• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 7
  • 5
  • 1
  • Tagged with
  • 35
  • 35
  • 31
  • 11
  • 9
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A Study of Polycarbonate / Poly (butylene terephthalate) Compounding in a Twin Screw Extruder

Noeei Ancheh, Vahid January 2008 (has links)
Blends of poly butylene terephthalate (PBT) and polycarbonate (PC) form a very important class of commercial blends in numerous applications requiring materials with good chemical resistance, impact resistance even at low temperatures, and aesthetic and flow characteristics. PC and PBT are usually blended in a twin screw extruder (TSE). Product melt volume flow rate (MVR) is a property used to monitor product quality while blending the PC/PBT in a twin screw extruder. It is usually measured off line in a quality control laboratory using extrusion plastometer on samples collected discretely during the compounding operation. Typically a target value representing the desired value of the quality characteristics for an in-control process, along with upper and lower control limits are specified. As long as the MVR measurement is within the control limits, the sample is approved and the whole compounded blend is assumed to meet the specification. Otherwise, the blend is rejected. Because of infrequent discrete sampling, corrective actions are usually applied with delay, thus resulting in wasted material. It is important that the produced PC/PBT blend pellets have consistent properties. Variability and fault usually arise from three sources: human errors, feed material variability, and machine operation (i.e. steady state variation). Among these, the latter two are the major ones affecting product quality. The resulting variation in resin properties contributes to increased waste products, larger production cost and dissatisfied customers. Motivated by this, the objective of this project was to study the compounding operation of PC/PBT blend in a twin screw extruder and to develop a feasible methodology that can be applied on-line for monitoring properties of blends on industrial compounding operations employing available extruder input and output variables such as screw speed, material flow rate, die pressure and torque. To achieve this objective, a physics-based model for a twin screw extruder along with a MVR model were developed, examined and adapted for this study, and verified through designed experiments. This dynamic model for a TSE captures the important dynamics, and relates measurable process variables (screw speed, torque, feed rates, pressure etc.) to ones that are not being measured (material holdups and compositions at the partially and filled section along a TSE barrel). This model also provides product quality sensors or inferential estimation techniques for prediction of viscosity and accordingly MVR. The usefulness of the model for inferential MVR sensing and fault diagnosis was demonstrated on experiments performed on a 58 mm co-rotating twin-screw extruder for an industrial compounding operation at a SABIC Innovative Plastics plant involving polycarbonate – poly butylene terephthalate blends. The results showed that the model has the capability of identifying faults (i.e., process deviation from the nominal conditions) in polymer compounding operations with the twin screw extruder. For instance, the die pressure exhibited a change as a function of changes in raw materials and feed composition of PC and PBT. In the presence of deviations from nominal conditions, the die pressure parameters are updated. These die pressure model parameters were identified and updated using the recursive parameter estimation method. The recursive identification of the die pressure parameters was able to capture very well the effects of changes in raw material and/or composition on the die pressure. In addition, the developed MVR model showed a good ability in monitoring product MVR on-line and inferentially from output process variables such as die pressure which enables quick quality control to maintain products within specification limits and to minimize waste production.
22

Monomer recovery from nylon carpets via reactive extrusion

Bryson, Latoya G. 28 March 2008 (has links)
The catalytic depolymerization/pyrolysis of nylon 6 and 66 were investigated with the prospect of helping to curb the amount of carpet landfilled. Thermogravimetric analysis was used to determine which catalysts (and their nylon/catalyst ratio) were most suited for the depolymerization. By adding bases, the onset of degradation for some bases was 100 aC lower than that of the pure nylons. Potassium hydroxide and sodium hydroxide were found to be the most effective catalysts at a catalyst ratio of 100:1 of nylon 6 and nylon 66 to catalyst, respectively. After determining the most efficient catalyst, kinetic models/parameters from the TGA data were determined. These parameters were used in a reactive extrusion model for depolymerizing nylon 6 in carpet. Data from the model was then used to do cost analysis for the process. It was found that to get a Present Value Ratio greater than 1, the flow rate has to be greater than or equal to 500 lb/hr. At even higher flow rates up to the model¡¦s limit (1500 lb/hr), the Net Present Value shows that this process is economically viable. Extrusion of a 100:1 ratio of pure N6 and KOH was done in a 30 mm counter-rotating non-intermeshing twin screw extruder. The material collected from the vents of the extruder was tested with a gas chromatograph- mass spectrum (GC-MS) in tandem. There was only one significant peak from the GC and the primary molecular weight on the MS was 113, the molecular weight of caprolactam. This shows that the process could be profitable and require little purification if done industrially.
23

Développement d'un concept d'agent compatibilisant-traceur réactif visant à étudier l'évolution de la réaction interfaciale et de la morphologie de mélanges de polymères réactifs / Development of a concept of reactive compatibilizer-tracer for studying the evolution of the interfacial reaction and morphology of reactive polymer blends

Ji, Wei-Yun 25 October 2016 (has links)
Le mélange de polymères est une méthode répandue pour élaborer des matériaux polymères. Cependant, la plupart des polymères sont thermodynamiquement immiscibles entre eux, engendrant une séparation de phase des mélanges et une détérioration de leurs propriétés. Afin de palier ces problèmes, la méthode dite compatibilisation réactive est souvent employée. Elle est basée sur la formation in-situ de copolymères à bloc ou greffés par l’intermédiaire de réactions interfaciales entre polymères réactifs. Cette thèse a pour objet de développer un concept dit agent compatibilisant-traceur réactif qui permettra d’utiliser de faibles quantités d’agents compatibilisants réactifs pour évaluer leurs efficacités de compatibilisation directement sur des extrudeuses bi-vis industrielles, d’une part ; et de caractériser la performance du mélange d’une extrudeuse bi-vis en fonction des conditions opératoires et/ou du profil de vis employé. Ses principales contributions se résument ci-après. L’anthracène de 9-méthylaminométhyle (MAMA), une molécule fluorescente, est incorporée dans un copolymère statistique de styrène (St) et d’isocyanate de 3-isopropenyle-?, ?’-diméthylebenzène (TMI), noté PS-TMI, pour former un agent compatibilisant-traceur réactif, noté PS-TMI-MAMA. Ce dernier sert à la fois comme agent compatibilisant réactif grâce aux groupements isocyanate et traceur grâce aux groupements fluorescents. Il est utilisé pour les mélanges à base de polystyrène (PS) et de polyamide 6 (PA6) afin d’évaluer son efficacité de compatibilisation. Les mélanges PS/PA6 sont élaborés dans un mélangeur discontinu et une extrudeuse bi-vis, respectivement. Dans le cas du mélangeur discontinu, la quantité du copolymère greffé formé in-situ, noté PS-g-PA6-MAMA, augmente alors que le diamètre des domaines de la phase dispersée (DDD) diminue considérablement au début du mélange. Lorsque le mélange se poursuit, le nombre de greffons en PA6 du PS-g-PA6-MAMA augmente, engendrant une composition très asymétrique du PS-g-PA6-MAMA qui est thermodynamiquement instable aux interfaces. De ce fait, il peut être arraché des interfaces vers la phase PA6 et peut y former des micelles. Lorsqu’il est arraché des interfaces, il perdra son efficacité de compatibilisation et le DDD augmentera. L’action du mélange a un double effet sur le procédé de compatibilisation réactive. Il promeut la réaction interfaciale entre le PS-TMI-MAMA et le PA6, d’une part ; et aggrave l’arrachage du PS-g-PA6-MAMA de l’interface, d’autre part. L’utilisation de faibles quantités de l’agent compatibilisant-traceur réactif permet de mesurer les évolutions de la teneur en agent compatibilisant-traceur réactif, du DDD et de la teneur en agent compatibilisant-traceur réactif ayant réagi en fonction du temps de séjour dans une extrudeuse bi-vis. Pour une masse molaire donnée, l’efficacité de compatibilisation d’un agent compatibilisant-traceur réactif augmente avec l’augmentation de la teneur en TMI dans une certaine limite. Pour une teneur en TMI donnée, la réaction interfaciale est plus rapide avec la diminution de la masse molaire dans une certaine limite et le DDD devient plus petit en un temps plus court. L’influence du taux de remplissage de la vis est plus significative que celle du temps de séjour. Lorsque le taux de remplissage de la vis augmente, le taux de la réaction interfaciale augmente et le DDD diminue. Lorsque l’angle d’un élément de mélange augmente, les efficacités du mélange distributif et du mélange dispersif augmentent, ce qui se traduit par une augmentation de la quantité du PS-g-PA6-MAMA formée et une diminution du DDD par rapport à la même quantité de PS-g-PA6-MAMA produite. Lorsque la largeur d’un élément de mélange augmente, l’efficacité du mélange distributive augmente alors que celle du mélange dispersif demeure inchangée. La substitution d’éléments de mélange par des éléments inverses améliore l’efficacité du mélange distributif et celle du mélange dispersif / Polymer blending is a common method to prepare high-performance polymer materials. However, most polymer pairs are thermodynamically immiscible, leading to phase separation and deterioration in material properties. To overcome such problems, the most common method is reactive compatibilization which is based on the in-situ formation of a graft or block copolymer by interfacial reaction between reactive polymers. This thesis aims at developing a concept of reactive compatibilizer-tracer which will allow using small amounts of reactive compatibilizers to evaluate their compatibilizing efficiency in industrial scale twin screw extruders, on the one hand; and to characterize the mixing performance of a twin screw extruder as a function of process conditions and/or screw profile. Its main contributions are summarized below. 9-(methylaminomethyl) anthracene (MAMA), a fluorescent molecule, is incorporated into a random copolymer of styrene (St) and 3-isopropenyl-?, ?’-dimethylbenzene isocyanate (TMI), denoted as PS-TMI, to form a reactive compatibilizer-tracer, denoted as PS- TMI-MAMA. The latter serves both as a reactive compatibilizer due to its isocyanate moieties and a tracer due to its fluorescent moieites. It is used for polystyrene (PS)/polyamide 6 (PA6) blends to evaluate its compatibilizing efficiency. Compatibilized PS/PA6 blends are processed in a batch mixer and in a twin screw extruder, respectively. In the case of the batch mixer, the amount of the in-situ formed graft copolymer denoted as PS-g-PA6-MAMA increases and the dispersed phase domain diameter (DDD) decreases drastically in the initial period of mixing. As the mixing further proceeds, the number of PA6 grafts of the PS-g-PA6-MAMA increases, resulting in a highly asymmetrical composition of the PS-g-PA6-MAMA which causes thermodynamic instablility at the interface. As a result, it could be pulled out of the interface to the PA6 phase and form micelles. Once it is pulled out of the interface, it will lose its compatibilizing efficiency and the dispersed phase domain diameter increases sharply. Mixing has a dual effect on the reactive compatibilization process. On the one hand, it promotes the interfacial reaction between the PS-TMI-MAMA and PA6. On the other hand, it aggravates the pull out of the resulting PS-g-PA6-MAMA from the interface. The use of small amounts of the reactive compatibilizer-tracer together with transient experiments for RTD allows assessing the evolutions of the reactive compatibilizer-tracer content (CC), the dispersed phase domain diameter (DDD), and the reacted reactive compatibilizer-tracer content (RCC) as a function of residence time in a twin-screw extruder. Based on the above results, the emulsification curve (DDD vs. CC), the RCC vs. CC curve and effective emulsification curve (DDD vs. RCC) are obtained. When the molar mass of the reactive compatibilizer-tracer is fixed, its compatibilizing efficiency increases with increasing TMI content within an appropriate range. When its TMI content is fixed, the interfacial reaction goes faster as the molar mass of the reactive compatibilizer-tracer decreases within a certain range, and the DDD becomes smaller in a shorter time. The effect of degree of fill fixed by the throughput Q/screw speed N ratio is more dominant than that of residence time. As the degree of fill increases, the interfacial reaction increases and the DDD decreases. As the angle of adjacent the kneading block increases, its distributive and dispersive mixing efficiencies increase, resulting in an increase in interfacial area generation and a decrease in DDD on the basis of the same amount of PS-g-PA6-MAMA. On the other hand, as the width of the kneading block increases, the distributive mixing efficiency increases and the dispersive mixing efficiency remains unchanged. Substitution of kneading blocks by reverse ones increase both the distributive and dispersive mixing efficiencies
24

Study on bioaccumulation and integrated biorefinery of vegetable oil and essential oil of Coriander (Coriandrum sativum L.) / Etude de la bioaccumulation et du bioraffinage des huiles végétale et essentielle de coriandre (Cordiandrum Sativum L.)

Nguyen, Quang Hung 24 September 2015 (has links)
Les apiaceae peuvent être définies en tant qu' Aroma-Tincto-Oleo-Crop (ATOC), plantes qui contiennent à la fois une huile végétale et une huile essentielle. Appliquer le concept d'agroraffinage aux ATOC revient à proposer un procédé séquentiel alliant une co-extraction huile végétale et huile essentielle à une valorisation des résidus en tant que source de molécules biosourcées et de susbtrat pour la formulation d'agromatériaux . Les objectifs de cette thèse seront donc d'étudier la faisabilité biologique et technologique d'application du concept d'ATOC-raffinage à la coriandre (Coriandrum sativum L.). Le chapitre I présente l'état de l'art bibliographique sur l'extraction et l'analyse des huiles végétales et huiles essentielles de coriandre tandis que dans le chapitre II sont décrits les matériels et méthodes mis en oeuvre au cours de la thèse tant au niveau échantillonnage, extraction, analyse que traitement des données. Le chapitre III est centré sur l'étude des différents paramètres biologiques pouvant influencer la bioaccumulation des huiles végétales et huiles essentielles dans la coriandre (différentes variétés, différents organes de la plante, différents stades de développement biologique) et leur impact sur l'activité anti-oxydante des extraits obtenus à partir des résidus d'extraction. Dans le chapitre IV, la technologie d'extrusion (mono-vis et bi-vis) a été appliquée aux graines de coriandre dans le but d’évaluer la faisabilité du pressage mécanique du fruit de la coriandre pour l’extraction d'une huile végétale aromatisée. L’influence des conditions expérimentales sur le rendement d'extraction en huile végétale (diamètre de buse et distance buse-vis (extrudeur mono-vis) ou configuration de vis, coefficient de remplissage et température de pressage (extrudeur bi-vis)) a été étudiée tandis que la faisabilité de la valorisation du résidu solide d'extraction en agromatériaux (thermo-pressage) a été montrée. / Apiaceae could be defined as Aroma Tincto Oleo Crops (ATOC), e.g. plants containing both vegetable oil and essential oil. Applying agroreffinery concept to ATOC led to propose a sequential fractionation process coupling co-extraction of vegetal oil and essential oil to a valorization of by-product residues as biosourced active molecules and substrates for designing agromaterials. The aim of this thesis is to determine the biological and technological feasability of application of the ATOC-refinery concept to coriander (Coriandrum sativum L.) Chapter I reports a bibliographic state of the art study on extraction and characterisation of coriander vegetal oil and essential oil while chapter II describes materials and methods setting up during the thesis for sampling, extraction, analysis and data processing. Chapter III focus on the study of major various biological parameters influencing bioaccumulation of vegetal oil and essential oil in coriander (different plant varieties, different plant organs, different biological stages) and their impact on anti-oxidant activity of extracts obtained from extraction residues. In chapter IV, coriander fruits are processed by extrusion technology (mono screw and twin-screw extruder) in order to evaluate the feasability of mechanical pressing for extracting a flavored vegetal oil. Influence of operating parameters on vegetal oil extraction yields (nozzle diameter and nozzle/screw distance (single-screw extruder) or screw configuration, device’s filling coefficient and pressing temperature (twin-screw extruder)) is studied while the feasability of valorization of extraction cake as agromaterial (thermopressing) was stated.
25

Submicron Polymer Emulsion Inside Twin Screw Extruder

Arefi, Ahmad January 2023 (has links)
Solvent-free extrusion emulsification (SFEE) is a recently developed process for producing submicron particles with high viscosity polymers inside a twin-screw extruder without the use of hazardous solvents. Its dependency on a catastrophic phase inversion makes the process knowingly sensitive to a variety of formulation and operational variables, causing a narrow window of production. The purpose of this thesis was to investigate and improve process stability as well as widening operational window. Transient effects of the start-up procedure was investigated by considering the process stability and particle size distribution. The transient sensitivity corresponded to the residency of material in the dispersion zone. When a sub-optimal water/surfactant fraction was allowed to produce an undesired polymer-water (thick lamella) morphology, this morphology continued to persist until the critical first half of the dispersion zone was purged of existing mass. Lot to lot variability of polyester resin was used to investigate the sensitivities of the SFEE process more deeply to better understand the mechanism involved. In this case, acid number was shown to have a significant effect on the initial amount of water needed in the dispersion zone for phase inversion, resulting in an emulsification boundary dependent on the resin acid number. In fact, a significant correlation was found between the acidic end groups of the resin and the maximum amount of water content that could be used in the dispersion zone. The effect of feed rate, screw speed, dispersion length, and surfactant concentration were studied for their individual influence on widening the emulsification boundary. The most significant improvement was observed by applying a longer dispersion length or lower feed rate because both significantly increase the residence time. The effect of residence time on the emulsification boundary was attributed to the total strain imposed on the polymer/water mixture which was related to interfacial growth in the dispersion zone. / Dissertation / Doctor of Philosophy (PhD)
26

Examining the Effectiveness of Different Mixing Elements in the Twin Screw Compounding of Liquid Crystal Polymer and Polypropylene

Agrawal, Akash 02 February 2018 (has links)
No description available.
27

The effect of screw geometry on melt temperature profile in single screw extrusion.

Kelly, Adrian L., Brown, Elaine, Coates, Philip D. January 2006 (has links)
No / Experimental observations of melt temperature profiles and melting performance of extruder screws are reported. A novel temperature sensor consisting of a grid of thermocouple junctions was used to take multiple temperature readings in real time across melt flow in a single screw extruder. Melt pressure in the die and power consumption were also monitored. Three extruder screws at a range of screw speeds were examined for a commercial grade of low density polyethylene. Results showed melt temperature fields at low throughputs to be relatively independent of screw geometry with a flat-shaped temperature profile dominated by conduction. At high throughputs, melting performance and measured temperature fields were highly dependent upon screw geometry. A barrier-flighted screw with Maddock mixer achieved significantly better melting than single flighted screws. Low temperature "shoulder" regions were observed in the temperature profiles of single-flighted screws at high throughput, due to late melting of the solid bed. Stability of the melt flow was also dependent upon screw geometry and the barrier-flighted screw achieving flow with lower variation in melt pressure and temperature. Dimensionless numbers were used to analyze the relative importance of conduction, convection, and viscous shear to the state of the melt at a range of extrusion conditions.
28

Modeling and optimization of tubular polymerization reactors

Banu, Ionut 17 July 2009 (has links) (PDF)
The aim of this thesis is the investigation of modeling and optimization particularities of tubular polymerization reactors. The original work is divided in two sections, the first treating a modeling and optimization study of tubular reactors for methyl methacrylate polymerization in solution, and the second, an experimental and theoretical study of L-lactide reactive extrusion. In the first section, reactor simulations in similar operating conditions were performed in order to select a representative kinetic model among the published kinetic models for MMA solution polymerization. Two widely used numerical algorithms, one based on Pontryagin's Minimum Principle and the other a Genetic Algorithm, were compared for an average-complexity optimization problem. The results showed a superior robustness of the Genetic Algorithm for this category of problems. The second part of the thesis deals with the modeling and optimization of L-lactide reactive extrusion. A kinetic model is proposed and its parameters estimated using nonlinear estimation numerical procedures based on experimentally measured data. Reactive extrusion experiments were performed in representative operating conditions. The Llactide/ polylactide flow in the extruder was characterized by simulation using the commercial software LUDOVIC®. The simulated residence time distributions characteristics are used to model the reactive extrusion process of two approaches, an axial dispersion model and a compartment model, based on compartments whose characteristics are deduced from the simulations using LUDOVIC®. The modeling results are in good agreement with the measured data in the same operating conditions.
29

Influência do processamento no comportamento mecânico de nanocompósitos de poliamida 6 com nanosílica / Influence of processing on the mechanical behaviour of polyamide 6/nanosilica nanocomposites

Queiroz, Breno Dutra de 06 October 2015 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-05-25T19:49:56Z No. of bitstreams: 1 DissBDQ.pdf: 27222907 bytes, checksum: eb17b232bd0096bfa1e0fb1dd7f4bf74 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-05-30T13:44:57Z (GMT) No. of bitstreams: 1 DissBDQ.pdf: 27222907 bytes, checksum: eb17b232bd0096bfa1e0fb1dd7f4bf74 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-05-30T13:45:05Z (GMT) No. of bitstreams: 1 DissBDQ.pdf: 27222907 bytes, checksum: eb17b232bd0096bfa1e0fb1dd7f4bf74 (MD5) / Made available in DSpace on 2017-05-30T13:50:33Z (GMT). No. of bitstreams: 1 DissBDQ.pdf: 27222907 bytes, checksum: eb17b232bd0096bfa1e0fb1dd7f4bf74 (MD5) Previous issue date: 2015-10-06 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / In this study nanocomposites of polyamide-6 (PA-6) reinforced with silica nanoparticles (SiO2) were prepared in order to promote improved mechanical properties for engineering applications. The nanoparticles’ surfaces were chemically modified with the silane agent 3-aminopropyltrimethoxysilane (3- APTMS) to improve the chemical and physical interactions between them and the PA-6 matrix. Nuclear magnetic resonance analysis (NMR) and Fourier transform infrared absorption spectroscopy (FT-IR) showed that 3-APTMS grafting on nanoparticles surface was accomplished. The nanocomposites mixing process was studied in two forms: by torque rheometry, using a torque rheometer internal mixer; and in a co-rotating and intermeshing twin-screw extruder. A preliminary study of the influence of processing variables at the torque rheometer on the degradation of polyamide-6 matrix was performed. The results showed that the greater the filling volume of the mixture in the chamber and the rotational speed of the rheometer’s rotors, the lower the degradation of the polyamide-6. Based on this preliminary study, compositions with 1, 2, and 4 % weight of SiO2 nanoparticles, both unmodified and chemically modified with 3-APTMS were prepared in the torque rheometer. The nanocomposites were compression molded and it was observed that nanocomposites reinforced with 1 wt.% SiO2, both unmodified and surface-modified, presented the best tensile properties. For the nanocomposite samples processed in the twin-screw extruder, the influence of relevant variables – nanoparticle content, chemical surface modification, physical form of the fed PA-6 (granule and powder), rotational speed of screws and extruder feed rate – on mechanical, thermal, and dynamic-mechanical properties were studied. The samples were afterwards injection molded and it was observed that the samples produced using 1 wt.% surface-modified and 100% finely ground PA-6 showed the higher tensile modulus and yield strength values. / Neste estudo foram preparados nanocompósitos de poliamida 6 (PA6) reforçados com nanopartículas de sílica (SiO2), com o objetivo de promover melhoria de propriedades mecânicas para aplicações de engenharia. A superfície das nanopartículas foi modificada quimicamente com o agente silano 3-aminopropiltrimetoxisilano (3-APTMS) para melhorar as interações químicas e físicas entre elas e a matriz de PA6. Análises de ressonância magnética nuclear (RMN) e espectroscopia de absorção no infravermelho por transformada de Fourier (FT-IR) mostraram que houve sucesso na funcionalização das nanopartículas com o agente silano. O processo de mistura dos nanocompósitos foi estudado de duas formas: por meio de reometria de torque em um misturador interno; e em extrusora com rosca dupla co-rotacional e interpenetrante. Um estudo preliminar da influência das variáveis de processamento no reômetro de torque sobre a degradação da poliamida 6, mostrou que quanto maior o volume de preenchimento da câmara de mistura e a velocidade de rotação dos rotores do reômetro, menor foi a degradação da poliamida 6. Com base neste estudo preliminar, foram preparadas no reômetro de torque composições com 1, 2 e 4% em massa de nanopartículas de SiO2 não modificadas e modificadas quimicamente com 3- APTMS. Os nanocompósitos obtidos foram moldados por compressão, tendo sido observado que os nanocompósitos reforçados com 1 %m. de SiO2 não modificada apresentaram as melhores propriedades mecânicas de resistência à tração e deformação na ruptura em ensaio de tração, enquanto os nanocompósitos com 1 %m. de nanosílica modificada apresentaram as melhores propriedades mecânicas de módulo elástico também no ensaio de tração. Para as amostras de nanocompósitos processadas na extrusora de rosca dupla, foram estudadas as influências do teor de nanopartículas, da modificação química superficial, da forma física da PA6 alimentada (grânulo e pó), da velocidade de rotação das roscas e da taxa de alimentação da extrusora sobre as propriedades mecânicas, térmicas e dinâmico-mecânicas. Posteriormente, os corpos de prova foram moldados por injeção e observou-se que a amostra cuja composição polimérica foi de 100% de PA6 fina e reforçada com 1 %m. de nanosílica modificada superficialmente pelo agente silano 3- APTMS apresentou os maiores valores de módulo de elasticidade e de tensão no escoamento no ensaio mecânico sob tração.
30

Viabilidade técnica da produção de compósitos fibra-polímero à base de resíduos / Technical viability of production of composites fiber-polymer based on waste

Pupo, Humberto Fabrizzi de Figueiredo [UNESP] 03 March 2017 (has links)
Submitted by HUMBERTO FABRIZZI DE FIGUEIREDO PUPO null (betopupo@gmail.com) on 2017-08-31T20:25:11Z No. of bitstreams: 1 Tese_Humberto_Pupo.pdf: 4727522 bytes, checksum: bc9418ef91885cfe96ab6372394b80b6 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-09-01T14:51:09Z (GMT) No. of bitstreams: 1 pupo_hff_dr_bot.pdf: 4727522 bytes, checksum: bc9418ef91885cfe96ab6372394b80b6 (MD5) / Made available in DSpace on 2017-09-01T14:51:09Z (GMT). No. of bitstreams: 1 pupo_hff_dr_bot.pdf: 4727522 bytes, checksum: bc9418ef91885cfe96ab6372394b80b6 (MD5) Previous issue date: 2017-03-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A utilização dos resíduos sólidos como matéria-prima pode diminuir consideravelmente a extração de recursos naturais, diminuindo assim o impacto sobre o meio ambiente. Dentre os resíduos, os plásticos estão entre os que mais apresentam problemas, pois, mesmo quando descartados corretamente nos aterros sanitários, causam danos ao formarem uma camada impermeável que dificulta a compactação do lixo, afetando as trocas de líquidos e gases gerados e reduzindo a eficiência do processo de biodegradação da matéria orgânica. Diante dos problemas, este trabalho teve por objetivos avaliar a viabilidade técnica de utilização de dois tipos de processos: a extrusora dupla rosca e o misturador termocinético (Drais), na produção de compósitos de BOPP (Polipropileno Biorientado metalizado), reforçados com resíduos de cascas, de eucalipto (CE) e de arroz (CA). Das misturas entre esses resíduos, foram confeccionados 10 tratamentos, de onde se extraíram os corpos de provas, moldados por injeção. Foram avaliadas as propriedades mecânicas (flexão – módulo de ruptura-MOR e módulo de elasticidade-MOE, resistência à tração, resistência ao impacto e dureza Shore D), térmicas (avaliação da condutividade térmica e isolamento térmico), termomecânica (temperatura de deflexão sob aquecimento-HDT) e morfológica, com microscópio estéreo e aumento de 50 vezes para analisar a estrutura interna do corpo de prova, depois de fraturado pelo ensaio de impacto. Para análise das propriedades mecânicas dos corpos de provas, foram utilizadas como referência as normas ASTM D638-14, ASTM D790-10, ASTM D256-10 e a ASTM D-2240-15, para os ensaios de tração, flexão, impacto e dureza Shore D, respectivamente. Para as análises térmicas foi utilizada a norma ASTM E1530-11. Para o HDT, foi utilizada a norma ASTM D648-16. Os resultados mostraram influência de todos os parâmetros analisados nas propriedades dos compósitos. O uso de reforço (CE e CA) nos dois tipos de processos melhorou as propriedades de flexão e de resistência à tração em relação à matriz sem reforço e piorou as propriedades de resistência ao impacto e de dureza Shore D. Com relação à matriz sem reforço, a extrusora mostrou influência no ensaio de resistência à tração. Para adição de casca de eucalipto, o misturador termocinético (Drais) mostrou influência no ensaio de MOE. Já para adição de casca de arroz, a drais mostrou influência nos ensaios de flexão – MOR e MOE e na resistência à tração. Houve melhor adesão entre fibra e matriz nos compósitos confeccionados por extrusão em relação aos confeccionados na drais. As CE apresentaram melhor adesão com a matriz, em relação às CA. Os vazios – bolhas de ar foram observados em todos os tratamentos, com exceção dos tratamentos com ausência de reforço (BOPP 100). Esses vazios foram observados em maior proporção nos compósitos com CE em relação aos compósitos com CA, e também nos compósitos processados na extrusora em relação à drais. Os melhores resultados foram obtidos utilizando o misturador termocinético (Drais) e para as maiores proporções de cascas usadas ou na ausência delas. Porém, pelo fato de o processo utilizado na Drais ser por batelada, a extrusora se torna mais eficiente, levando em consideração o rendimento da produção. Os melhores resultados foram com a utilização de casca de eucalipto. Para os ensaios de flexão MOR, MOE e de resistência à tração, apresentaram interação entre os processos e os resíduos testados. Confirmou-se a viabilidade técnica de utilização de resíduos sólidos industriais (BOPP e CE) e agroindustrial (CA) na produção de compósitos fibra-polímero, sendo que o controle dos processos utilizados é fundamental para a qualidade do produto final. / The use of solid waste as raw material can considerably reduce the extraction of natural resources, thus reducing the impact on the environment. Among residues, plastics are among the most problematic ones because, even when they are properly disposed in landfills, they cause damage by forming a barrier layer which makes it difficult to compact the garbage, affecting the exchange of generated liquids and gases, reducing the efficiency of the biodegradation process of the organic matter. Before such problems, the objective of this work was to evaluate the technical feasibility of two types of processes, the double screw extruder and the thermokinetic mixer - dryser, in the production of BOPP (Bioriented metallized Polypropylene) composites, strengthened by residues of barks eucalyptus (CE) and rice (CA). From the mixtures among these residues 10 treatments have been prepared, from where the test bodies were extracted, molded by injection. Mechanical properties (flexurerupture modulus-MOR and elasticity modulus-MOE, tensile strength and impact strength towards Shore D hardness), as well as thermal (thermal conductivity and thermal insulation evaluation), thermo-mechanical (heat deflexion temperature-HDT) and morphological characteristics have been evaluated by using a stereo microscope and 50x magnification to analyze the internal structure of the test body, after being fractured by the impact test. For analyzing the mechanical properties of the proof bodies the standards ASTM D638-14, ASTM D790-10, ASTM D256-10 and ASTM D-2240-15 have been used as a reference for tensile, bending, impact and Shore D hardness tests, respectively. For the thermal analyzes, the ASTM E1530-11. For the HDT the ASTM D648-16 standard was used. The results showed the influence from all the analyzed parameters on the composites properties. The use of reinforcement (CE and CA) in both types of processes have improved the flexure and tensile strength properties in relation to the non-reinforced matrix and has worsened the impact strength properties as well as the Shore D hardness. Concerning the non-reinforced matrix, the extruder showed influence on the tensile strength test. For the addition of CE, the thermokinetic mixer - dryser has showed influence in the flexure modulus test. As for rice husk addition, dryser has showed influence in flexure (stress tests on maximum strengthMOR and elasticity modulus-MOE and tensile strength). There was a better adhesion between fiber and matrix, in the composites made by extrusion, compared to those made in the dryser. The CE has shown better adhesion with the matrix, compared to CA. The voids - air bubbles have been observed in all treatments with no reinforcement (BOPP 100). These voids have been more often observed in composites with CE, compared to the composites with CA and also in composites processed in the extruder, in relation to the dryser. The best results were obtained by using the thermokinetic mixer - dryser and for the largest proportions of the barks or in their absence. However, because the process used in Drais is by batch, the extruder becomes more efficient, taking into account the yield of the production. The best results have been from the use of CE. For flexure - MOR and MOE and tensile strength, there was an interaction among the processes and the tested residues. The technical feasibility of the use of industrial solid wastes (BOPP and CE) and agroindustrial (CA) in the production of fiberpolymer composites has been confirmed, and the control of the processes used is fundamental for the quality of the final product.

Page generated in 0.0604 seconds