• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 10
  • 4
  • 4
  • 3
  • Tagged with
  • 172
  • 172
  • 126
  • 125
  • 68
  • 62
  • 55
  • 48
  • 47
  • 38
  • 30
  • 29
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Characterization of Flexible Hybrid Electronics Using Stretchable Silver Ink and Ultra-Thin Silicon Die

Ledgerwood, Joshua A. 01 June 2017 (has links)
Flexible Hybrid Electronics (FHEs) offer many advantages to the future of wearable technology. By combining the dynamic performance of conductive inks, and the functionality of ultra-thinned, traditional IC technology, new FHE devices allow for development of applications previously excluded by relying on a specific type of electronics technology. The characterization and reliability analysis of stretchable conductive inks paired with ultra-thin silicon die in theµm range was conducted. A silver based ink designed to be stretchable was screen printed on a TPU substrate and cured using box oven, conveyor convection oven, and photonic curing processes. Reliability tests were conducted including a tape test, crease test, wash test, and abrasion test. Optimization of each curing process resulted in all three methods’ ability to achieve the ink sheet resistance specification of <75mΩ/square/25µm. Reliability tests on the printing concluded that, if fully cured, all samples achieve similar reliability performance. Additionally, a series of 10 mm x 10 mm ultra-thin die were characterized using stylus profilometry and optical measurement in order to test the die quality and readiness for assembly. The die had been thinned from an initial thickness down of 600 µm to a target of 50 µm. A direct inverse relationship was shown between die thickness and die warpage, likely due to high levels of internal stress caused by the dicing and thinning process. Finally, an innovate pairing of serpentine copper clad traces on TPU was tested for reliability performance using traditional solder for die attachment.
52

Inquiry of Graphene Electronic Fabrication

Greene, John Rausch 01 September 2016 (has links)
Graphene electronics represent a developing field where many material properties and devices characteristics are still unknown. Researching several possible fabrication processes creates a fabrication process using resources found at Cal Poly a local industry sponsor. The project attempts to produce a graphene network in the shape of a fractal Sierpinski carpet. The fractal geometry proves that PDMS microfluidic channels produce the fine feature dimensions desired during graphene oxide deposit. Thermal reduction then reduces the graphene oxide into a purified state of graphene. Issues arise during thermal reduction because of excessive oxygen content in the furnace. The excess oxygen results in devices burning and additional oxidation of the gate contacts that prevents good electrical contact to the gates. Zero bias testing shows that the graphene oxide resistance decreases after thermal reduction, proving that thermal reduction of the devices occurs. Testing confirms a fabrication process producing graphene electronics; however, revision of processing steps, especially thermal reduction, should greatly improve the yield and functionality of the devices.
53

Adaptation of VT-Dbr Lasers for LIDAR

Horowitz, Luke 01 June 2018 (has links)
Vernier Tuned Distributed Bragg Reflector (VT-DBR) lasers have had great success in the field of Swept-Source Optical Coherence Tomography (SS-OCT) due to their continuous and nearly 40 nm wavelength tuning range in a single longitudinal mode. Fast sweeps allow for real time imaging with micrometer resolution at a distance of a few centimeters. While this laser has proven quite useful as a medical imaging tool via OCT, it has yet to similarly prove itself for general light detection and ranging (LIDAR) applications due to range limitations that arise from a finite laser coherence length. The goal of this thesis is to explore LIDAR applications for VT-DBR lasers and how to improve VT-DBR performance for LIDAR. In the scope of this work, LIDAR is laser imaging at tens or hundreds of meters with a resolution finer than 10cm. In order to achieve this kind of LIDAR performance with a VT-DBR laser, the laser must have a linewidth less than 1MHz over a tuning range of around 10GHz. This thesis outlines two methods towards this goal. The bulk of this work is dedicated to looking for and characterizing VT-DBR tuning paths with fundamentally narrow linewidth using microampere currents in both forward and reverse bias conditions. The second part of this thesis is a preliminary design of an optical frequency-locked loop to reduce laser phase noise, which subsequently reduces the laser linewidth. By tuning with small currents in the forward bias condition, nearly the entire range of laser wavelengths could be tuned to, but areas of narrow linewidth were both sparse and very sensitive to any change in bias. The reverse bias case showed limited but continuous tuning with increased reverse current magnitude. In this reverse biased photo-detector mode the laser exhibited narrower linewidth less than 15MHz, with the linewidth at intrinsically narrow levels when all three sections reverse biased. Also promising was a subset of reverse bias conditions that only used a variable resistance across a laser section with no externally applied bias. This resistance tuning method gave a tuning range of more than 7GHz while maintaining an intrinsically narrow linewidth. The optical frequency-locked loop was able to achieve DC frequency locking but unable to reduce laser linewidth. More work needs to be done to achieve enough phase noise reduction to see an appreciable reduction in linewidth.
54

Fabrication and Simulation of Nanomagnetic Devices for Information Processing

Drobitch, Justine L 01 January 2019 (has links)
Nanomagnetic devices are highly energy efficient and non-volatile. Because of these two attributes, they are potential replacements to many currently used information processing technologies, and they have already been implemented in many different applications. This dissertation covers a study of nanomagnetic devices and their applications in various technologies for information processing – from simulating and analyzing the mechanisms behind the operation of the devices, to experimental investigations encompassing magnetic film growth for device components to nanomagnetic device fabrication and measurement of their performance. Theoretical sections of this dissertation include simulation-based modeling of perpendicular magnetic anisotropy magnetic tunnel junctions (p-MTJ) and low energy barrier nanomagnets (LBM) – both important devices for magnetic device-based information processing. First, we propose and analyze a precessionally switched p-MTJ based memory cell where data is written without any on-chip magnetic field that dissipates energy as low as 7.1 fJ. Next, probabilistic (p-) bits implemented with low energy barrier nanomagnets (LBMs) are also analyzed through simulations, and plots show that the probability curves are not affected much by reasonable variations in either thickness or lateral dimensions of the magnetic layers. Experimental sections of this dissertation comprise device fabrication aspects from the basics of material deposition to the application-based demonstration of an extreme sub-wavelength electromagnetic antenna. Magnetic tunnel junctions for memory cells and low barrier nanomagnets for probabilistic computing, in particular, require ultrathin ferromagnetic layers of uniform thickness, and non-uniform growth or variations in layer thickness can cause failures or other problems. Considerable attention was focused on developing methodologies for uniform thin film growth. Lastly, micro- and nano-fabrication methods are used to build an extreme sub-wavelength electromagnetic antenna implemented with an array of magnetostrictive nanomagnets elastically coupled to a piezoelectric substrate. The 50 pW signal measured from the approximately 250,000-nanomagnet antenna sample was 10 dB above the noise floor.
55

Experimental Study and Modeling of the GM-I Dependence of Long-Channel Mosfets

Cheng, Michael Fong 01 March 2019 (has links)
This thesis describes an experimental study and modeling of the current-transconductance dependence of the ALD1106, ALD1107, and CD4007 arrays. The study tests the hypothesis that the I-gm dependence of these 7.8 µm to 10 µm MOSFETs conforms to the Advanced Compact Model (ACM). Results from performed measurements, however, do not support this expectation. Despite the relatively large length, both ALD1106 and ALD1107 show sufficiently pronounced ‘short-channel’ effects to render the ACM inadequate. As a byproduct of this effort, we confirmed the modified ACM equation. With an m factor of approximately 0.6, it captures the I-gm dependence with sub-28% maximum error and sub-10% average error. The paper also introduces several formulas and procedures for I-gm model extraction and tuning. These are not specific to the ALD transistor family and can apply to MOSFETs with different physical size and electrical performance.
56

SiGe Millimeter-Wave (W-Band) Down-Converter for Phased Focal Plane Array

Nagavalli Yogeesh, Maruthi 01 January 2013 (has links) (PDF)
A millimeter-wave (W-Band) down-converter for Phased Focal Plane Arrays (PFPAs) has been designed and fabricated using the IBM Silicon-Germanium (SiGe) BiCMOS 8HP process technology. The radio frequency (RF) input range of the down-converter chip is from 70 95GHz. The intermediate frequency (IF) range is from 5 30GHz. The local oscillator (LO) frequency is fixed at 65GHz. The down-converter chip has been designed to achieve a conversion gain greater than 20dB, a noise figure (NF) below 10dB and input return loss greater than 10dB. The chip also has novel LO circuitry facilitating LO feed-through among down-converters chips in parallel. This wide bandwidth down-converter will be part of millimeter-wave PFPA receiver designed and fabricated in collaboration with the University of Massachusetts-Amherst Department of Astronomy. This PFPA receiver will be installed on Green Bank Telescope (GMT) / Large millimeter wave telescope (LMT) in Q2 of 2014. This project is collaboration between the University of Massachusetts-Amherst (UMass), Brigham Young University (BYU) and National Radio Astronomy Observatory (NRAO). To the best of the author’s knowledge, this is first wide bandwidth down-converter at W-band to achieve this high gain and low noise figure among Si/SiGe based systems.
57

Gpu Based Lithography Simulation and Opc

Subramany, Lokesh 01 January 2011 (has links) (PDF)
Optical Proximity Correction (OPC) is a part of a family of techniques called Resolution Enhancement Techniques (RET). These techniques are employed to increase the resolution of a lithography system and improve the quality of the printed pattern. The fidelity of the pattern is degraded due to the disparity between the wavelength of light used in optical lithography, and the required size of printed features. In order to improve the aerial image, the mask is modified. This process is called OPC, OPC is an iterative process where a mask shape is modified to decrease the disparity between the required and printed shapes. After each modification the chip is simulated again to quantify the effect of the change in the mask. Thus, lithography simulation is an integral part of OPC and a fast lithography simulator will definitely decrease the time required to perform OPC on an entire chip. A lithography simulator which uses wavelets to compute the aerial image has previously been developed. In this thesis I extensively modify this simulator in order to execute it on a Graphics Processing Unit (GPU). This leads to a lithography simulator that is considerably faster than other lithography simulators and when used in OPC will lead to drastically decreased runtimes. The other work presented in the proposal is a fast OPC tool which allows us to perform OPC on circuits faster than other tools. We further focus our attention on metrics like runtime, edge placement error and shot size and present schemes to improve these metrics.
58

Terahertz and Microwave Detection Using Metallic Single Wall Carbon Nanotubes

Carrion, Enrique A 01 January 2010 (has links) (PDF)
Carbon nanotubes (CNTs) are promising nanomaterials for high frequency applications due to their unique physical characteristics. CNTs have a low heat capacity, low intrinsic capacitance, and incredibly fast thermal time constants. They can also exhibit ballistic transport at low bias, for both phonons and electrons, as evident by their fairly long mean free paths. However, despite the great potential they present, the RF behavior of these nanostructures is not completely understood. In order to explore this high frequency regime we studied the microwave (MW) and terahertz (THz) response of individual and bundled single wall nanotube based devices. This thesis is an experimental study which attempts to understand the high frequency characteristics of metallic single walled carbon nanotubes, and to develop an ultra-fast and sensitive direct THz detector. First, the appropriate high frequency detector background is introduced. CNTs previously measured behavior draws similarities to two types of detectors: diode and bolometer. Therefore, our CNT devices are geared towards those designs. Second the fabrication process of devices is reviewed. UV lithography is used to pattern THz coupling log periodic antennas, on top of which CNTs are deposited by using a dielectrophoretic process. Third, the fabricated devices are tested at DC, MW, and THz frequencies. All of these measurements are done as a function of temperature, power, and frequency. Finally, the physical processes that give rise to the diode and bolometric detections at MW and THz detection at different temperatures and under different bias regimes (i.e. low and high) are explained.
59

Electromagnetic Modeling of Photolithography Aerial Image Formation Using the Octree Finite Element Method

Jackson, Seth A 01 January 2011 (has links) (PDF)
Modern semiconductor manufacturing requires photolithographic printing of subillumination wavelength features in photoresist via electromagnetic energy scattered by complicated photomask designs. This results in aerial images which are subject to constructive and destructive wave interference, as well as electromagnetic resonances in the photomask features. This thesis proposes a 3-D full-wave frequency domain nonconformal Octree mesh based Finite Element Method (OFEM) electromagnetic scattering solver in combination with Fourier Optics to accurately simulate the entire projection photolithography system, from illumination source to final image intensity in the photoresist layer. A rapid 1-irregular octree based geometry model mesher is developed and shown to perform remarkably well compared to a tetrahedral mesher. A special set of nonconformal 1st and 2nd order hierarchal OFEM basis functions is presented, and 1st order numerical results show good performance compared to tetrahedral FEM. Optical and modern photomask phenomenology is examined, including optical proximity correction (OPC) with thick PEC metal layer, and chromeless phase inversion (PI) masks.
60

Modeling and Characterization of Optical Metasurfaces

Torfeh, Mahsa 20 October 2021 (has links)
Metasurfaces are arrays of subwavelength meta-atoms that shape waves in a compact and planar form factor. During recent years, metasurfaces have gained a lot of attention due to their compact form factor, easy integration with other devices, multi functionality and straightforward fabrication using conventional CMOS techniques. To provide and evaluate an efficient metasurface, an optimized design, high resolution fabrication and accurate measurement is required. Analysis and design of metasurfaces require accurate methods for modeling their interactions with waves. Conventional modeling techniques assume that metasurfaces are locally periodic structures excited by plane waves, restricting their applicability to gradually varying metasurfaces that are illuminated with plane waves. In this work, we will first provide a novel technique that enables the development of accurate and general models for 1D metasurfaces. This approach can be easily extended to 2D metasurfaces. Due to the remarkable importance of accurate characterization of metasurfaces, we will provide a rigorous method to characterize 1D metasurfaces. Finally, we will provide an accurate approach to fabricate and characterize 2D metasrufaces.

Page generated in 0.0864 seconds