d’applications industrielles notamment la simulation des écoulements à surface libre se produisant dans une turbine Pelton, mais également le remplissage d’une turbine Francis. Cependant, le bémol à cette méthode est son manque de précision spatiale. En effet les points de calcul étant mobiles, les opérateurs spatiaux doivent être en mesure de conserver leur précision et leur robustesse au cours du temps. La qualité des résultats en est du coup impactée, en particulier le champ de pression souvent excessivement bruité. La montée en ordre et l’amélioration de la consistance des opérateurs pour un vaste panel de configurations géométriques sont donc les enjeux de ce travail. En utilisant des outils inspirés par les volumes finis non-structurés, il est possible d’améliorer les opérateurs spatiaux. En effet, la montée en ordre ou p-raffinement peut notamment se faire avec des reconstructions d’ordres élevés pour évaluer les états aux interfaces des problèmes de Riemann. La sommation des flux numériques résolus par un solveur de Riemann est ensuite retravaillée pour obtenir un schéma numérique d’ordre global cohérent. Le même soucis de cohérence avec les schémas en temps doit d’ailleurs être pensé. Le gain de précision apporté par les schémas numériques d’ordre élevé est comparé avec un raffinement spatial, c’est à dire une augmentation du nombre des particules de taille plus petite, aussi appelé h-raffinement. La méthode SPH-ALE améliorée est ensuite testée sur des cas représentatifs des applications visées. En conclusion, les développements effectués dans cette étude ont été guidés par l’application en turbine Pelton principalement mais il va de soi qu’ils sont applicables à des écoulements sans surface libre dans les turbines Francis par exemple. Ce travail montre les possibilités d’une méthode sans maillage pour des cas d’écoulements complexes autour de géométrie tournantes. / This work deals with numerical methods for hydrodynamic testing applied mainly on products developed by ANDRITZ HYDRO. This is to put in place high order schemes for CFD simulations using the ASPHODEL calculation code developed and used by ANDRITZ HYDRO. The main reasons are the increased reliability of the results of numerical calculations with a reasonable computational cost. This reliability is expressed through increasing the accuracy and robustness of numerical schemes. The ASPHODEL computer code is based on the meshfree method SPH-ALE. Mix between finite volume method and SPH (Smoothed Particle Hydrodynamics), the SPH-ALE method uses a set of points called particles serving as the fluid domain discretization. It allows track free surfaces without additional computational effort. This is truly attractive for many industrial applications including the simulation of free surface flows occurring in a Pelton turbine, but also filling a Francis turbine. However, the downside of this method is its lack of spatial accuracy. Indeed calculation points are mobile, space operators must be able to keep their accuracy and robustness over time. The quality of results is impacted especially the pressure field is often excessively noisy. The rise in order and improving the consistency of the operators for a wide range of geometric configurations are the challenges of this work. Using tools inspired by the unstructured finite volume, it is possible to improve the spatial operators. Indeed, the increasing order or p-refinement particular can be done with reconstructions of high order to assess the conditions at the interfaces of Riemann problems. The summation of discret fluxes solved by Riemann solver is then reworked to obtain a coherent global order scheme. The same concern for consistency with temporal schemes should also be considered. The precision gain provided by numerical schemes of higher orders is compared with a spatial refinement ie an increase in the number of smaller particles ; also called h -refinement . Improved SPH -ALE method is then tested on representative cases of intended applications. In conclusion, the developments made in this study were guided in accordance mainly with the Pelton turbine but it goes without saying that they are applicable to non- free surface flows in Francis turbines for example. This work shows the possibilities of a free mesh method for cases of complex flow around rotating geometry.
3

Méthodes numériques pour les écoulements souterrains et couplage avec le ruissellement

Sochala, Pierre 03 December 2008 (has links) (PDF)
Des schémas numériques précis et robustes sont proposés pour modéliser les écoulements souterrains et leur couplage avec le ruissellement surfacique. Les écoulements souterrains sont d´écrits par l'équation de Richards (instationnaire) qui est discrétisée par une méthode BDF en temps et une méthode de Galerkine discontinue à pénalisation intérieure symétrique en espace. Des cas tests sur des colonnes d'infiltration confirment la robustesse des schémas choisis. Dans un premier temps, nous considérons des conditions de Signorini pour l'équation de Richards afin de modéliser la présence de drains en fond d'aquifère ou l'affleurement de la nappe en négligeant le ruissellement, c'est-à-dire en supposant que l'eau exfiltrée est immédiatement évacuée du système. Dans un second temps, nous prenons en compte le ruissellement par le biais de conditions de couplage qui imposent l'égalité des flux d'eau échangés et la continuité de la pression à l'interface. Les écoulements superficiels sont d´écrits par l'équation de l'onde cinématique qui constitue une approximation des équations de Saint-Venant. L'équation de l'onde cinématique est discrétisée par une méthode de Godunov. Les deux schémas, pour l'écoulement souterrain et pour l'écoulement superficiel, sont conservatifs et peuvent être utilisés dans des algorithmes de couplage faisant intervenir un ou plusieurs pas de temps. Pour assurer la conservation de la masse d'eau totale du système couplé, les flux à l'interface doivent être convenablement choisis. Nous donnons en particulier la construction de ces flux pour les schémas BDF1 et BDF2. La précision et la robustesse de nos schémas sont évaluées sur plusieurs cas tests dont le drainage d'une lame d'eau, deux cas d'exfiltration de nappe (l'un provoqué par la pluie et l'autre par une injection en fond d'aquifère) et un ruissellement hortonien. Enfin, nous présentons une application concrète portant sur le fonctionnement hydrologique d'un petit bassin versant drainé.
4

Mathematical model of multi-dimensional shear shallow water flows : problems and solutions / Modèle mathématique multi-dimensionnel d'écoulements cisaillés en eau peu profonde : problèmes et solutions

Ivanova, Kseniya 07 December 2017 (has links)
Cette thèse porte sur la résolution numérique du modèle multi-dimensionnel d'écoulement cisaillé en eau peu profonde. Dans le cas d'un mouvement unidimensionnel, ces équations coïncident avec les équations de la dynamique de gaz pour un choix particulier de l'équation d'état. Dans le cas multi-dimensionnel, le système est complètement différent du modèle de la dynamique de gaz. Il s'agit d'un système EDP hyperbolique 2D non-conservatif qui rappelle un modèle de turbulence barotrope. Le modèle comporte trois types d'ondes correspondant à la propagation des ondes de surface, des ondes de cisaillement et à celle de la discontinuité de contact. Nous présentons dans le cas 2D un schéma numérique basé sur une nouvelle approche de ``splitting" pour les systèmes d'équations non-conservatives. Chaque sous-système ne contient qu'une seule famille d'ondes: ondes de surface ou ondes de cisaillement, et discontinuité de contact. La précision d'une telle approche est testée sur des solutions exactes 2D décrivant l'écoulement lorsque la vitesse est linéaire par rapport aux variables spatiales, ainsi que sur des solutions décrivant des trains de rouleaux 1D. Finalement, nous modélisons un ressaut hydraulique circulaire formé dans un écoulement convergent radial d'eau. Les résultats numériques obtenus sont clairement similaires à ceux obtenus expérimentalement: oscillations du ressaut et son rotation avec formation du point singulier. L'ensemble des validations proposées dans ce manuscrit démontre les aptitudes du modèle et de la méthode numérique pour la résolution des problèmes complexes d'écoulements cisaillés en eau peu profonde multidimensionnels. / This thesis is devoted to the numerical modelling of multi-dimensional shear shallow water flows. In 1D case, the corresponding equations coincide with the equations describing non--isentropic gas flows with a special equation of state. However, in the multi-D case, the system differs significantly from the gas dynamics model. This is a 2D hyperbolic non-conservative system of equations which is reminiscent of a generic Reynolds averaged model of barotropic turbulent flows. The model has three families of characteristics corresponding to the propagation of surface waves, shear waves and average flow (contact characteristics). First, we show the ability of the one-dimensional conservative shear shallow water model to predict the formation of roll-waves from unstable initial data. The stability of roll waves is also studied.Second, we present in 2D case a new numerical scheme based on a splitting approach for non-conservative systems of equations. Each split subsystem contains only one family of waves (either surface or shear waves) and contact characteristics. The accuracy of such an approach is tested on exact 2D solutions describing the flow where the velocity is linear with respect to the space variables, and on the solutions describing 1D roll waves. Finally, we model a circular hydraulic jump formed in a convergent radial flow of water. Obtained numerical results are qualitatively similar to those observed experimentally: oscillation of the hydraulic jump and its rotation with formation of a singular point. These validations demonstrate the capability of the model and numerical method to solve challenging multi--dimensional problems of shear shallow water flows.
5

Étude et discrétisation de modèles cinétiques et de modèles fluides à bas nombre de Mach

Dellacherie, Stéphane 02 February 2011 (has links) (PDF)
Ce mémoire résume les travaux que nous avons réalisés de 1995 à 2010. Ces travaux ont eu pour thème l'étude et la discrétisation, d'une part, de modèles cinétiques de type Fokker-Planck ou de type Boltzmann semi-classiques et, d'autre part, de modèles fluides de type Euler ou de type Navier-Stokes à bas nombre de Mach. L'équation de Fokker-Planck étudiée modélise les collisions entre ions et électrons dans un plasma chaud, et concerne ici la fusion par confinement inertiel. Les équations de Boltzmann semi-classiques étudiées sont de deux types. Le premier type modélise la réaction de fusion thermonucléaire entre un ion deuterium et un ion tritium donnant une particule alpha et un neutron, et concerne également ici la fusion par confinement inertiel. Le deuxième type - connu sous le nom d'équations de Wang-Chang & Uhlenbeck - modélise ici les transitions d'énergie quantique dans les couches électroniques d'atomes d'uranium et de fer provoquées par les collisions entre ces mêmes atomes au sein du procédé SILVA de Séparation Isotopique par Laser sur Vapeur Atomique. Nous avons étudié les propriétés de base de ces deux types d'équations de Boltzmann semi-classiques, et, dans le cas des équations de Wang-Chang & Uhlenbeck, nous avons proposé un algorithme de couplage cinétique-fluide. L'étude de cet algorithme nous a incité à étudier la notion de relaxation dans un mélange binaire de gaz et de fluides non-miscibles, et à souligner les points communs de cette approche avec la théorie cinétique standard. L'étude de modèles moyennés pour des mélanges de fluides non-miscibles nous a amené à proposer et à discrétiser un modèle sans ondes acoustiques modélisant la déformation d'une interface entre deux fluides non-miscibles provoquée par de forts gradients thermiques à bas nombre de Mach. Puis, afin d'améliorer la précision des calculs tout en en maîtrisant le coût, nous avons également étudié la possibilité de résoudre sur un maillage dynamique de type AMR un modèle simplifié de déformation d'interface. Ces études à bas nombre de Mach nous ont également incités à analyser sur maillage cartésien le mauvais comportement à bas nombre de Mach des schémas de type Godunov appliqués au système d'Euler compressible. Enfin, nous avons justifié l'algorithme LBM dans le cas de l'équation de la chaleur.

Page generated in 0.0804 seconds