Spelling suggestions: "subject:"sensorial"" "subject:"sensoriais""
41 |
O esquema de ação e a constituição do sujeito epistêmico: contribuições da epistemologia genética à teoria do conhecimentoMarçal, Vicente Eduardo Ribeiro [UNESP] 01 June 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:28Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-06-01Bitstream added on 2014-06-13T18:28:50Z : No. of bitstreams: 1
marcal_ver_me_mar.pdf: 427386 bytes, checksum: ac9b9cc338342dd3ef178ed8a8055e10 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A partir da consideração, feita pelo próprio Jean Piaget, de que a Epistemologia Genética é uma teoria do conhecimento, em seu sentido pleno, e que realiza também uma crítica dos conhecimentos (portanto é uma epistemologia) e de suas gêneses (no indivíduo e históricoculturalmente), o objetivo central desta Dissertação é o de apresentar algumas contribuições essenciais que a Epistemologia Genética pode trazer às discussões contemporâneas em Teoria do Conhecimento. Nela, mostramos como conceitos centrais como os de ação, esquema de ação e sistema de esquemas de ação, bem como o de processo de adaptação-organização, fazem parte de um modelo biológico-cognitivo que possibilita explicar, por um lado, a constituição das estruturas necessárias ao conhecimento e, por outro, a própria estruturação do real pelo sujeito epistêmico, i.e., o sujeito do conhecimento. Empreendemos aqui uma sistematização das definições e conceitos que permitem essa explicação e mostramos como o sistema de esquemas de ação do sujeito epistêmico se constitui como estofo da sua estruturação do real, em particular das noções de objeto permanente e de espaço objetivo. Por questão de delimitação, tratamos apenas do período inicial da construção do sistema de esquemas de ação (Período Sensório- Motor). / À partir de la considération, qui a été faite par Jean Piaget, de que l’Épistémologie Génétique est une théorie de la connaissance, dans son plein sens, et que elle fait aussi une critique des connaissances (donc c’est une épistémologie) et de ses genèses (dans l’individu et dans l’historique-culturellement), l’objectif central de cette dissertation c’est de présenter quelques contributions indispensables que l’Épistémologie Génétique peut porter aux débats contemporains en Théorie de la Connaissance. Dans celle-là, nous montrons comme concepts centraux, comme ceux de l’action, du schème de l’action et du système de schèmes de l’action, ainsi que celui de la procédure d’adaptation-organisation, qui font partie d’un modele biologique-cognitif qui rend possible expliquer, d’un côté, la constitution des structures nécessaires à la connaissance et, de l’autre côté, la juste structuration du réel par le sujet épistémique, i. e., le sujet de la connaissance. Entreprenons ici une systematisation des définitions et concepts qui permettent cette explication et nous montrons comme le système de schèmes d’action du sujet épistémique se forme comme étoffe de sa structuration du réel, en particulier des notions d’objet permanent et d’espace objectif. Par raison de délimitation, nous parlons juste de la période initiale de la construction du système de schèmes de l’action (la Période Sensori-Moteur).
|
42 |
Etude des bases neurales du couplage entre cinématique du mouvement et activités neuromagnétiquesMarty, Brice 27 February 2018 (has links)
Le but de ce travail a été d’étudier le couplage entre la cinématique du mouvement et l’activité neuromagnétique du cerveau humain, de comprendre les mécanismes neuronaux à la base de ce couplage, et d’essayer de répondre, notamment grâce à l’utilisation de la cohérence cortico-cinématique, à un certain nombre de questions posées par le traitement de la cinématique d’un mouvement des doigts (exécuté ou observé) par le cerveau.Ce travail de thèse de doctorat démontre en 5 études originales que(i) la fréquence de mouvement n’a pas d’impact sur le niveau de couplage ni sur la localisation de la source principale de ce couplage pendant des mouvements volontaires des doigts (étude I), (ii) la cinématique de mouvements (dirigés vers un but) observés de la main d’autrui est couplée à l’activité du cerveau de l’observateur dans la partie postérieure du gyrus temporal supérieur droit, les lobules supra temporaux et cortex SM1 bilatéraux de la même manière que durant l’exécution d’un mouvement similaire (étude II),(iii) l’amplitude de la bande β des cortex SM1 bilatéraux est modulée par la cinématique de mouvements répétitifs de la main dirigés vers un but, et ce, de la même manière lors de l’exécution où de l’observation de cette action. Cette modulation ne semble pas être liée au phénomène de CKC (étude III), (iv) Ce couplage est réduit de manière significative chez les patients souffrant d’ataxie de Friedreich et ce, tant pour des mouvements actifs que passifs, ce qui apporte de nouvelles évidences en faveur du rôle prépondérant des afférences proprioceptives dans le phénomène CKC. De plus, la CKC corrèle de manière significative avec l’expansion de triplet GAA1 et pas avec les scores cliniques SARA plaidant ainsi pour une altération génétiquement déterminée et stable des afférences proprioceptives dans la maladie de Friedreich (étude IV),(v) l’activité magnétique du lobe postérieur du cervelet ipsilatéral au mouvement est couplée avec la cinématique de ce mouvement sans influence de la fréquence du mouvement (étude V). / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
|
43 |
Sensorimotor skills in autism spectrum disorder : a meta-analysisColl, Sarah-Maude 04 1900 (has links)
No description available.
|
44 |
Localisation and Mapping for an Autonomous Lawn Mower : Implementation of localisation and mapping features for an autonomous lawn mower using heterogeneous sensors / Lokalisering och kartläggning för en autonom gräsklippare : Implementering av lokaliserings- och kartläggningsfunktioner för en autonom gräsklippare med heterogena sensorerBoffo, Marco January 2021 (has links)
Autonomous lawn mowers have been available to consumers for more than 20 years. During this period, advancements in embedded device computations and sensor performance have led to improvements in the reliability of these robots. Despite recent improvements, the opportunity for further innovation of such systems remains significant. Currently, many autonomous robots rely on electric wires installed underground to delimit the boundaries of the lawn. Such a configuration is simple, but more effective autonomous solutions are available. This thesis focuses on the analysis and related implementation of both localisation and mapping features for autonomous lawn mowers. Heterogeneous sensors and their different configurations are investigated and an Adaptive Extended Kalman Filter is proposed to fuse their measurements. This technique improves the pose estimation of the autonomous lawn mower, which is then exploited by the mapping module. Based on Bayesian’s inference, the mapping module updates the knowledge of the map based on direct interactions with the environment. The final results highlight the importance of precise localisation as the bottleneck for the development of new features. The improved pose estimation enables the employment of a virtual boundary, but it is not accurate enough to precisely map the presence of objects in the environment. Advanced features which could be developed from the proposed configuration are related to deterministic coverage algorithms and the interaction with lawn objects. / Autonoma gräsklippare har varit tillgängliga för konsumenter i mer än 20 år. Under denna period har framsteg inom beräkningar av inbyggda enheter och sensorprestanda lett till förbättringar av tillförlitligheten hos dessa robotar. Trots de senaste förbättringarna är möjligheten till innovation av sådana system fortfarande betydande. Autonoma robotar har fortfarande begränsade funktioner. De förlitar sig på elektriska ledningar installerade under jord för att avgränsa gräsmattans gränser, som de reagerar på utan resonemang. En sådan konfiguration anses nu vara föråldrad och mer effektiva autonoma lösningar finns tillgängliga. Den här avhandlingen fokuserar på att använda för närvarande tillgängliga tekniker för att designa de kärnmoduler som behövs för att förbättra kapaciteten hos dessa system. Analysen och relaterad implementering av både lokaliserings och kartläggningsfunktioner för autonoma gräsklippare presenteras. Heterogena sensorer och deras olika konfigurationer undersöks och ett Adaptive Extended Kalman Filter föreslås för att smälta samman deras mätningar. Denna teknik förbättrar poseuppskattningen av den autonoma gräsklipparen, som sedan utnyttjas av kartläggningsmodulen. Det valda tillvägagångssättet för den senare, baserat på Bayesians slutledning, lyckas uppdatera kunskapen om kartan baserat på direkta interaktioner med omgivningen. De slutliga resultaten belyser vikten av exakt lokalisering som den verkliga flaskhalsen för utvecklingen av nya funktioner. Den förbättrade positionsuppskattningen gör det möjligt att definiera en virtuell gräns. Definitionen inte tillräckligt korrekt för att korrekt kartlägga förekomsten av objekt i miljön Exempel på avancerade funktioner från den föreslagna konfigurationen är implementeringen av deterministiska täckningsalgoritmer och interaktionen med gräsmattaobjekt. / I tosaerba autonomi sono disponibili per i consumatori da oltre 20 anni. Durante questo periodo, i progressi nei calcoli dei dispositivi integrati e nelle prestazioni dei sensori hanno portato a miglioramenti nell’affidabilità di questi robot. Nonostante i recenti miglioramenti, l’opportunità di innovazione di tali sistemi rimane significativa. I robot autonomi hanno ancora funzionalità limitate. Si affidano a fili elettrici installati sottoterra per delimitare i confini del prato, a cui reagiscono senza ragionamento. Tale configurazione è ormai considerata obsoleta e sono disponibili soluzioni autonome più efficaci. Questa tesi si concentra sull’utilizzo delle tecniche attualmente disponibili per progettare i moduli principali necessari per far avanzare le capacità di questi sistemi. Vengono presentate l’analisi e la relativa implementazione delle funzionalità di localizzazione e mappatura per i tosaerba autonomi. Vengono studiati sensori eterogenei e le loro diverse configurazioni e viene proposto un filtro di Kalman adattivo esteso per fondere le loro misurazioni. Questa tecnica migliora la stima della posa del rasaerba autonomo, che viene poi sfruttata dal modulo di mappatura. L’approccio scelto per quest’ultimo, basato sull’inferenza bayesiana, riesce ad aggiornare la conoscenza della mappa basata su interazioni dirette con l’ambiente. I risultati finali evidenziano l’importanza di una localizzazione precisa come vero collo di bottiglia per lo sviluppo di nuove funzionalità. La stima della posa migliorata consente la definizione di un confine virtuale. La definizione non è sufficientemente precisa per mappare correttamente la presenza di oggetti nell’ambiente Esempi di funzionalità avanzate a partire dalla configurazione proposta sono l’implementazione di algoritmi di copertura deterministici e l’interazione con gli oggetti del prato.
|
45 |
De l'auto-évaluation aux émotions : approche neuromimétique et bayésienne de l'apprentissage de comportements complexes impliquant des informations multimodales / From self-evaluation to emotions : neuromimetic and bayesian approaches for the learning of complex behavior involving multimodal informationsJauffret, Adrien 11 July 2014 (has links)
Cette thèse a pour objectif la conception d’une architecture de contrôle bio-inspirée permettant à un robot autonome de naviguer sur de grandes distances. Le modèle développé permet également d’améliorer la compréhension des mécanismes biologiques impliqués. De précédents travaux ont montré qu’un modèle de cellules de lieu, enregistrées chez le rat, permettait à un robot mobile d’apprendre des comportements de navigation robustes, tels qu’une ronde ou un retour au nid, à partir d’associations entre lieu et action. La reconnaissance d’un lieu ne reposait alors que sur des informations visuelles. L’ambiguïté de certaines situations (e.g. un long couloir) ne permettait pas de naviguer dans de grands environnements. L’ajout d’autres modalités constitue une solution efficace pour augmenter la robustesse dans des environnements complexes. Cette solution nous a permis d’identifier les briques minimales nécessaires à la fusion d’informations multimodales, d’abord par le biais d’un conditionnement simple entre 2 modalités sensorielles, puis par la formalisation d’un modèle, plus générique, de prédictions inter-modales. C’est un mécanisme bas niveau qui permet de générer une cohérence perceptive : l’ensemble des modalités sensorielles s’entraident pour ne renvoyer qu’une perception claire et cohérente aux mécanismes décisionnels de plus haut niveau. Les modalités les plus corrélées sont ainsi capables de combler les informations manquantes d’une modalité défaillante (cas pathologique). Ce modèle implique la mise en place d’un système de prédiction et donc une capacité à détecter de la nouveauté dans ses perceptions. Ainsi, le modèle est également capable de détecter une situation inattendue ou anormale et possède donc une capacité d’auto-évaluation : l’évaluation de ses propres perceptions. Nous nous sommes ensuite mis à la recherche des propriétés fondamentales à tout système d'auto-évaluation.La première propriété essentielle a été de constater qu’évaluer un comportement sensorimoteur revient à reconnaître une dynamique entre sensation et action, plutôt que la simple reconnaissance d’une forme sensorielle. La première brique encapsule donc un modèle interne minimaliste des interactions du robot avec son environnement, qui est la base sur laquelle le système fera des prédictions.La seconde propriété essentielle est la capacité à extraire l’information pertinente par le biais de calculs statistiques. Il est nécessaire que le robot apprenne à capturer les invariants statistiques en supprimant l’information incohérente. Nous avons donc montré qu’il était possible d’estimer une densité de probabilité par le biais d’un simple conditionnement. Cet apprentissage permet de réaliser l’équivalent d’une inférence bayésienne. Le système estime la probabilité de reconnaître un comportement à partir de la reconnaissance d’informations statistiques apprises. C’est donc par la mise en cascade de simples conditionnements que le système peut apprendre à estimer les moments statistiques d’une dynamique (moyenne, variance, asymétrie, etc...). La non-reconnaissance de cette dynamique lui permet de détecter qu’une situation est anormale.Mais détecter un comportement inhabituel ne nous renseigne pas pour autant sur son inefficacité. Le système doit également surveiller l’évolution de cette anomalie dans le temps pour pouvoir juger de la pertinence du comportement. Nous montrons comment un contrôleur émotionnel peut faire usage de cette détection de nouveauté pour réguler le comportement et ainsi permettre au robot d’utiliser la stratégie la plus adaptée à la situation rencontrée. Pour finir, nous avons mis en place une procédure de frustration permettant au robot de lancer un appel à l’aide lorsqu’il détecte qu’il se retrouve dans une impasse. Ce réseau de neurones permet au robot d’identifier les situations qu’il ne maîtrise pas dans le but d’affiner son apprentissage, à l’instar de certains processus développementaux. / The goal of this thesis is to build a bio-inspired architecture allowing a robot to autonomouslynavigate over large distances. In a cognitive science point of view, the model also aim at improv-ing the understanding of the underlying biological mechanisms. Previous works showed thata computational model of hippocampal place cells, based on neurobiological studies made onrodent, allows a robot to learn robust navigation behaviors. The robot can learn a round or ahoming behavior from a few associations between places and actions. The learning and recog-nition of a place were only defined by visual information and shows limitations for navigatinglarge environments.Adding other sensorial modalities is an effective solution for improving the robustness of placesrecognition in complex environments. This solution led us to the elementary blocks requiredwhen trying to perform multimodal information merging. Such merging has been done, first,by a simple conditioning between 2 modalities and next improved by a more generic model ofinter-modal prediction. In this model, each modality learns to predict the others in usual situa-tions, in order to be able to detect abnormal situations and to compensate missing informationof the others. Such a low level mechanism allows to keep a coherent perception even if onemodality is wrong. Moreover, the model can detect unexpected situations and thus exhibit someself-assessment capabilities: the assessment of its own perception. Following this model of self-assessment, we focus on the fundamental properties of a system for evaluating its behaviors.The first fundamental property that pops out is the statement that evaluating a behavior is anability to recognize a dynamics between sensations and actions, rather than recognizing a sim-ple sensorial pattern. A first step was thus to take into account the sensation/action couplingand build an internal minimalist model of the interaction between the agent and its environment.Such of model defines the basis on which the system will build predictions and expectations.The second fundamental property of self-assessment is the ability to extract relevant informa-tion by the use of statistical processes to perform predictions. We show how a neural networkcan estimate probability density functions through a simple conditioning rule. This probabilis-tic learning allows to achieve bayesian inferences since the system estimates the probability ofobserving a particular behavior from statistical information it recognizes about this behavior.The robot estimates the different statistical momentums (mean, variance, skewness, etc...) of abehavior dynamics by cascading few simple conditioning. Then, the non-recognition of such adynamics is interpreted as an abnormal behavior.But detecting an abnormal behavior is not sufficient to conclude to its inefficiency. The systemmust also monitor the temporal evolution of such an abnormality to judge the relevance of thebehavior. We show how an emotional meta-controller can use this novelty detection to regu-late behaviors and so select the best appropriate strategy in a given context. Finally, we showhow a simple frustration mechanism allows the robot to call for help when it detects potentialdeadlocks. Such a mechanism highlights situations where a skills improvement is possible, soas some developmental processes.
|
46 |
Caractérisation acoustique des relations entre les mouvements biologiques et la perception sonore : application au contrôle de la synthèse et à l'apprentissage de gestes / Acoustic characterisation of relations between biological movements and auditory perception : applications to the control of sound synthesis and gesture learningThoret, Etienne 19 December 2014 (has links)
Cette thèse s'est intéressée aux relations entre les mouvements biologiques et la perception sonore en considérant le cas spécifique des mouvements graphiques et des sons de frottement qu'ils génèrent. L'originalité de ces travaux réside dans l'utilisation d'un modèle de synthèse sonore basé sur un principe perceptif issu de l'approche écologique de la perception et contrôlé par des modèles de gestes. Des stimuli sonores dont le timbre n'est modulé que par des variations de vitesse produites par un geste ont ainsi pu être générés permettant de se focaliser sur l'influence perceptive de cet invariant transformationel. Une première étude a ainsi montré que l'on reconnait la cinématique des mouvements biologiques (la loi en puissance 1/3), et que l'on peut discriminer des formes géométriques simples juste à partir des sons de frottement produits. Une seconde étude a montré l'existence de prototypes dynamiques sonores caractérisant les trajectoires elliptiques, mettant ainsi en évidence que les prototypes géométriques peuvent émerger d'un couplage sensorimoteur. Enfin, une dernière étude a montré qu'une cinématique évoquée par un sonore influence significativement la cinématique et la géométrie d'un geste dans une tâche de reproduction graphique du mouvement d'un point lumineux. Ce résultat révèle l'importance de la modalité auditive dans l'intégration multisensorielle des mouvements continus dans une situation jamais explorée. Ces résultats ont permis le contrôle de modèles de synthèse par des descriptions gestuelles et la création d'outils de sonification pour l'apprentissage de gestes et la réhabilitation d'une pathologie motrice, la dysgraphie. / This thesis focused on the relations between biological movements and auditory perception in considering the specific case of graphical movements and the friction sounds they produced. The originality of this work lies in the use of sound synthesis processes that are based on a perceptual paradigm and that can be controlled by gesture models. The present synthesis model made it possible to generate acoustic stimuli which timbre was directly modulated by the velocity variations induced by a graphic gesture in order to exclusively focus on the perceptual influence of this transformational invariant. A first study showed that we can recognize the biological motion kinematics (the 1/3 power law) and discriminate simple geometric shapes simply by listening to the timbre variations of friction sounds that solely evoke velocity variations. A second study revealed the existence of dynamic prototypes characterized by sounds corresponding to the most representative elliptic trajectory, thus revealing that prototypical shapes may emerged from sensorimotor coupling. A final study showed that the kinematics evoked by friction sounds may significantly affect the dynamic and geometric dimension in the visuo-motor coupling. This shed critical light on the relevance of auditory perception in the multisensory integration of continuous motion in a situation never explored. All of these theoretical results enabled the gestural control of sound synthesis models from a gestural description and the creation of sonification tools for gesture learning and rehabilitation of a graphomotor disease, dysgraphia.
|
47 |
Apprentissage ouvert de representations et de fonctionnalites en robotique : anayse, modeles et implementationPAQUIER, Williams 19 March 2004 (has links) (PDF)
L'acquisition autonome de representations et de fonctionnalites en robotique pose de nombreux problemes theoriques. Aujourd'hui, les systemes robotiques autonomes sont concus autour d'un ensemble de fonctionnalites. Leurs representations du monde sont issues de l'analyse d'un probleme et d'une modelisation prealablement donnees par les concepteurs. Cette approche limite les capacites d'apprentissage. Nous proposons dans cette these un systeme ouvert de representations et de fonctionnalites. Ce systeme apprend en experimentant son environnement et est guide par l'augmentation d'une fonction de valeur. L'objectif du systeme consiste a agir sur son environnement pour reactiver les representations dont il avait appris une connotation positive. Une analyse de la capacite a generaliser la production d'actions appropriees pour ces reactivations conduit a definir un ensemble de proprietes necessaires pour un tel systeme. Le systeme de representation est constitue d'un reseau d'unites de traitement semblables et utilise un codage par position. Le sens de l'etat d'une unite depend de sa position dans le reseau. Ce systeme de representation possede des similitudes avec le principe de numeration par position. Une representation correspond a l'activation d'un ensemble d'unites. Ce systeme a ete implemente dans une suite logicielle appelee NeuSter qui permet de simuler des reseaux de plusieurs millions d'unites et milliard de connexions sur des grappes heterogenes de machines POSIX. Les premiers resultats permettent de valider les contraintes deduites de l'analyse. Un tel systeme permet d'apprendre dans un meme reseau, de facon hierarchique et non supervisee, des detecteurs de bords et de traits, de coins, de terminaisons de traits, de visages, de directions de mouvement, de rotations, d'expansions, et de phonemes. NeuSter apprend en ligne en utilisant uniquement les donnees de ses capteurs. Il a ete teste sur des robots mobiles pour l'apprentissage et le suivi d'objets.
|
48 |
Probabilistic Multi-Modal Data Fusion and Precision Coordination for Autonomous Mobile Systems Navigation : A Predictive and Collaborative Approach to Visual-Inertial Odometry in Distributed Sensor Networks using Edge Nodes / Sannolikhetsbaserad fermodig datafusion och precision samordning för spårning av autonoma mobila system : En prediktiv och kant-samarbetande metod för visuell-inertial navigation i distribuerade sensornätverkLuppi, Isabella January 2023 (has links)
This research proposes a novel approach for improving autonomous mobile system navigation in dynamic and potentially occluded environments. The research introduces a tracking framework that combines data from stationary sensing units and on-board sensors, addressing challenges of computational efficiency, reliability, and scalability. The work innovates by integrating spatially-distributed LiDAR and RGB-D Camera sensors, with the optional inclusion of on-board IMU-based dead-reckoning, forming a robust and efficient coordination framework for autonomous systems. Two key developments are achieved. Firstly, a point cloud object detection technique, "Generalized L-Shape Fitting”, is advanced, enhancing bounding box fitting over point cloud data. Secondly, a new estimation framework, the Distributed Edge Node Switching Filter (DENS-F), is established. The DENS-F optimizes resource utilization and coordination, while minimizing reliance on on-board computation. Furthermore, it incorporates a short-term predictive feature, thanks to the Adaptive-Constant Acceleration motion model, which utilizes behaviour-based control inputs. The findings indicate that the DENS-F substantially improves accuracy and computational efficiency compared to the Kalman Consensus Filter (KCF), particularly when additional inertial data is provided by the vehicle. The type of sensor deployed and the consistency of the vehicle's path are also found to significantly influence the system's performance. The research opens new viewpoints for enhancing autonomous vehicle tracking, highlighting opportunities for future exploration in prediction models, sensor selection, and precision coordination. / Denna forskning föreslår en ny metod för att förbättra autonom mobil systemsnavigering i dynamiska och potentiellt skymda miljöer. Forskningen introducerar ett spårningsramverk som kombinerar data från stationära sensorenheter och ombordssensorer, vilket hanterar utmaningar med beräkningsefektivitet, tillförlitlighet och skalbarhet. Arbetet innoverar genom att integrera spatialt distribuerade LiDAR- och RGB-D-kamerasensorer, med det valfria tillägget av ombord IMU-baserad dödräkning, vilket skapar ett robust och efektivt samordningsramverk för autonoma system. Två nyckelutvecklingar uppnås. För det första avanceras en punktmolnsobjektdetekteringsteknik, “Generaliserad L-formig anpassning”, vilket förbättrar anpassning av inneslutande rutor över punktmolnsdata. För det andra upprättas ett nytt uppskattningssystem, det distribuerade kantnodväxlingsfltret (DENSF). DENS-F optimerar resursanvändning och samordning, samtidigt som det minimerar beroendet av ombordberäkning. Vidare införlivar det en kortsiktig prediktiv funktion, tack vare den adaptiva konstanta accelerationsrörelsemodellen, som använder beteendebaserade styrentréer. Resultaten visar att DENS-F väsentligt förbättrar noggrannhet och beräknings-efektivitet jämfört med Kalman Consensus Filter (KCF), särskilt när ytterligare tröghetsdata tillhandahålls av fordonet. Den typ av sensor som används och fordonets färdvägs konsekvens påverkar också systemets prestanda avsevärt. Forskningen öppnar nya synvinklar för att förbättra spårning av autonoma fordon, och lyfter fram möjligheter för framtida utforskning inom förutsägelsemodeller, sensorval och precisionskoordinering. / Questa ricerca propone un nuovo approccio per migliorare la navigazione dei sistemi mobili autonomi in ambienti dinamici e potenzialmente ostruiti. La ricerca introduce un sistema di tracciamento che combina dati da unità di rilevazione stazionarie e sensori di bordo, afrontando le sfde dell’effcienza computazionale, dell’affdabilità e della scalabilità. Il lavoro innova integrando sensori LiDAR e telecamere RGB-D distribuiti nello spazio, con l’inclusione opzionale di una navigazione inerziale basata su IMU di bordo, formando un robusto ed effciente quadro di coordinamento per i sistemi autonomi. Vengono raggiunti due sviluppi chiave. In primo luogo, viene perfezionata una tecnica di rilevazione di oggetti a nuvola di punti, “Generalized L-Shape Fitting”, migliorando l’adattamento del riquadro di delimitazione sui dati della nuvola di punti. In secondo luogo, viene istituito un nuovo framework di stima, il Distributed Edge Node Switching Filter (DENS-F). Il DENS-F ottimizza l’utilizzo delle risorse e il coordinamento, riducendo al minimo la dipendenza dal calcolo di bordo. Inoltre, incorpora una caratteristica di previsione a breve termine, grazie al modello di movimento Adaptive-Constant Acceleration, che utilizza input di controllo basati sul comportamento del veicolo. I risultati indicano che il DENS-F migliora notevolmente l’accuratezza e l’effcienza computazionale rispetto al Kalman Consensus Filter (KCF), in particolare quando il veicolo fornisce dati inerziali aggiuntivi. Si scopre anche che il tipo di sensore impiegato e la coerenza del percorso del veicolo infuenzano signifcativamente le prestazioni del sistema. La ricerca apre nuovi punti di vista per migliorare il tracciamento dei veicoli autonomi, evidenziando opportunità per future esplorazioni nei modelli di previsione, nella selezione dei sensori e nel coordinamento di precisione.
|
49 |
Apprentissage statistique de modèles de comportement multimodal pour les agents conversationnels interactifs / Learning multimodal behavioral models for interactive conversational agentsMihoub, Alaeddine 08 October 2015 (has links)
L'interaction face-à-face représente une des formes les plus fondamentales de la communication humaine. C'est un système dynamique multimodal et couplé – impliquant non seulement la parole mais de nombreux segments du corps dont le regard, l'orientation de la tête, du buste et du corps, les gestes faciaux et brachio-manuels, etc – d'une grande complexité. La compréhension et la modélisation de ce type de communication est une étape cruciale dans le processus de la conception des agents interactifs capables d'engager des conversations crédibles avec des partenaires humains. Concrètement, un modèle de comportement multimodal destiné aux agents sociaux interactifs fait face à la tâche complexe de générer un comportement multimodal étant donné une analyse de la scène et une estimation incrémentale des objectifs conjoints visés au cours de la conversation. L'objectif de cette thèse est de développer des modèles de comportement multimodal pour permettre aux agents artificiels de mener une communication co-verbale pertinente avec un partenaire humain. Alors que l'immense majorité des travaux dans le domaine de l'interaction humain-agent repose essentiellement sur des modèles à base de règles, notre approche se base sur la modélisation statistique des interactions sociales à partir de traces collectées lors d'interactions exemplaires, démontrées par des tuteurs humains. Dans ce cadre, nous introduisons des modèles de comportement dits "sensori-moteurs", qui permettent à la fois la reconnaissance des états cognitifs conjoints et la génération des signaux sociaux d'une manière incrémentale. En particulier, les modèles de comportement proposés ont pour objectif d'estimer l'unité d'interaction (IU) dans laquelle sont engagés de manière conjointe les interlocuteurs et de générer le comportement co-verbal du tuteur humain étant donné le comportement observé de son/ses interlocuteur(s). Les modèles proposés sont principalement des modèles probabilistes graphiques qui se basent sur les chaînes de markov cachés (HMM) et les réseaux bayésiens dynamiques (DBN). Les modèles ont été appris et évalués – notamment comparés à des classifieurs classiques – sur des jeux de données collectés lors de deux différentes interactions face-à-face. Les deux interactions ont été soigneusement conçues de manière à collecter, en un minimum de temps, un nombre suffisant d'exemplaires de gestion de l'attention mutuelle et de deixis multimodale d'objets et de lieux. Nos contributions sont complétées par des méthodes originales d'interprétation et d'évaluation des propriétés des modèles proposés. En comparant tous les modèles avec les vraies traces d'interactions, les résultats montrent que le modèle HMM, grâce à ses propriétés de modélisation séquentielle, dépasse les simples classifieurs en terme de performances. Les modèles semi-markoviens (HSMM) ont été également testé et ont abouti à un meilleur bouclage sensori-moteur grâce à leurs propriétés de modélisation des durées des états. Enfin, grâce à une structure de dépendances riche apprise à partir des données, le modèle DBN a les performances les plus probantes et démontre en outre la coordination multimodale la plus fidèle aux évènements multimodaux originaux. / Face to face interaction is one of the most fundamental forms of human communication. It is a complex multimodal and coupled dynamic system involving not only speech but of numerous segments of the body among which gaze, the orientation of the head, the chest and the body, the facial and brachiomanual movements, etc. The understanding and the modeling of this type of communication is a crucial stage for designing interactive agents capable of committing (hiring) credible conversations with human partners. Concretely, a model of multimodal behavior for interactive social agents faces with the complex task of generating gestural scores given an analysis of the scene and an incremental estimation of the joint objectives aimed during the conversation. The objective of this thesis is to develop models of multimodal behavior that allow artificial agents to engage into a relevant co-verbal communication with a human partner. While the immense majority of the works in the field of human-agent interaction (HAI) is scripted using ruled-based models, our approach relies on the training of statistical models from tracks collected during exemplary interactions, demonstrated by human trainers. In this context, we introduce "sensorimotor" models of behavior, which perform at the same time the recognition of joint cognitive states and the generation of the social signals in an incremental way. In particular, the proposed models of behavior have to estimate the current unit of interaction ( IU) in which the interlocutors are jointly committed and to predict the co-verbal behavior of its human trainer given the behavior of the interlocutor(s). The proposed models are all graphical models, i.e. Hidden Markov Models (HMM) and Dynamic Bayesian Networks (DBN). The models were trained and evaluated - in particular compared with classic classifiers - using datasets collected during two different interactions. Both interactions were carefully designed so as to collect, in a minimum amount of time, a sufficient number of exemplars of mutual attention and multimodal deixis of objects and places. Our contributions are completed by original methods for the interpretation and comparative evaluation of the properties of the proposed models. By comparing the output of the models with the original scores, we show that the HMM, thanks to its properties of sequential modeling, outperforms the simple classifiers in term of performances. The semi-Markovian models (HSMM) further improves the estimation of sensorimotor states thanks to duration modeling. Finally, thanks to a rich structure of dependency between variables learnt from the data, the DBN has the most convincing performances and demonstrates both the best performance and the most faithful multimodal coordination to the original multimodal events.
|
Page generated in 0.0442 seconds