• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 120
  • 91
  • 16
  • 8
  • 6
  • 5
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 409
  • 154
  • 97
  • 67
  • 61
  • 57
  • 53
  • 51
  • 47
  • 46
  • 41
  • 38
  • 35
  • 35
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Excitations in superfluids of atoms and polaritons

Pinsker, Florian January 2014 (has links)
This thesis is devoted to the study of excitations in atomic and polariton Bose-Einstein condensates (BEC). These two specimens are prime examples for equilibrium and non equilibrium BEC. The corresponding condensate wave function of each system satisfies a particular partial differential equation (PDE). These PDEs are discussed in the beginning of this thesis and justified in the context of the quantum many-body problem. For high occupation numbers and when neglecting quantum fluctuations the quantum field operator simplifies to a semiclassical wave. It turns out that the interparticle interactions can be simplified to a single parameter, the scattering length, which gives rise to an effective potential and introduces a nonlinearity to the PDE. In both cases, i.e. equilibrium and non equilibrium, the main model corresponding to the semiclassical wave is the Gross-Pitaevskii equation (GPE), which includes certain mathematical adaptions depending on the physical context of the consideration and the nature of particles/quasiparticles, such as additional complex pumping and growth terms or terms due to motion. In the course of this work I apply a variety of state-of-the-art analytical and numerical tools to gain information about these semiclassical waves. The analytical tools allow e.g. to determine the position of the maximum density of the condensate wave function or to find the critical velocities at which excitations are expected to be generated within the condensate. In addition to analytical considerations I approximate the GPE numerically. This allows to gain the condensate wave function explicitly and is often a convenient tool to study the emergence of excitations in BEC. It is in particular shown that the form of the possible excitations significantly depends on the dimensionality of the considered system. The generated excitations within the BEC include quantum vortices, quantum vortex rings or solitons. In addition multicomponent systems are considered, which enable more complex dynamical scenarios. Under certain conditions imposed on the condensate one obtains dark-bright soliton trains within the condensate wave function. This is shown numerically and analytical expressions are found as well. In the end of this thesis I present results as part of an collaborative effort with a group of experimenters. Here it is shown that the wave function due to a complex GPE fits well with experiments made on polariton condensates, statically and dynamically.
202

An Inverse Eigenvalue Problem for the Schrödinger Equation on the Unit Ball of R<sup>3</sup>

Al Ghafli, Maryam Ali 01 January 2019 (has links)
The inverse eigenvalue problem for a given operator is to determine the coefficients by using knowledge of its eigenfunctions and eigenvalues. These are determined by the behavior of the solutions on the domain boundaries. In our problem, the Schrödinger operator acting on functions defined on the unit ball of $\mathbb{R}^3$ has a radial potential taken from $L^2_{\mathbb{R}}[0,1].$ Hence the set of the eigenvalues of this problem is the union of the eigenvalues of infinitely many Sturm-Liouville operators on $[0,1]$ with the Dirichlet boundary conditions. Each Sturm-Liouville operator corresponds to an angular momentum $l =0,1,2....$. In this research we focus on the uniqueness property. This is, if two potentials $p,q \in L^2_{\mathbb{R}}[0,1]$ have the same set of eigenvalues then $p=q.$ An early result of P\"oschel and Trubowitz is that the uniqueness of the potential holds when the potentials are restricted to the subspace of the even functions of $L_{\mathbb{R}}^2[0,1]$ in the $l=0$ case. Similarly when $l=0$, by using their method we proved that two potentials $p,q \in L^2_{\mathbb{R}}[0,1]$ are equal if their even extension on $[-1,1]$ have the same eigenvalues. Also we expect to prove the uniqueness if $p$ and $q$ have the same eigenvalues for finitely many $l.$ For this idea we handle the problem by focusing on some geometric properties of the isospectral sets and trying to use these properties to prove the uniqueness of the radial potential by using finitely many of the angular momentum.
203

Efficient Schrödinger-Poisson Solvers for Quasi 1D Systems That Utilize PETSc and SLEPc

January 2020 (has links)
abstract: The quest to find efficient algorithms to numerically solve differential equations isubiquitous in all branches of computational science. A natural approach to address this problem is to try all possible algorithms to solve the differential equation and choose the one that is satisfactory to one's needs. However, the vast variety of algorithms in place makes this an extremely time consuming task. Additionally, even after choosing the algorithm to be used, the style of programming is not guaranteed to result in the most efficient algorithm. This thesis attempts to address the same problem but pertinent to the field of computational nanoelectronics, by using PETSc linear solver and SLEPc eigenvalue solver packages to efficiently solve Schrödinger and Poisson equations self-consistently. In this work, quasi 1D nanowire fabricated in the GaN material system is considered as a prototypical example. Special attention is placed on the proper description of the heterostructure device, the polarization charges and accurate treatment of the free surfaces. Simulation results are presented for the conduction band profiles, the electron density and the energy eigenvalues/eigenvectors of the occupied sub-bands for this quasi 1D nanowire. The simulation results suggest that the solver is very efficient and can be successfully used for the analysis of any device with two dimensional confinement. The tool is ported on www.nanoHUB.org and as such is freely available. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2020
204

Bifurcations and Spectral Stability of Solitary Waves in Nonlinear Wave Equations / 非線形波動方程式における孤立波解の分岐とスペクトル安定性

Yamazoe, Shotaro 24 November 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第22863号 / 情博第742号 / 新制||情||127(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 矢ヶ崎 一幸, 教授 中村 佳正, 准教授 柴山 允瑠, 教授 國府 寛司 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
205

Étude de quelques perturbations d'équations riches en symétries : résonances et stabilités / Study of some equations with many symmetries : resonances and stability

Bernier, Joackim 04 July 2019 (has links)
Cette thèse est un recueil de constructions et de résultats variés autour de problèmes de résonances et de stabilités. Premièrement, on s'intéresse à la conception et à l'analyse de méthodes numériques pour des problèmes académiques tels que le problème de Dirichlet sur un segment ou l'équation de transport associée à une rotation du plan. Ensuite, on étend l'analyse linéaire classique des équations de Vlasov-Poisson autour d'états d'équilibre homogènes pour décrire des phénomènes multidimensionnels et non linéaires. Enfin, une large partie est consacrée à l'étude d'équations de Schrödinger non linéaires en dimension 1. D'une part, on étudie l'impact d'une semi-discrétisation naturelle sur les ondes solitaires progressives et la croissance des normes de Sobolev. D'autre part, on développe une nouvelle famille de formes normales permettant de décrire la dynamique des petites solutions régulières pendant des temps très longs. / This manuscript deals with many problems about resonance and stability. First, we design and analyse numerical methods for academic problems like the Dirichlet problem on a segment line or the transport equation associated with a two dimensional rotation. Then, we extend the classical linear analysis of Vlasov-Poisson equations near homogeneous equilibria to describe nonlinear and multidimensional phenomena. Finally, a large part of this thesis is devoted to nonlinear Schrödinger equations in dimension 1. On the one hand, we study the impact of a natural semi-discretisation on the solitary traveling waves and on the growth of the high order Sobolev norms. On the other hand, we develop a new family of normal forms to describe the dynamic of small and smooth solutions for very long times.
206

Kvantové grafy a jejich zobecnění / Quantum Graphs and Their Generalïzations

Lipovský, Jiří January 2011 (has links)
In the present theses we study spectral and resonance properties of quantum graphs. First, we consider graphs with rationally related lengths of the edges. In particular examples we study trajectories of resonances which arise if the ratio of the lengths of the edges is perturbed. We prove that the number of resonances under this perturbation is locally conserved. The main part is devoted to asymptotics of the number of resonances. We find a criterion how to distinguish graphs with non-Weyl asymptotics (i.e. constant in the leading term is smaller than expected). Furthermore, due to explicit construction of unitary equivalent operators we explain the non-Weyl behaviour. If the graph is placed into a magnetic field, the Weyl/non-Weyl characteristic of asymptotical behaviour does not change. On the other hand, one can turn a non-Weyl graph into another non-Weyl graph with different "effective size". In the final part of the theses, we describe equivalence between radial tree graphs and the set of halfline Hamiltonians and use this result for proving the absence of the absolutely continuous spectra for a class of sparse tree graphs.
207

Theories of Optimal Control and Transport with Entropy Regularization / エントロピー正則化を伴う最適制御・輸送理論

Ito, Kaito 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24263号 / 情博第807号 / 新制||情||136(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)准教授 加嶋 健司, 教授 太田 快人, 教授 山下 信雄 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DGAM
208

Gazeau-Klauder coherent states in one-mode systems with periodic potential

Konstadopoulou, Anastasia, Chountasis, S., Hollingworth, J.M., Vourdas, Apostolos, Backhouse, N.B. January 2001 (has links)
No / Gazeau-Klauder coherent states for a one-mode system with sinusoidal potential, are introduced. Their quantum statistical properties and their uncertainties are studied. The effect of dissipation on these states is estimated. The evolution of the ordinary (Glauber) coherent states in this system, is also studied. It is shown that these states evolve into superpositions of many macroscopically distinguishable states (`multi-Schrödinger cats').
209

Croissance et ensemble nodal de fonctions propres du laplacien sur des surfaces

Roy-Fortin, Guillaume 07 1900 (has links)
Dans cette thèse, nous étudions les fonctions propres de l'opérateur de Laplace-Beltrami - ou simplement laplacien - sur une surface fermée, c'est-à-dire une variété riemannienne lisse, compacte et sans bord de dimension 2. Ces fonctions propres satisfont l'équation $\Delta_g \phi_\lambda + \lambda \phi_\lambda = 0$ et les valeurs propres forment une suite infinie. L'ensemble nodal d'une fonction propre du laplacien est celui de ses zéros et est d'intérêt depuis les expériences de plaques vibrantes de Chladni qui remontent au début du 19ème siècle et, plus récemment, dans le contexte de la mécanique quantique. La taille de cet ensemble nodal a été largement étudiée ces dernières années, notamment par Donnelly et Fefferman, Colding et Minicozzi, Hezari et Sogge, Mangoubi ainsi que Sogge et Zelditch. L'étude de la croissance de fonctions propres n'est pas en reste, avec entre autres les récents travaux de Donnelly et Fefferman, Sogge, Toth et Zelditch, pour ne nommer que ceux-là. Notre thèse s'inscrit dans la foulée du travail de Nazarov, Polterovich et Sodin et relie les propriétés de croissance des fonctions propres avec la taille de leur ensemble nodal dans l'asymptotique $\lambda \nearrow \infty$. Pour ce faire, nous considérons d'abord les exposants de croissance, qui mesurent la croissance locale de fonctions propres et qui sont obtenus à partir de la norme uniforme de celles-ci. Nous construisons ensuite la croissance locale moyenne d'une fonction propre en calculant la moyenne sur toute la surface de ces exposants de croissance, définis sur de petits disques de rayon comparable à la longueur d'onde. Nous montrons alors que la taille de l'ensemble nodal est contrôlée par le produit de cette croissance locale moyenne et de la fréquence $\sqrt{\lambda}$. Ce résultat permet une reformulation centrée sur les fonctions propres de la célèbre conjecture de Yau, qui prévoit que la mesure de l'ensemble nodal croît au rythme de la fréquence. Notre travail renforce également l'intuition répandue selon laquelle une fonction propre se comporte comme un polynôme de degré $\sqrt{\lambda}$. Nous généralisons ensuite nos résultats pour des exposants de croissance construits à partir de normes $L^q$. Nous sommes également amenés à étudier les fonctions appartenant au noyau d'opérateurs de Schrödinger avec petit potentiel dans le plan. Pour de telles fonctions, nous obtenons deux résultats qui relient croissance et taille de l'ensemble nodal. / In this thesis, we study eigenfunctions of the Laplace-Beltrami operator - or simply the Laplacian - on a closed surface, i.e. a two dimensional smooth, compact Riemannian manifold without boundary. These functions satisfy $\Delta_g \phi_\lambda + \lambda \phi_\lambda = 0$ and the eigenvalues form an infinite sequence. The nodal set of a Laplace eigenfunction is its zero set and is of interest since the vibrating plates experiments of Chladni at the beginning of the 19th century as well as, more recently, in the context of quantum mechanics. The size of the nodal sets has been largely studied recently, notably by Donnelly and Fefferman, Colding and Minicozzi, Hezari and Sogge, Mangoubi as well as Sogge and Zelditch.The study of eigenfunction growth is also an active topic, with the recent works of Donnelly and Fefferman, Sogge, Toth and Zelditch to name only a few. Our thesis follows the work of Nazarov, Polterovich and Sodin and links growth and nodal sets of eigenfunctions in the asymptotic $\lambda \nearrow \infty$. To do so, we first consider growth exponents, which measure the local growth of eigenfunctions via their uniform norm. The average local growth of an eigenfunction is built by averaging growth exponents defined on small disks of wavelength like radius over the whole surface. We show that the size of the nodal set is controlled by the product of this average local growth with the frequency $\sqrt{\lambda}$. This result allows a function theoretical reformulation of the famous conjecture of Yau, which predicts that the size of the nodal set grows like the frequency. Our work also strengthens the common intuition that an eigenfunction behaves in many ways like a polynomial of degree $\sqrt{\lambda}$. We then generalize our results to growth exponents built upon $L^q$ norms. We are also led to study functions belonging to the kernel of Schrödinger operators with small potential in the plane. For such functions, we obtain two results linking growth and size of nodal sets.
210

Résonances et diffusion pour les opérateurs de Dirac et de Schrödinger magnétique / Resonances and scattering for Dirac and magnetic Schrödinger operators

Khochman, Abdallah 02 December 2008 (has links)
Le sujet de cette thèse est l’étude de certaines équations de physique mathématique. Dans un premier temps, on étudie les résonances et la fonction de décalage spectral pour les opérateurs de Dirac semi-classique et de Schrödinger magnétique en dimension 3. On dé?nit les résonances comme des valeurs propres d’un opérateur non-autoadjoint obtenu par distortion complexe. Pour l’opérateur de Dirac, on majore le nombre de résonances par O(h-3) où h ? 0 est le paramètre semi-classique. Dans le cas de Schrödinger magnétique, l’opérateur de référence génère des valeurs propres de multipli- cité in?nie plongées dans le spectre continu. Dans une couronne centrée en une de ces valeurs propres et de rayons (r, 2r), on établit une borne supérieure, quand r ? 0, du nombre de résonances. Une approximation de type Breit-Wigner de la dérivée de la fonction de décalage spectral en fonction des résonances et une formule de trace locale sont obtenues pour ces deux opérateurs. De plus, on prouve une formule asymptotique de Weyl pour la fonction de décalage spectral pour l’opérateur de Dirac avec un potentiel électro-magnétique. Dans un deuxième temps, on s’intéresse à l’opérateur de Dirac semi-classique en dimension 1 avec un potentiel ayant des limites constantes mais pas nécessairement les mêmes à ±8. En utilisant la méthode BKW complexe, on construit des solutions analytiques de l’opérateur de Dirac. On étudie la théorie de la di?usion en fonction des solutions entrantes et sortantes. On obtient une asymptotique semi-classique de la matrice de di?usion dans di?érents cas, notamment dans le cas où le paradoxe de Klein apparaît. Le calcul des valeurs propres et des résonances est aussi traité pour l’opérateur de Dirac semi-classique unidimensionnel. / In this thesis, we consider equations of mathematical physics. First, we study the reso- nances and the spectral shift function for the semi-classical Dirac operator and the magnetic Schrö- dinger operator in three dimensions. We de?ne the resonances as the eigenvalues of a non-selfadjoint operator obtained by complex distortion. For the Dirac operator, we establish an upper bound O(h-3), as the semi-classical parameter h tends to 0, for the number of resonances. In the Schrödinger magne- tic case, the reference operator has in?nitely many eigenvalues of in?nite multiplicity embedded in its continuous spectrum. In a ring centered at one of this eigenvalues with radiuses (r, 2r), we establish an upper bound, as r tends to 0, of the number of the resonances. A Breit-Wigner approximation formula for the derivative of the spectral shift function related to the resonances and a local trace formula are obtained for the considered operators. Moreover, we prove a Weyl-type asymptotic of the SSF for the Dirac operator with an electro-magnetic potential. Secondly, we consider the semi-classical Dirac ope- rator on R with potential having constant limits, not necessarily the same at ±8. Using the complex WKB method, we construct analytic solutions for the Dirac operator. We study the scattering theory in terms of incoming and outgoing solutions. We obtain an asymptotic expansion, with respect to the semi-classical parameter h, of the scattering matrix in di?erent cases, in particular, in the case when the Klein paradox occurs. Quantization conditions for the resonances and for the eigenvalues of the one-dimensional Dirac operator are also obtained.

Page generated in 0.0779 seconds