• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 29
  • 18
  • 14
  • 12
  • 7
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 227
  • 227
  • 227
  • 96
  • 95
  • 57
  • 34
  • 31
  • 27
  • 26
  • 26
  • 25
  • 21
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

LIGHT SCATTERING STUDIES OF DEFECTS IN NEMATIC/TWIST-BEND LIQUID CRYSTALS AND LAYER FLUCTUATIONS IN FREE-STANDING SMECTIC MEMBRANES

Pardaev, Shokir A. 13 June 2017 (has links)
No description available.
192

NONLINEAR OPTICAL METHODS AS APPLIED TO LARGE AND SMALL PHARMACEUTICAL MODALITIES

Nita Takanti (9234683) 28 July 2022 (has links)
<p>The overall time and cost for a drug to go from the drug discovery to the consumer market is  significant,  showing  a  need  for  improved  drug  testing  and  discovery  methods.    Work  on nonlinear  optical  methods  for  both  small  active  pharmaceutical  ingredient  drug  formulation analysis and large biological therapeutic stability testing has been shown to improve testing times for formulation, stability and dissolution testing.  Herein, we review the existing and conventional approaches to address stability testing that the pharmaceutical industry uses, and how leveraging nonlinear optical (NLO) methods can improve the current challenges.  The specificity, sensitivity and low limit of detection of second harmonic generation is discussed in application to crystal formation in small-molecule active pharmaceutical ingredients.  The nonlinear optical methods second harmonic generation and two-photon excited ultraviolet fluorescence are directly compared to  ‘gold  standard’  powder  X-ray  diffraction,  which  is  commonly  used  for  measuring  crystal formation and growth of active pharmaceutical ingredients in amorphous solid dispersions.  In addition, the existing FRAP method (with multiple limitations) is improved upon with the ability to  perform  recovered  diffusion  coefficient  data  analysis  in  the  spatial  Fourier  domain.    The collective results discussed in this thesis are just a small subset of the total breadth of investigations marrying the new challenges in the pharmaceutical industry with the new NLO tools tailored to meet them</p>
193

Ionic Self-Assembled Multilayers in a Long Period Grating Sensor for Bacteria and as a Source of Second-Harmonic Generation Plasmonically Enhanced by Silver Nanoprisms

Mccutcheon, Kelly R. 12 July 2019 (has links)
Ionic self-assembled multilayers (ISAMs) can be formed by alternately dipping a substrate in anionic and cationic polyelectrolytes. Each immersion deposits a monolayer via electrostatic attraction, allowing for nanometer-scale control over film thickness. Additionally, ISAM films can be applied to arbitrary substrate geometries and can easily incorporate a variety of polymers and nanoscale organic or inorganic inclusions. The ISAM technique was used to tune and functionalize a rapid, sensitive fiber optic biosensor for textit{Brucella}, a family of bacteria that are detrimental to livestock and can also infect humans. The sensor was based on a turn-around point long period fiber grating (TAP-LPG). Unlike conventional LPGs, in which the attenuation peaks shift wavelength in response to environmental changes, TAP-LPGs have a highly sensitive single wavelength peak with variable attenuation. ISAMs were applied to a TAP-LPG to tune it to maximum sensitivity and to facilitate cross-linking of receptor molecules. Biotin and streptavidin were used to attach biotinylated hybridization probes specific to distinct species of textit{Brucella}. The sensor was then exposed to lysed cell cultures and tissue samples in order to evaluate its performance. The best results were obtained when using samples from textit{Brucella} infected mice, which produced a transmission change of 6.0 ± 1.4% for positive controls and 0.5 ± 2.0% for negative controls. While the sensor was able to distinguish between positive and negative samples, the relatively short dynamic range of the available fiber limited its performance. Attempts to fabricate new TAP-LPGs using a CO2 laser were unsuccessful due to poor laser stability. A second application of the ISAM technique was as a source of second-harmonic generation (SHG). SHG is a nonlinear optical process in which light is instantaneously converted to half its wavelength in the presence of intense electric fields. Localized surface plasmons (LSPs) in metal nanoparticles produce strong electric field enhancements, especially at sharp tips and edges, that can be used to increase SHG. Colloidally grown silver nanoprisms were deposited onto nonlinear ISAM films and conversion of 1064 nm Nd:YAG radiation to its 532 nm second-harmonic was observed. Little enhancement was observed when using nanoprisms with LSP resonance near 1064 nm due to their large size and low concentration. When using shorter wavelength nanoprisms, enhancements of up to 35 times were observed when they were applied by immersion, and up to 1380 times when concentrated nanoprisms were applied via dropcasting at high enough densities to broaden their extinction peak towards the excitation wavelength. A maximum enhancement of 2368 times was obtained when concentrated silver nanoprisms with LSP resonance around 900 nm were spincast with an additional layer of PCBS. / Doctor of Philosophy / Polyelectrolytes are long molecules composed of chains of charged monomers. When a substrate with a net surface charge is dipped into an oppositely charged polyelectrolyte solution, a single layer of molecules will be electrostatically deposited onto the substrate. Because the surface charge now appears to match the charge of the solution, no further deposition occurs. However, the process can be repeated by rinsing the substrate and immersing in a solution with the opposite charge. This technique forms ionic self-assembled multilayers (ISAMs), which can be assembled with nanometer-level control over thickness. The flexibility of polymer chemistry allows ISAMs to be formed from polyelectrolytes with a wide variety of properties. Additionally, the technique can easily incorporate other nanoscale materials, such as nanoparticles, clay platelets, and biological molecules, and has been investigated for applications ranging from dye-sensitized organic solar cells to drug delivery and medical implant coatings. This dissertation presents two applications of ISAM films. In one, ISAM films were used to tune and functionalize an optical biosensor for Brucella. Brucellosis primarily infects livestock, in which it causes significant reproductive problems leading to economic losses, but can also cause flu-like symptoms and more serious complications in humans. A rapid, sensitive test for Brucella is required to monitor herds and adjacent wild carriers, such as elk and bison. Optical biosensors, which operate by detecting changes due to the interaction between light and the stimulus, could satisfy this need. Long period fiber gratings (LPGs) are periodic modulations induced in the core of an optical fiber that cause transmitted light to be scattered at a resonant wavelength, resulting in attenuation. Conventional LPGs respond to changes in strain, temperature, or external refractive index by shifting their resonant wavelength. When special conditions are met, an LPG may exhibit a turn-around point (TAP), where dual peaks coalesce into a single peak with a constant wavelength but variable attenuation depth. TAP-LPGs are more sensitive than ordinary LPGs, and could be developed into inexpensive sensors with single-wavelength light sources and detectors. In this work, ISAMs were deposited onto an LPG to tune it near its TAP. Segments of single-stranded DNA, called hybridization probes, that were specific to individual species of Brucella were attached to the ISAM film before the sensor was exposed to lysed bacterial cultures. It was found that the sensor could distinguish between Brucella and other types of bacteria, but was less successful at distinguishing between Brucella species. The project was limited by the available TAP-LPGs, which had less dynamic range than those used in prior work by this group. Attempts were made to establish a new supply of TAP-LPGs by fabrication with a CO2 laser, but these efforts were unsuccessful due to poor laser stability. The second project discussed in this dissertation investigated ISAM films as a source of second-harmonic generation (SHG), a nonlinear optical process in which light is converted to half its fundamental wavelength in the presence of intense electric fields. Nonlinear ISAMs were constructed by choosing a polyelectrolyte with a hyperpolarizable side group in which SHG can occur. The SHG efficiency was increased by factors of several hundred to several thousand by the addition of silver nanoprisms. Metal nanoparticles can produce strong electric field enhancements, especially at their tips and edges, when incident light causes resonant collective oscillations in their electrons called localized surface plasmons (LSPs). It was found that while silver nanoprisms whose LSP resonant wavelength matched the fundamental wavelength were too dilute to produce noticeable enhancement, better results could be obtained by depositing shorter wavelength nanoprisms at sufficient density to broaden their extinction peak via interparticle interactions. The best enhancement observed was for a sample where concentrated silver nanoprisms with LSP resonance around 900 nm were dropcast onto an ISAM film and coated with an additional polymer layer, resulting in 2368 times more SHG than the plain ISAM film.
194

The Generation of Terahertz Light and its Applications in the Study of Vibrational Motion

Alejandro, Aldair 16 April 2024 (has links) (PDF)
Terahertz (THz) spectroscopy is a powerful tool that uses ultrashort pulses of light to study the properties of materials on picosecond time scales. THz light can be generated through a variety of methods. In our lab, we generate THz through the process of optical rectification in nonlinear optical (NLO) organic crystals. THz light can be used to study several phenomena in materials, such as spin precession, electron acceleration, vibrational and rotational motion. The work presented in this dissertation is divided into two parts: (1) the generation of THz light and (2) applications of THz light. The first portion of this work shows how THz light is generated, with an emphasis on the generation through optical rectification. We also show how to improve the generation of THz light by creating heterogenous multi-layer structures with yellow organic THz generation crystals. Additionally, we show that crystals used for THz generation can also be used to generate second-harmonic light. In the second half of this work, we show that THz light can be used to study the vibrational motion of molecular systems. We model how resonant vibrational modes in a fluorobenzene molecule can be excited with a multi-THz pump to transfer energy anharmonically to non-resonant modes. We also show that we can use two-dimensional (2D) THz spectroscopy to excite infrared-active vibrational modes and probe Raman-active modes in a CdWO4 crystal to obtain a nonlinear response. We show that the nonlinear response is due to anharmonic coupling between vibrational modes and we can quantify the relative strengths of these anharmonic couplings, which previously was only accessible through first-principles calculations.
195

Krystalové inženýrství nových materialů pro nelineární optiku / Krystalové inženýrství nových materialů pro nelineární optiku

Fridrichová, Michaela January 2012 (has links)
This thesis focuses on preparation of novel compounds suitable for nonlinear optics (NLO). In particular, the target property is the second harmonic generation (SHG) and the group of interest are salts of the cations with delocalized electrons which can serve as carriers of the NLO properties. In particular, four derivatives of the highly interesting molecule of guanidine were selected and their NLO potential was proven by quantum chemical computations. In total, twenty new structures were described and those with the noncentrosymmetric structure assembly were examined for the SHG efficiency. Four of the prepared compounds exhibited a noticeable SHG efficiency, two of them even comparable to urea. The most promising compound, the guanylurea hydrogen phosphite (GUHP), was examined in more detail while many interesting NLO properties were revealed. The results of this work are presented also in 10 attached publications which are an integral part of the thesis. Keywords: nonlinear optics, second harmonic generation, guanidine derivatives, guanylurea, N-phenylbiguanide, N,N-dimethylbiguanide, N,N,N˝-triphenylguanidine
196

Molecular Quadratic Response Properties with Inclusion of Relativity

Henriksson, Johan January 2008 (has links)
This thesis concerns quadratic response properties and their application to properties in Jablonski diagrams such as resonant two-photon absorption and excited state absorption. Our main interest lies in optical power limiting applications, and in this context, molecules containing heavy metal atoms prove superior. Therefore, we are interested in how relativity affects these properties, and in order to assess this, a four-component relativistic framework is adopted. To properly address the molecular properties of interest, both relativistic effects and electron correlation need to be accounted for. These two properties are not additive, and, therefore, correlation needs to be incorporated into the four-component framework. We present the implementation of quadratic response properties at the four-component density functional level of theory. For second-harmonic generation, we have, with numerical examples, demonstrated that correlation and relativity are indeed not additive and that the inclusion of noncollinear magnetization is of little importance. We report that both electron correlation as well as relativity strongly affect results for second-harmonic generation. For example, relativity alone reduces the µβ-response signal by 62% and 75% for meta- and ortho-bromobenzene, respectively, and enhances the same response by 17% and 21% for meta- and ortho-iodobenzene, respectively. In the four-component framework, we present the implementations of single and double residues of the quadratic response function, which allows for the evaluation of resonant two-photon absorption cross sections and excited state properties. Using these tools, we discuss different levels of approximation to the relativistic Hamiltonian and we demonstrate that for two-photon absorption, a proper treatment of relativistic effects qualitatively alters the spectrum. For example, already for an element as light as neon, significant differences are seen between the relativistic and nonrelativistic spectra as triplet transitions acquire substantial absorption cross sections in the former case. Finally, quantum mechanics in conjunction with electrodynamics is applied to determine clamping levels in macroscopic samples. The microscopic properties of the optically active chromophores are determined by response theory, and then, electrodynamics is used to describe the interactions between the chromophores and incident laser pulses. Using this approach a series of molecules have been investigated and their performances have been compared and ranked in order to find novel materials for optical power limiting applications.
197

Measuring the electric field of picosecond to nanosecond pulses with high spectral resolution and high temporal resolution

Cohen, Jacob Arthur 08 October 2010 (has links)
We demonstrate four experimentally simple methods for measuring very complex ultrashort light pulses. Although each method is comprised of only a few optical elements, they permit the measurement of extremely complex pulses with time-bandwidth products greater than 65,000. First, we demonstrate an extremely simple frequency-resolved-optical gating (GRENOUILLE) device for measuring the intensity and phase of pulses up to ~20ps in length. In order to achieve the required high spectral resolution and large temporal range, it uses a few-cm-thick second harmonic-generation crystal in the shape of a pentagon. This has the additional advantage of reducing the device's total number of components to three. Secondly, we introduce a variation of spectral interferometry (SI) using a virtually imaged phased array and grating spectrometer for measuring long complex ultrashort pulses up to 80 ps in length. Next, we introduce a SI technique for measuring the complete intensity and phase of relatively long and very complex ultrashort pulses. It involves making multiple measurements using SI (in its SEA TADPOLE variation) at numerous delays, measuring many temporal pulselets within the pulse, and concatenating the resulting pulselets. Its spectral resolution is the inverse delay range--many times higher than that of the spectrometer used. The waveforms were measured with ~ fs temporal resolution over a temporal range of ~ns and had time-bandwidth products exceeding 65,000, which to our knowledge is the largest time-bandwidth product ever measured with ~fs temporal resolution. Finally, we demonstrate a single-shot measurement technique that temporally interleaves hundreds of measurements with ~fs temporal resolution. It is another variation of SI for measuring the complete intensity and phase of relatively long and complex ultrashort pulses in a single shot. It uses a grating to introduce a transverse time delay into a reference pulse which gates the unknown pulse by interfering it at the image plane of an imaging spectrometer. It provided ~125 fs temporal resolution and a temporal range of 70 ps using a low-resolution spectrometer.
198

Synthesis And Investigation Of Transition Metal Oxides Towards Realization Of Novel Materials Properties

Ramesha, K 07 1900 (has links)
Transition metal compounds, especially the oxides, containing dn (0 ≤ n ≤ 10) electronic configuration, constitute the backbone of solid state/materials chemistry aimed at realization of novel materials properties of technological importance. Some of the significant materials properties of current interest are spin-polarized metallic ferromagnetism, negative thermal expansion, second harmonic nonlinear optical (NLO) susceptibility, fast ionic and mixed electronic/ionic conductivity for application in solid state batteries, and last but not the least, high-temperature superconductivity. Typical examples for each one of these properties could be found among transition metal oxides. Thus, alkaline-earth metal (A) substituted rare-earth (Ln) manganites, Lnı.xAxMnΟ3, are currently important examples for spin-polarized magnetotransport, ZrV2O7 and ZrW2O8 for negative thermal expansion coefficient, KTiOPO4 and LiNbO3 for second harmonic NLO susceptibility, (Li, La) TiO3 and LiMn2O4 for fast-ionic and mixed electronic/ionic conductivity respectively, and the whole host of cuprates typified by YBa2Cu3O7 for high Tc superconductivity. Solid state chemists constantly endeavour to obtain structure-property relations of solids so as to be able to design better materials towards desired properties. Synthesis coupled with characterization of structure and measurement of relevant properties is a common strategy that chemists adopt for this task. The work described in this thesis is based on such a broad-based chemists' approach towards understanding and realization of novel materials properties among the family of metal oxides. A search for metallic ferro/ferrimagnetism among the transition metal perovskite oxides, metallicity and possibility of superconductivity among transition-metal substituted cuprates and second order NLO susceptibility among metal oxides containing d° cations such as Ti(IV), V(V) and Nb(V) - constitute the main focus of the present thesis. New synthetic strategies that combine the conventional ceramic approach with the chemistry-based 'soft1 methods have been employed wherever possible to prepare the materials. The structures and electronic properties of the new materials have been probed by state-of-the art techniques that include powder X-ray diffraction (XRD) together with Rietveld refinement, electron diffraction, thermogravimetry, measurement of magnetic susceptibility (including magnetoresistance), Mossbauer spectroscopy and SHG response (towards 1064 nm laser radiation), besides conventional analytical techniques for determination of chemical compositions. Some of the highlights of the present thesis are: (i) synthesis of new mixed valent [Mn(III)/Mn(IV)] perovskite-type manganites, ALaMn2O6-y (A = K, Rb) and ALaBMn3O9_y (A = Na, K; B = Ca, Sr) that exhibit ferromagnetism and magnetoresistance; (ii) investigation of a variety of ferrimagnetic double-perovskites that include ALaMnRuO6 (A = Ca, Sr, Ba) and ALaFeVO6 (A = Ca, Sr) and A2FeReO6 (A = Ca, Sr, Ba) providing new insights into the occurrence of metallic and nonmetallic ferrimagnetic behaviour among this family of oxides; (iii) synthesis of new K2NiF4-type oxides, La2-2xSr2XCui.xMxO4 (M = Ti, Mn, Fe, Ru) and investigation of Cu-O-M interaction in two dimension and (iv) identification of the structural rnotif(s) that gives rise to efficient second order NLO optical (SHG) response among d° oxides containing Ti(IV), V(V), Nb(V) etc., and synthesis of a new SHG material, Ba2-xVOSi2O7 having the fresnoite structure. The thesis consists of five chapters and an appendix, describing the results of the investigations carried out by the candidate. A brief introduction to transition metaloxides, perovskite oxides in particular, is presented in Chapter 1. Attention is focused on the structure and properties of these materials. Chapter 2 describes the synthesis and investigation of two series of anion-deficient perovskite oxides, ALaMn2O6-y (A = K, Rb, Cs) and ALaBMn3O9_y (A = Na, K; B = Ca, Sr). ALaMn2O6-y (A = K, Rb, Cs) series of oxides adopt 2 ap x 2 ap superstructure for K and Rb phases and √2 av x √2 ap x 2 ap superstructure (ap = perovskite subcell) for the Cs phase. Among ALaBMn3O9-y phases, the A = Na members adopt a new kind of perovskite superstructure, ap x 3 ap, while the A = K phases do not reveal an obvious superstructure of the perovskite. All these oxides are ferromagnetic (Tc ~ 260-325 K) and metallic exhibiting a giant magnetoresistance behaviour similar to alkaline earth metal substituted lanthanum manganites, Lai_xAxMnO3. However, unlike the latter, the resistivity peak temperature Tp for all the anion-deficient manganites is significantly lower than Tc. In Chapter 3, we have investigated structure and electronic properties of double-perovskite oxides, A2FeReO6 (A = Ca, Sr and Ba). The A = Sr, Ba phases are cubic (Fm3m) and metallic, while the A = Ca phase is monoclinic (P2yn) and nonmetallic. All the three oxides are ferrimagnetic with Tcs 315-385 K as reported earlier. A = Sr, Ba phases show a negative magnetoresistance (MR) (10-25 % at 5 T), while the Ca member does not show an MR effect. 57Fe Mossbauer spectroscopy shows that iron is present in the high-spin Fe3+ (S = 5/2) state in Ca compound, while it occurs in an intermediate state between high-spin Fe2+ and Fe3+ in the Ba compound. Monoclinic distortion and high covalency of Ca-O bonds appear to freeze the oxidation states at Fe+3/Re5+ in Ca2FeRe O6, while the symmetric structure and ionic Ba-O bonds render the FeReO6 array highly covalent and Ba2FeReO6 metallic. Mossbauer data for Sr2FeReO6 shows that the valence state of iron in this compound is intermediate between that in Ba and Ca compounds. It is likely that Sr2FeReO6 which lies at the boundary between metallic and insulating states is metastable, phase-seperating into a percolating mixture of different electronic states at the microscopic level. In an effort to understand the occurrence of metallicity and ferrimagnetism among double perovskites, we have synthesized several new members : ALaMnFeO6 (A = Ca, Sr, Ba), ALaMnRuO6 (A = Ca, Sr, Ba) and ALaVFeO6 (A = Ca, Sr) (Chapter 3). Electron diffraction reveals an ordering of Mn and Ru in ALaMnRuO6 showing a doubling of the primitive cubic perovskite cell, while ALaVFeO6 do not show an ordering. ALaMnRuOs are ferrimagnetic (Tcs ~ 200-250 K) semiconductors, but ALaVFeO6 oxides do not show a long range magnetic ordering . The present work together with the previous work on double perovskites shows that only a very few of them exhibit both metallicity and ferrimagnetism, although several of them are ferrimagnetic. For example, among the series Ba2MReO6 (M = Mn, Fe, Co, Ni), only the M = Fe oxide is both metallic and ferrimagnetic, while M = Mn and Ni oxides are ferrimagnetic semiconductors. Similarly, A2CrMoO6 (A = Ca, Sr), A2CrRe06 (A = Ca, Sr), and ALaMnRuO6 (A = Ca, Sr, Ba) are all ferrimagnetic but not metallic. While ferrimagnetism of double perovskites arise from an antiferromagnetic coupling of B and B' spins through the B-O-B' bridges, the occurrence of metallicity seems to require precise matching of the energies of d-states of B and B' cations and a high covalency in the BB'O6 array that allows a facile electron-transfer between B and B', Bn++B’m+↔B(n+1)++B’(m-1)+ without an energy cost, just as occurs in ReO3 and other metallic ABO3 perovskites. In an effort to understand the Cu-O-M (M = Ti, Mn, Fe, Ru) electronic interaction in two dimension, we have investigated K2N1F4 oxides of the general formula La2-2xSr2XCui.xMxO4 (M = Ti, Mn, Fe or Ru). These investigations are described in Chapter 4. For M = Ti, only the x = 0.5 member could be prepared, while for M = Mn and Fe, the composition range is 0 < x < 1.0, and for M = Ru, the composition range is 0 < x ≤ 0.5. There is no evidence for ordering of Cu(II) and M(IV) in the x = 0.5 members. While the members of the M = Ti, Mn and Ru series are semiconducting/insulating, the members of the M = Fe series are metallic, showing a broad metal-semiconductor transition around 100 K for 0 < x ≤ 0.15 that is possibly related to a Cu(II)-O-Fe(IV) < > Cu(III)-O-Fe(III) valence degeneracy. Increasing the strontium content at the expense of lanthanum in La2-2xSr2XCui.xFexO4 for x ≤ 0.20 renders the samples metallic but not superconducting. In a search for inorganic oxide materials showing second order nonlinear optical (NLO) susceptibility, we have investigated several borates, silicates and phosphates containing /ram-connected MO6 octahedral chains or MO5 square-pyramids, where M = d°: Ti(IV), Nb(V) or Ta(V). Our investigations, which are described in Chapter 5, have identified two new NLO structures: batisite, Na2Ba(TiO)2Si4O12, containing trans-connectd TiO6 octahedral chains, and fresnoite, Ba2TiOSi2O7, containing square-pyramidal T1O5. Investigation of two other materials containing square-pyramidal TiO5, viz., Cs2TiOP2O7 and Na4Ti2Si8O22. 4H2O, revealed that isolated TiO5 square-pyramids alone do not cause a second harmonic generation (SHG) response; rather, the orientation of T1O5 units to produce -Ti-O-Ti-O- chains with alternating long and short Ti-0 distances in the fresnoite structure is most likely the origin of a strong SHG response in fresnoite. Indeed, we have been able to prepare a new fresnoite type oxide, Ba2.xVOSi2O7 (x ~ 0.5) that shows a strong SHG response, confirming this hypothesis. In the Appendix, we have described three synthetic strategies that enabled us to prepare magnetic and NLO materials. We have shown that the reaction CrO3 + 2 NH4X > CrO2 + 2 NH3 + H2O + X2 (X = Br, I), which occurs quantitatively at 120-150 °C, provides a convenient method for the synthesis of CrO2. Unlike conventional methods, the method described here does not require the use of high pressure for the synthesis of this technologically important material. For the synthesis of magnetic double perovskites, we have developed a method that involves reaction of basic alkali metal carbonates with the acidic oxides (e.g. Re2O7) first, followed by reaction of this precursor oxide with the required transition metal/transition metal oxide (e.g. Fe/Fe2O3). By this method we have successfully prepared single-phase perovskite oxides, A2FeReO6, ACrMoO6 and ALaFeVO6. We have prepared the new NLO material Ba2_xV0Si207 from Ba2VOSi2O7 by a soft chemical redox reaction involving the oxidation of V(IV) to V(V) using Br2 in CH3CN/CHCI3. Ba2V0Si207 + 1/2 Br2 > Bai.5V0Si207 + 1/2 BaBr2. The work presented in this thesis was carried out by the candidate as part of the Ph.D. training programme. He hopes that the studies reported here will constitute a worthwhile contribution to the solid state chemistry of transition metal oxides and related materials.
199

Polarisation thermique et microstructuration planaire de propriétés optiques non linéaires du second ordre dans des matériaux vitreux : etude des verres NaPO3 – Na2B4O7 – Nb2O5 / Thermal poling and planar second order nonlinear optical properties microstructuring in glasses : study of glasses NaPO3 – Na2B4O7 – Nb2O5

Delestre, Aurélien 13 December 2010 (has links)
Le développement des technologies optiques dans le domaine de la communication engendre un intérêt pour les matériaux présentant des propriétés non linéaires. Le matériau idéal doit combiner un coefficient non linéaire élevé, de bonnes propriétés optiques et un faible coût de fabrication. Les matériaux vitreux restent de bons candidats pour ce type d’application. La polarisation thermique permet de générer ce genre de propriétés dans les verres. En effet, à des températures de l’ordre de 300°C, l’application d’un champ électrique provoque la migration d’ions mobiles dans le matériau depuis l’anode vers la cathode. Une zone de déplétion en surface est ainsi créée donnant naissance à un champ électrique enterré. En combinant une technique de dépôt métallique, une irradiation laser et l’application d’un champ électrique (poling), il devient possible de réaliser des architectures complexes de migration et d’obtenir ainsi des propriétés optiques non linéaires structurées. / Optical technologies development for communication has triggered a real interest about materials with nonlinear properties. The ideal material should combine a high nonlinear coefficient, good optical properties and a low production cost. Glasses remain very good materials for this kind of applications.Thermal poling is now well known for breaking glasses natural centro-symmetry and inducing second order nonlinearities. Indeed, at temperatures close to 300°C, the application of an electric field induces mobile ions migration from the anode to the cathode.In that case, the space charge created during the poling process generates an efficient macroscopic electrostatic field trapped under the anodic surface of the glass.The combination of silver deposition, femtosecond laser irradiation and thermal poling has been successfully used to realize a complex architecture of ionic migration leading to structuring of second order nonlinear properties at the microscopic scale.
200

Ingénierie moléculaire pour l'imagerie par microscopie non-linéaire : synthèse et propriétés de nouvelles sondes / Molecular engineering for nonlinear imaging microscopy : Synthesis and properties of new probes

Massin, Julien 15 December 2011 (has links)
L’objectif de cette thèse est l’élaboration de sondes organiques pour la microscopie optique non-linéaire par fluorescence excitée à deux photons (F2P) et génération de seconde harmonique (GSH). Dans une première partie, cette thèse décrit la synthèse de sondes pour l’imagerie de potentiels de membrane par GSH, comportant un ou plusieurs motifs sucres ainsi que leurs caractérisations spectroscopiques. Les premiers essais en imagerie biologique ont permis de démontrer une bonne affinité des sondes sucres pour la membrane cellulaire et un signal de GSH sur cellule neuronale a pu être observé sur une période de temps allant jusqu'à près de trois heures. La seconde approche a consisté à synthétiser et étudier des chromophores possédant des propriétés de fluorescence à l’état solide pour des applications dans la synthèse de nanoparticules fluorescentes pour l’imagerie biologique. 18 des 21 composés synthétisés ont pu être cristallisés et leur structure résolue par diffraction des rayons X et les propriétés spectroscopique en solution et à l’état solide ont été réalisées. Cette étude a permis de montrer que l’arrangement des molécules les unes par rapport aux autres avait une grande influence sur la fluorescence à l’état solide et donc que les substituants avaient une grande importance. Enfin, cette partie se termine sur les premiers essais effectués pour synthétiser des nanoparticules fluorescentes. / The objective of this thesis is the design of new organic probes for nonlinear optical microscopy by two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). In the first part, we describe the synthesis of probes for voltage sensitive imaging by SHG, bearing one or more sugar units and their spectroscopic characterization. The first biological imaging tests have shown good affinity of the probes to the cell membrane and the SHG signal of neuronal cell was observed over a period of nearly three hours. The second part comprises the synthesis and the study of chromophores with solid state fluorescence properties for use in fluorescent nanoparticles for biological imaging. 18 of the 21 compounds synthesized have been crystallized, their crystal structures determined by X-ray diffraction and their spectroscopic properties studied in solution and in the solid state. These studies showed that the arrangement of molecules relative to each had a great influence on the solid state fluorescence and therefore that the substitution was very important. The chapter ends with the first tests of fluorescent nanoparticles synthesis.

Page generated in 0.1406 seconds