31 |
Development and Application of the CanRisk Injury Model and a Spatial Decision Support System (SDSS) to Evaluate Seismic Risk in the Context of Emergency Management in Canada: Case Study of Ottawa, CanadaPloeger, Sarah Katherine January 2014 (has links)
Approximately 43% of Canada’s population reside in urban centres at most seismic risk.This research creates practical and proactive tools to support decision making in emergency management regarding earthquake risk. This proactive approach evaluates the potential impact of future earthquakes for informed mitigation and preparedness decisions. The overall aims are to evaluate a community’s operational readiness, reveal limitations and resources gaps in the emergency plan, test potential mitigation and preparedness strategies and provide a realistic earthquake scenario for training activities. Two models, the CanRisk injury model and a disaster Spatial Decision Support System (SDSS), were designed and developed to further evaluate seismic risk on a community scale.
The injury model is an extension of the engineering-based CanRisk tool and quantifies an individual’s risk to injury, the number of injuries, and provides an injury profile of life-threatening injuries at the building scale. The model implements fuzzy synthetic evaluation to quantify seismic risk, mathematical calculations to estimate number of injuries, and a decision-matrix to generate the injury profile.
The SDSS is an evidence-based model that is designed for the planning phase to evaluate post-earthquake emergency response. Loss estimations from Hazus Canada and the CanRisk injury model are combined with community geospatial data to simulate post-earthquake conditions that are important for immediate post-earthquake response. Fire services, search and rescue operations (including urban search and rescue and police services), emergency medical services, and relief operations are all modelled.
A case study was applied to 27 neighbourhoods in Ottawa, Canada, using a M6.0 and M7.25 scenarios. The models revealed challenges to all emergency response units. A critical threshold exists between the M6.0 and M7.25 scenarios whereby emergency response moves from partial but manageable functionality to a complete system breakdown. The models developed in this research show great utility to emergency managers in Canada.
|
32 |
Prédiction des mouvements sismiques forts : apport de l’analyse du comportement non-linéaire des sols et de l’approche des fonctions de Green empiriques / Empirical prediction of seismic strong ground motion : contributions to the nonlinear soil behavior analysis and the Empirical Green's function approachCastro Cruz, David Alejandro 12 December 2018 (has links)
L'évaluation de l’aléa sismique doit tenir compte des différents aspects qui interviennent dans le processus sismique et qui affectent le mouvement du sol en surface. Ces aspects peuvent être classés en trois grandes catégories : 1) les effets de source liés au processus de rupture et à la libération d'énergie sur la faille. 2) les effets liés à la propagation de l'énergie sismique à l'intérieur de la Terre. 3) l'influence des caractéristiques géotechniques des couches peu profondes ; appelé effet de site. Les effets de site sont pris en compte dans la mitigation des risques par l'évaluation de la réponse sismique du sol. Lors de sollicitations cycliques, le sol présente un comportement non-linéaire, ce qui signifie que la réponse dépendra non seulement des paramètres du sol mais aussi des caractéristiques du mouvement sismique (amplitude, contenu en fréquence, durée, etc.). Pour estimer la réponse non-linéaire du site, la pratique habituelle consiste à utiliser des simulations numériques avec une analyse linéaire équivalente ou une approche non-linéaire complète. Dans ce document, nous étudions l'influence du comportement non-linéaire du sol sur la réponse du site sismique en analysant les enregistrements sismiques des configurations des réseaux de forages. Nous utilisons les données du réseau Kiban Kyoshin (KiK-Net). Les 688 sites sont tous équipés de deux accéléromètres à trois composantes, l'un situé à la surface et l'autre en profondeur. À partir de ces données, nous calculons les amplifications du mouvement du sol depuis la surface jusqu'aux enregistrements en fond de puit à l'aide des rapports spectraux de Fourier. Une comparaison entre le rapport spectral pour le faible et le fort mouvement du sol est alors réalisée. Le principal effet du comportement non-linéaire du sol sur la fonction de transfert du site est un déplacement de l'amplification vers les basses fréquences. Nous proposons une nouvelle méthodologie et un nouveau paramètre appelé fsp pour quantifier ces changements et étudier les effets non-linéaires. Ces travaux permettent d'établir une relation site-dépendante entre le paramètre fsp et le paramètre d'intensité du mouvement du sol. La méthode est testée sur les données accélérométriques du séisme de Kumamoto (Mw 7.1, 2016). Nous proposons ensuite d’utiliser des corrélations entre moment seismic et la duration de la faille (Courboulex et al., 2016), obtenues à partir d’une base de données globale de fonctions source et une méthode basée sur l’approche des fonctions de Green empiriques (EGF) stochastiques pour simuler les mouvements forts du sol dus à un futur séisme. Cette méthodologie est appliquée à la simulation d’un séisme de subduction en Équateur et comparée aux données réelles du séisme de Pedernales (Mw 7.8, 16 avril 2016) dans la ville de Quito. Nous proposons enfin de combiner la méthode de simulation de mouvements forts par EGF et la prise en compte des effets non-linéaires proposée dans les premiers chapitres. La méthode est testée sur les données accélérométriques d’une réplique du séisme de Tohoku (Mw 7.9). / Seismic hazard assessments must consider different aspects that are involved in an earthquake process and affect the surface ground motion. Those aspects can be classified into three main kinds. 1) the source effects are related to the rupture process and the release of energy. 2) the path effects related to the propagation of energy inside Earth. 3) the influence of the shallow layers geotechnical characteristics; the so-called site-effects. The site effects are considered in risk mitigation through the evaluation of the seismic soil response. Under cyclic solicitations the soil shows a non-linear behavior, meaning that the response will not only depend on soil parameters but also on seismic motion input characteristics (amplitude, frequency content, duration, …). To estimate the non-linear site response, the usual practice is to use numerical simulations with equivalent linear analysis or truly non-linear time domain approach. In this document, we study the influence of the nonlinear soil behavior on the seismic site response by analyzing the earthquake recordings from borehole array configurations. We use the Kiban Kyoshin network (KiK-Net) data. All 688 sites are instrumented with two 3-components accelerometers, one located at the surface and the another at depth. From these data, we compute the ground motion amplifications from the surface to downhole recordings by the computing Fourier spectral ratios for the aim to compare between the spectral ratio for weak and strong ground motion. The main effect of the non-linear behavior of the soil on the site transfer function is a shift of the amplification towards lower frequencies. We propose a new methodology to quantify those changes and study the nonlinear effects. This work results in a site-dependent relationship between the changes in the site response and the intensity parameter of the ground motion. The method is tested analyzing the records of the earthquake of Kumamoto (Mw 7.1, 2016). Posteriorly, we propose to integrate a correlation between seismic moment and the duration of the fault (Courboulex et al., 2016) in the empirical Green’s function method. This methodology was applied to simulate one seduction event in Equator, and we compare the results with the records of the Pedernales earthquake (Mw 7.8, 2016) in the city of Quito. We attempt to take in account the nonlinear effects in the empirical Green’s function method. We use the methodologies of the first part of this document based on the frequency shift parameter. The procedure could be implemented in other methodologies that can predict an earthquake at a rock reference site, such as the stochastic methods. We test the procedure using the accelerometric records for one of the aftershocks o the Tôhoku earthquake (Mw 7.9).
|
33 |
Identificación de puntos críticos en carreteras con riesgo sísmico evaluado con drone topográfico / Identification of critical points on roads with seismic risk evaluated with a topographic droneCaytuiro Chavez, Jose Alberto, Guevara Solier, Diego Ernesto 09 September 2021 (has links)
Este trabajo de investigación busca identificar, bajo un enfoque determinístico, los riesgos sísmicos a lo largo de una carretera. Además, se empleará un dron topográfico y un GPS diferencial que facilitará la toma de datos georreferenciados. Para nuestro análisis se usó como referencia la metodología REDARS 2 la cual nos ofrece un procedimiento adecuado para la evaluación e identificación de riesgos sísmicos en redes de transporte terrestre en base a un escenario sísmico pertinente en la zona. Los resultados finales abarcan puntos críticos exactos en la Carretera que, debido a sus características, representan un peligro inminente a la estructura y a su funcionabilidad. / This research seeks to identify, under a deterministic approach, seismic risks along a road. In addition, a topographic drone and differential GPS will be used to facilitate the collection of geo-referenced data. For our analysis, the REDARS 2 methodology was used as a reference, which offers us a suitable procedure for the assessment and identification of seismic risks in terrestrial transport networks based on a relevant seismic scenario in the area. The final results cover exacts critical points on the road that, due to their characteristics, represent an imminent danger to the structure and its functionality. / Trabajo de investigación
|
34 |
Propuesta de mapa de riesgo sísmico para la estimación de pérdidas mediante curvas de fragilidad de sistemas estructurales típicos usando la metodología fema-hazus para el distrito de Surquillo en LimaHuapaya Velarde, Karla Priscila, Palomino Ayvar, Pool David 14 January 2021 (has links)
Se sabe que la mayoría de las viviendas en el Perú no cumplen con las normas de edificaciones, por ello abunda la autoconstrucción debido muchas veces a las limitaciones económicas. Esto puede presentar mayor vulnerabilidad frente a algún movimiento telúrico en la costa peruana. Es necesario cuantificar el daño estructural de las edificaciones comunes producido por un sismo mediante las curvas de fragilidad.
Los métodos empleados para evaluar el riesgo sísmico generalmente son abstrusos ya que se necesita evaluar la curva de capacidad de cada vivienda seleccionada, utilizando un análisis no lineal o por desempeño sísmico; por ello en un área de mayor amplitud como en el caso de un distrito se vuelven poco convencionales para la estimación de perdidas. Por este motivo, en el presente trabajo de investigación, se emplea un método de la vulnerabilidad sísmica utilizando las curvas de fragilidad propuestas por el FEMA.
Si bien las construcciones americanas presentan características propias de lugar y la calidad de los materiales de las diferentes tipologías estructurales, se puede utilizar la metodología HAZUS pero adaptándolas a la realidad peruana.
Debido a esto, las viviendas serán analizadas en el mapa de riesgo sísmico para escenarios que comprenden las siguientes clasificaciones de intensidad del sismo: frecuente, ocasional, raro y muy raro, analizando así el comportamiento y los niveles de daño alcanzados para cada caso, con ello se podrá determinar las pérdidas para cada situación. / It is known that most of the houses in Peru do not comply with the building standards, therefore self-construction abounds, often due to economic limitations. This may present greater vulnerability to any telluric movement on the Peruvian coast. It is necessary to quantify the structural damage of common buildings produced by an earthquake using the fragility curves.
The methods used to evaluate the seismic risk are generally abstruse since it is necessary to evaluate the capacity curve of each selected dwelling, using a nonlinear analysis or by seismic performance; therefore, in a larger area, such as a district, they become unconventional for loss estimation. For this reason, in this research work, a seismic vulnerability method is used using the fragility curves proposed by FEMA.
Although the American constructions present their own characteristics of place and the quality of the materials of the different structural typologies, the HAZUS methodology can be used but adapting them to the Peruvian reality.
Due to this, the houses will be analyzed in the seismic risk map for scenarios that include the following earthquake intensity classifications: frequent, occasional, rare and very rare, thus analyzing the behavior and the levels of damage achieved for each case, with this can determine the losses for each situation. / Tesis
|
35 |
Estimación de riesgo sísmico de las edificaciones del distrito de chancay mediante método Hazus / Estimation of seismic risk of the buildings of the district of chancay through the hazus methodCarbajal Flores, luis Miguel, Ramón Dolores , Johann Waldir 22 January 2021 (has links)
Con la posibilidad de un sismo de considerable intensidad, según el IGP y el CISMID, se hace necesario la presencia de investigaciones para prevenir y dar conocimiento de los riesgos que están expuestos la población. Es por ello, que la presente tesis propone una estimación del riesgo sísmico de las edificaciones del distrito de Chancay según metodologías visuales.
El motivo de escoger a la ciudad de Chancay para este estudio es por su tipo de construcción que representa a la mayoría de las ciudades de la costa peruana. Estas construcciones realizadas principalmente por personas con conocimiento empírico “Maestros de Obra” y en la mayoría sin asesorías de un profesional de la construcción genera que estas edificaciones sean vulnerables. La vulnerabilidad asociada con el peligro sísmico representa un riesgo no solo estructural y de posibles pérdidas económicas, sino que en el peor de los casos pérdidas humanas. Por ello, es necesario informar a la población las posibles consecuencias que tendrían después de un evento sísmico de magnitud mayor a 8.
Para el desarrollo de esta esta investigación se cuantifico el costo estructural de la ciudad tomando datos oficiales del gobierno y costos actuales de distintos proyectos que se desarrollaron en los índices 3.1 Material y 3.2 Recopilación, en el que se obtiene un valor aproximado de S/ 2.2 mil millones de soles. Para la evaluación se utilizó la metodología propuesta por el Fema en su manual de Hazus que se resumen en el Capítulo 2 Marco Teórico; así mismo, se debe indicar que esta metodología se realizó en Estados Unidos en el que propone 36 modelos estructurales en relación con el tipo de construcción con el que se puede obtener el porcentaje de daño de una estructura frente a un evento sísmico. Se debe considerar que los resultados son posibles aproximaciones ya que los coeficientes utilizados por la metodología presentan limitaciones que son mencionados según avance el desarrollo de la investigación.
El motivo de utilizar metodologías visuales para determinar el riesgo es principalmente que la evaluación es una ciudad; el cual, cuenta con aproximadamente 15 mil estructuras que si es evaluada mediante métodos avanzados se tendría que acopiar información muy detallada que generan grandes costos, tiempo y por el gran número no sería del todo razonable.
Finalmente se presentan los resultados y las conclusiones para un escenario sísmico de magnitud de 8.5 desarrollado en el Capítulo 5 Discusión de resultados para la ciudad de Chancay; en el cual se estima que la ciudad tiene un riesgo de 42.8% de daños que expresados en términos económicos es de S/. 954.3 millones de soles. / With the possibility of an earthquake of considerable intensity, according to the IGP and the CISMID, the presence of investigations is necessary to prevent and give knowledge of the risks that the population is exposed to. That is why this thesis proposes an estimate of the seismic risk of the buildings in the Chancay district according to visual methodologies.
The reason for choosing the city of Chancay for this study is for its type of construction that represents most of the cities of the Peruvian coast. These constructions carried out mainly by people with empirical knowledge "Construction Masters" and in most cases without the advice of a construction professional, make these buildings vulnerable. Vulnerability associated with seismic hazard represents not only a structural risk and potential economic loss, but in the worst-case human loss. Therefore, it is necessary to inform the inhabitants of the possible consequences that they would have after a seismic event of magnitude greater than 8.
For the development of this research, the structural cost of the city is quantified taking official data from the government such as the INEI and current costs of different projects that are developed in Chapter 3 Materials and Information Collection in which a value of S / 2.2 billion soles. For the evaluation, the methodology proposed by Fema in its Hazus manual was used, which are summarized in Chapter 2 Theoretical Framework; Likewise, it should be noted that this methodology was carried out in the United States in which it proposes 36 structural models in relation to the type of construction with which the percentage of damage to a structure in the face of a seismic event can be obtained. It should be considered that the results are possible approximations and that the coefficients used by the methodology present limitations that are mentioned according to the progress of the research development.
The reason for using visual methodologies to determine risk is mainly that the evaluation is a city; which has approximately 15 thousand structures that, if evaluated by advanced methods, would have to collect very detailed information that generates great costs, time, and due to the large number, it would not be entirely reasonable.
Finally, the results and the conclusions for a seismic scenario of magnitude of 8.5 developed in Chapter 5 Discussion of results for the city of Chancay are presented; in which it is estimated that the city has a risk of 42.8% of damages that expressed in economic terms is S/. 954.3 million soles. / Tesis
|
36 |
The effect of observation errors on parameter estimates applied to seismic hazard and insurance risk modellingPretorius, Samantha 30 April 2014 (has links)
The research attempts to resolve which method of estimation is the most consistent for the parameters of the earthquake model, and how these different methods of estimation, as well as other changes, in the earthquake model parameters affect the damage estimates for a specific area. The research also investigates different methods of parameter estimation in the context of the log-linear relationship characterised by the Gutenberg-Richter relation. Traditional methods are compared to those methods that take uncertainty in the underlying data into account. Alternative methods based on Bayesian statistics are investigated briefly. The efficiency of the feasible methods is investigated by comparing the results for a large number of synthetic earthquake catalogues for which the parameters are known and errors have been incorporated into each observation. In the second part of the study, the effects of changes in key parameters of the earthquake model on damage estimates are investigated. This includes an investigation of the different methods of estimation and their effect on the damage estimates. It is found that parameter estimates are affected by observation errors. If errors are not included in the method of estimation, the estimate is subject to bias. The nature of the errors determines the level of bias. It is concluded that uncertainty in the data used in earthquake parameter estimates is largely a function of the quality of the data that is available. The inaccuracy of parameter estimates depends on the nature of the errors that are present in the data. In turn, the nature of the errors in an earthquake catalogue depends on the method of compilation of the catalogue and can vary from being negligible, for single source catalogues for an area with a sophisticated seismograph network, to fairly impactful, for historical earthquake catalogues that predate seismograph networks. Probabilistic seismic risk assessment is used as a catastrophe modelling tool to circumvent the problem of scarce loss data in areas of low seismicity and is applied in this study for the greater Cape Town region in South Africa. The results of the risk assessment demonstrate that seemingly small changes in underlying earthquake parameters as a result of the incorporation of errors can lead to significant changes in loss estimates for buildings in an area of low seismicity. / Dissertation (MSc)--University of Pretoria, 2014. / Insurance and Actuarial Science / MSc / Unrestricted
|
37 |
A Study of the Seismic Performance of Early Multi-Story Steel Frame Structures with Unreinforced Masonry InfillPotterton, Kristin 01 January 2009 (has links)
Steel frame construction with unreinforced masonry infill walls is a common system found in high-rise structures built in the late nineteenth and early twentieth centuries. Recorded performance of this dual system during seismic events shows that the structures are able to resist a high level of lateral loads without collapse, primarily because a majority of damage is confined to the infill walls instead of the gravity carrying frame. To better understand expected performance of this structural system in different seismic risk regions, a prototypical building was analyzed using modal and nonlinear static procedures based on currently accepted evaluation guidelines. Nonlinear results from the computer model were compared with calculated target displacements for seventeen cities likely to have steel frame construction with unreinforced masonry infill in order to determine expected damage levels at varying levels of seismic risk. It was concluded that the structural system studied could experience damage in all seismic risk regions, including post-yield damage of the structure, although in low risk regions that damage is confined entirely to the infill walls. Practicing structural engineers should be aware that in all seismic risk zones existing steel frame buildings with unreinforced masonry infill, while able to resist a high magnitude of displacement without complete structural failure, will require additional lateral support under currently accepted rehabilitation guidelines.
|
38 |
SYSTEM-LEVEL SEISMIC PERFORMANCE QUANTIFICATION OF REINFORCED MASONRY BUILDINGS WITH BOUNDARY ELEMENTSEzzeldin, Mohamed January 2017 (has links)
The traditional construction practice used in masonry buildings throughout the world is limited to walls with rectangular cross sections that, when reinforced with steel bars, typically accommodate only single-leg horizontal ties and a single layer of vertical reinforcement. This arrangement provides no confinement at the wall toes, and it may lead to instability in critical wall zones and significant structural damage during seismic events. Conversely, the development of a new building system, constructed with reinforced masonry (RM) walls with boundary elements, allows closed ties to be used as confinement reinforcement, thus minimizing such instability and its negative consequences. Relative to traditional walls, walls with boundary elements have enhanced performance because they enable the compression reinforcement to remain effective up to much larger displacement demands, resulting in a damage tolerant system and eventually, more resilient buildings under extreme events.
Research on the system-level (complete building) performance of RM walls with boundary elements is, at the time of publication of this dissertation, nonexistent in open literature. What little research has been published on this innovative building system has focused only on investigating the component-level performance of RM walls with boundary elements under lateral loads. To address this knowledge gap, the dissertation presents a comprehensive research program that covered: component-level performance simulation; system-level (complete building) experimental testing; seismic risk assessment tools; and simplified analytical models to facilitate adoption of the developed new building system. In addition, and in order to effectively mobilize the knowledge generated through the research program to stakeholders, the work has been directly related to building codes in Canada and the USA (NBCC and ASCE-7) as well as other standards including FEMA P695 (FEMA 2009) (Chapter 2), TMS 402 and CSA S304 (Chapter 3), FEMA P58 (FEMA 2012) (Chapter 4), and ASCE-41 (Chapter 5). Chapter 1 of the dissertation highlights its objectives, focus, scope and general organization. The simulation in Chapter 2 is focused on evaluating the component-level overstrength, period-based ductility, and seismic collapse margin ratios under the maximum considered earthquakes. Whereas previous studies have shown that traditional RM walls might not meet the collapse risk criteria established by FEMA P695, the analysis presented in this chapter clearly shows that RM shear walls with boundary elements not only meet the collapse risk criteria, but also exceed it with a significant margin. Following the component-level simulation presented in Chapter 2, Chapter 3 focused on presenting the results of a complete two-story asymmetrical RM shear wall building with boundary elements, experimentally tested under simulated seismic loading. This effort was aimed at demonstrating the discrepancies between the way engineers design buildings (as individual components) and the way these buildings actually behave as an integrated system, comprised of these components. In addition, to evaluate the enhanced resilience of the new building system, the tested building was designed to have the same lateral resistance as previously tested building with traditional RM shear walls, thus facilitating direct comparison. The experimental results yielded two valuable findings: 1) it clearly demonstrated the overall performance enhancements of the new building system in addition to its reduced reinforcement cost; and 2) it highlighted the drawbacks of the building acting as a system compared to a simple summation of its individual components. In this respect, although the slab diaphragm-wall coupling enhanced the building lateral capacity, this enhancement also meant that other unpredictable and undesirable failure modes could become the weaker links, and therefore dominate the performance of the building system. Presentation of these findings has attracted much attention of codes and standards committees (CSA S304 and TMS 402/ACI 530/ASCE 5) in Canada and the USA, as it resulted in a paradigm shift on how the next-generation of building codes (NBCC and ASCE-7) should be developed to address system-levels performance aspects. Chapter 4 introduced an innovative system-level risk assessment methodology by integrating the simulation and experimental test results of Chapters 2 and 3. In this respect, the experimentally validated simulations were used to generate new system-level fragility curves that provide a realistic assessment of the overall building risk under different levels of seismic hazard. Although, within the scope of this dissertation, the methodology has been applied only on buildings constructed with RM walls with boundary elements, the developed new methodology is expected to be adopted by stakeholders of other new and existing building systems and to be further implemented in standards based on the current FEMA P58 risk quantification approaches. Finally, and in order to translate the dissertation findings into tools that can be readily used by stakeholders to design more resilient buildings in the face of extreme events, simplified backbone and hysteretic models were developed in Chapter 5 to simulate the nonlinear response of RM shear wall buildings with different configurations. These models can be adapted to perform the nonlinear static and dynamic procedures that are specified in the ASCE-41 standards for both existing and new building systems. The research in this chapter is expected to have a major positive impact, not only in terms of providing more realistic model parameters for exiting building systems, but also through the introduction of analytical models for new more resilient building systems to be directly implemented in future editions of the ASCE-41. This dissertation presents a cohesive body of work that is expected to influence a real change in terms of how we think about, design, and construct buildings as complex systems comprised of individual components. The dissertation’s overarching hypothesis is that previous disasters have not only exposed the vulnerability of traditional building systems, but have also demonstrated the failure of the current component-by-component design approaches to produce resilient building systems and safer communities under extreme events. / Dissertation / Doctor of Philosophy (PhD)
|
39 |
Experimental and Analytical strategies to assess the seismic performance of auxiliary power systems in critical infrastructureGhith, Ahmed January 2020 (has links)
The performance of nonstructural components in critical infrastructure,
such as nuclear power plants (NPPs), has been primarily based on experience and
historical data. This topic has been attracting increased interest from researchers
following the Fukushima Daiichi nuclear disaster in 2011. This disaster
demonstrated the importance of using batteries in NPPs as an auxiliary power
system, where such systems can provide the necessary power to mitigate the risk of
serious accidents. However, little research has been conducted on such
nonstructural components to evaluate their performance following the post-
Fukushima safety requirements, recommended by several nuclear regulators
worldwide [e.g., Nuclear Regulatory Commission (NRC), and Nuclear Safety
Commission (NSC)]. To address this research gap, this dissertation investigates the
lateral performance of an auxiliary battery power system (ABPS) similar to those
currently existing/operational in NPPs in Canada. The ABPS was experimentally
tested under displacement-controlled quasi-static cyclic fully-reversed loading that
simulates lateral seismic demands. Due to the presence of sliding batteries, the
ABPS was then tested dynamically under increased ground motion levels on a
shake table. The experimental results demonstrated that the design guidelines and
fragility curves currently assigned to battery rack systems in the FEMA P58 prestandards do not encompass all possible failure mechanisms.
A 3D numerical model was also developed using OpenSees software. The
model was validated using the experimental results. The model results showed that the lateral performance of ABPS with different configurations (i.e. different
lengths, tiers, and seismic categories) is influenced by the capacity of the L-shaped
connection between the side rails and the end rail. However, the model was not able
to predict all the damage states from the dynamic experimental tests, since the
rocking/sliding/impact behavior of the batteries is a highly complex nonlinear
problem by nature and beyond the scope of this study. The model presented is
limited to the assessment of the lateral performance of different ABPS statically.
This dissertation demonstrated the difference between the observed
behavior of laboratory-controlled lateral performance tests of ABPSs
operational/existing in NPPs and the behavior of ABPSs found in the literature that
relied on limited historical and experience data. Finally, this dissertation laid the
foundations for the need to further investigate the behavior of other safety-related
components in NPPs and assess their compliance with new post-Fukushima design
requirements. / Thesis / Doctor of Philosophy (PhD)
|
40 |
Courbes de fragilité pour les ponts au Québec tenant compte du sol de fondation / Fragility curves for bridges in Québec accounting for soil-foundation systemSuescun, Juliana Ruiz January 2010 (has links)
Abstract : Fragility curves are a very useful tool for seismic risk assessment of bridges. A fragility curve describes the probability of a structure being damaged beyond a specific damage state for different levels of ground shaking. Since more than half of all bridges in the province of Quebec (Canada) are in service for more than 30 years and that these bridges were designed at that time without seismic provisions, generating fragility curves for these structures is more than necessary. These curves can be used to estimate damage and economic loss due to an earthquake and prioritize repairs or seismic rehabilitations of bridges. Previous studies have shown that seismic damage experienced by bridges is not only a function of the epicentral distance and the severity of an earthquake but also of the structural characteristics of the bridge and the soil type on which it is built. Current methods for generating fragility curves for bridges do not account for soil conditions. In this work, analytical fragility curves are generated for multi-span continuous concrete girder bridges, which account for 21% of all bridges in Quebec, for the different soil profile types specified in the Canadian highway bridge design code (CAN/CSA-S6-06). These curves take into account the different types of abutment and foundation specific to these bridges. The fragility curves are obtained from time-history nonlinear analyses using 120 synthetic accelerograms generated for eastern Canadian regions, and from a Monte Carlo simulation to combine the fragility curves of the different structural components of a bridge||Résumé : Les courbes de fragilité sont un outil très utile pour l’évaluation du risque sismique des ponts. Une courbe de fragilité représente la probabilité qu'une structure soit endommagée au-delà d'un état d'endommagement donné pour différents niveaux de tremblement de terre. Étant donné que plus de la moitié des ponts dans la province de Québec (Canada) ont plus de 30 années de service et que ces ponts n'ont pas été conçus à l'époque à l'aide de normes sismiques, la génération de courbes de fragilité pour ces structures est plus que nécessaire. Ces courbes peuvent servir à estimer les dommages et les pertes économiques causés par un tremblement de terre et à prioriser les réparations ou les réhabilitations sismiques des ponts. Des études antérieures ont montré que l'endommagement subi par les ponts suite à un tremblement de terre n'est pas seulement fonction de la distance de l'épicentre et de la sévérité du tremblement de terre, mais aussi des caractéristiques structurales du pont et du type de sol sur lequel il est construit. Les méthodes actuelles pour générer les courbes de fragilité des ponts ne tiennent pas compte des conditions du sol. Dans ce travail de recherche, des courbes de fragilité analytiques sont générées pour les ponts à portées multiples à poutres continues en béton armé, soit pour 21% des ponts au Québec, pour les différents types de sol spécifiés dans le Code canadien sur le calcul des ponts routiers (CAN/CSA-S6-06). Ces courbes prennent en compte les différents types de culée et de fondation spécifiques à ces ponts. Les courbes de fragilité sont obtenues à partir d'analyses temporelles non linéaires réalisées à l'aide de 120 accélérogrammes synthétiques généres pour l’est du Canada, et d'une simulation de Monte Carlo pour combiner les courbes de fragilité des différentes composantes du pont.
|
Page generated in 0.0925 seconds