• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 349
  • 284
  • 40
  • 25
  • 16
  • 16
  • 15
  • 10
  • 9
  • 8
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 954
  • 192
  • 122
  • 114
  • 112
  • 104
  • 73
  • 71
  • 58
  • 55
  • 52
  • 49
  • 47
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
711

Refined <i>in vitro</i> Models for Prediction of Intestinal Drug Transport : Role of pH and Extracellular Additives in the Caco-2 Cell Model

Neuhoff, Sibylle January 2005 (has links)
<p>Drug transport across the intestinal epithelium is roughly predicted from permeability values obtained from Caco-2 cell monolayers. This thesis examines the important role of <i>pH</i> and extracellular additives for increasing the reliability and predictivity of the <i>in vitro</i> screening system, Caco-2.</p><p>It was shown that the passive transport of ionizable compounds may be biased by a false efflux or uptake component, when applying a physiological <i>pH</i>-gradient across the membrane. <i>pH</i> also affected the amount of compound available at the transporter-binding site. Therefore, <i>pH</i> dependence should be considered in studies of such compounds and of drug-drug interactions involving efflux transporters. It was also shown that proton-dependent apical uptake or basolateral efflux should be studied both with and without a <i>pH</i> gradient over the whole monolayers. </p><p>The two extracellular additives, bovine serum albumin (BSA) and the solubilizing agent, Cremophor<sup>®</sup> EL, also influenced Caco-2 permeabilities. BSA applied to the receiver side increases, and to the donor side decreases drug permeation according to the drug’s protein binding capacity. Thus, the absorptive transport for both passive and active compounds is favoured, giving a physiologically sound improvement of the Caco-2 cell model. Inclusion of BSA increased both the predictivity and quality of permeability studies, particularly of highly lipophilic, BCS class II compounds. Passive and active transport processes could also be distinguished after accounting for unbound concentrations. The overall effect of Cremophor<sup>®</sup> EL on the permeability to a drug was compound-specific and probably dependent on micellar incorporation. Cremophor<sup>®</sup> EL can therefore not be recommended. </p><p>Neither <i>pH</i> nor BSA affect the functionality of transporters such as P-glycoprotein. However, efflux ratios of ionizable or protein bound drugs are altered in the presence of a <i>pH</i>-gradient or BSA, indicating that an experimental system without protein or <i>pH</i> gradient can over- or underestimate active and passive efflux in drug transport.</p>
712

Evasion and Attack: Structural Studies of a Bacterial Albumin-binding Protein and of a Cephalosporin Biosynthetic Enzyme

Lejon, Sara January 2008 (has links)
<p>This thesis describes the crystal structures of two proteins in the context of combatting bacterial infections. The GA module is a bacterial albumin-binding domain from a surface protein expressed by pathogenic strains of the human commensal bacterium <i>Finegoldia magna</i>. The structure of the GA module in complex with human serum albumin (HSA) provides insights into bacterial immune evasion, where pathogenicity is acquired by the bacterial cell through the ability to coat (and disguise) itself with serum proteins. The structure shows binding of the GA module to HSA in the presence of fatty acids, and reveals interactions responsible for the host range specificity of the invading bacterium. The complex resulting from binding of the GA module to HSA readily forms stable crystals that permit structural studies of drug binding to HSA. This was exploited to study the specific binding of the drug naproxen to the albumin molecule.</p><p>Antibiotics play a major role in controlling infections by attacking invading bacteria. The enzyme deacetylcephalosporin C acetyltransferase (DAC-AT) catalyses the last step in the biosynthesis of the beta-lactam antibiotic cephalosporin C, one of the clinically most important antibiotics in current use. The enzyme uses acetyl coenzyme A as cofactor to acetylate a biosynthetic intermediate. Structures of DAC-AT in complexes with reaction intermediates have been determined. The structures suggest that the acetyl transfer reaction proceeds through a double displacement mechanism, with acetylation of a catalytic serine by the cofactor through a suggested tetrahedral transition state, followed by acetyl transfer to the intermediate through a second suggested tetrahedral transition state. The structure of DAC-AT yields valuable information for the continued study of cephalosporin biosynthesis in the context of developing new beta-lactam compounds.</p>
713

A comparison between the effects of black tea and rooibos on the iron status of primary school children / P. Breet

Breet, Petronella January 2003 (has links)
Thesis (M.Sc. (Nutrition))--North-West University, Potchefstroom Campus, 2004.
714

Protein engineering to explore and improve affinity ligands

Linhult, Martin January 2003 (has links)
In order to produce predictable and robust systems forprotein purification and detection, well characterized, small,folded domains descending from bacterial receptors have beenused. These bacterial receptors, staphylococcal protein A (SPA)and streptococcal protein G (SPG), possess high affinity to IgGand / or HSA. They are composed of repetitive units in whicheach one binds the ligand independently. The domains foldindependently and are very stable. Since the domains also havewellknown three-dimensional structures and do not containcysteine residues, they are very suitable as frameworks forfurther protein engineering. Streptococcal protein G (SPG) is a multidomain proteinpresent on the cell surface ofStreptococcus. X-ray crystallography has been used todetermine the binding site of the Ig-binding domain. In thisthesis the region responsible for the HSA affinity of ABD3 hasbeen determined by directed mutagenesis followed by functionaland structural analysis. The analysis shows that the HSAbindinginvolves residues mainly in the second α-helix. Most protein-based affinity chromatography media are verysensitive towards alkaline treatment, which is the preferredmethod for regeneration and removal of contaminants from thepurification devices in industrial applications. Here, aprotein engineering strategy has been used to improve thetolerance to alkaline conditions of different domains fromprotein G, ABD3 and C2. Amino acids known to be susceptibletowards high pH were substituted for less alkali susceptibleresidues. The new, engineered variants of C2 and ABD shownhigher stability towards alkaline pH. Also, very important forthe potential use as affinity ligands, these mutated variantsretained the secondary structure and the affinity to HSA andIgG, respectively. Moreover, dimerization was performed toinvestigate whether a higher binding capacity could be obtainedby multivalency. For ABD, binding studies showed that divalentligands coupled using non-directed chemistry demonstrated anincreased molar binding capacity compared to monovalentligands. In contrast, equal molar binding capacities wereobserved for both types of ligands when using a directed ligandcoupling chemistry involving the introduction and recruitmentof a unique C-terminal cysteine residue. The staphylococcal protein A-derived domain Z is also a wellknown and thoroughly characterized fusion partner widely usedin affinity chromatography systems. This domain is consideredto be relatively tolerant towards alkaline conditions.Nevertheless, it is desirable to further improve the stabilityin order to enable an SPA-based affinity medium to withstandeven longer exposure to the harsh conditions associated withcleaning in place (CIP) procedures. For this purpose adifferent protein engineering strategy was employed. Smallchanges in stability due to the mutations would be difficult toassess. Hence, in order to enable detection of improvementsregarding the alkaline resistance of the Z domain, a by-passmutagenesis strategy was utilized, where a mutated structurallydestabilized variant, Z(F30A) was used as a surrogateframework. All eight asparagines in the domain were exchangedone-by-one. The residues were all shown to have differentimpact on the alkaline tolerance of the domain. By exchangingasparagine 23 for a threonine we were able to remarkablyincrease the stability of the Z(F30A)-domain towards alkalineconditions. Also, when grafting the N23T mutation to the Zscaffold we were able to detect an increased tolerance towardsalkaline treatment compared to the native Z molecule. In allcases, the most sensitive asparagines were found to be locatedin the loops region. In summary, the work presented in this thesis shows theusefulness of protein engineering strategies, both to explorethe importance of different amino acids regarding stability andfunctionality and to improve the characteristics of aprotein. <b>Keywords:</b>binding, affinity, human serum albumin (HSA),albumin-binding domain (ABD), affinity chromatography,deamidation, protein A, stabilization, Z-domain, capacity,protein G, cleaning-in-place (CIP), protein engineering, C2receptor.
715

Macromolecules at Interfaces / Makromolekyler på ytor

Larsericsdotter, Helén January 2004 (has links)
In this thesis, the structure and stability of globular proteins adsorbed onto nanometer-sized hydrophilic silica particles were investigated using differential scanning calorimetry (DSC), hydrogen/deuterium exchange (HDX), and mass spectrometry (MS). The adsorption process itself was characterized with fluorescence and absorption spectroscopy and surface plasmon resonance (SPR). The combination of these methods offered a unique insight into adsorption-induced changes within proteins related to their adsorption characteristics. DSC contributed with thermodynamic information on the overall structural stability within the protein population. HDX in combination with MS contributed information on the structure and stability of adsorbed proteins with focus on changes within the secondary structure elements. In order to increase the structural resolution in this part of the investigation, proteolysis was performed prior to the MS analyzing step. Knowledge on the protein adsorption process was utilized in a practical approach called ligand fishing. In this approach, SPR was used to monitor the chip-based affinity purification of a protein with MS used for protein identification. Adsorption isotherms revealed that electrostatic interactions play an important role in the adsorption of proteins to hydrophilic surfaces. DSC investigation revealed that the thermal stability of proteins reduces with increasing electrostatic attraction between the protein and the surface and that this effect diminishes at higher surface coverage. The mass-increase due to exchange between protein hydrogen atoms and deuterium atoms in solution was investigated as a function of time. This gave insight into adsorption-induced changes in the structural stability of proteins. By combining DSC and HDX-MS, it was possible to differentiate between adsorption-induced changes in the secondary and tertiary structure. Additionally, if limited proteolysis was performed, the investigations gave insight into the orientation and protein segment specific changes in the stability of proteins adsorbed to silica surfaces. The adsorption of proteins to silica particles also provided the basis for a new experimental design that allows handling of minute amounts of proteins in a ligand fishing application, as used in the field of functional proteomics.
716

Evasion and Attack: Structural Studies of a Bacterial Albumin-binding Protein and of a Cephalosporin Biosynthetic Enzyme

Lejon, Sara January 2008 (has links)
This thesis describes the crystal structures of two proteins in the context of combatting bacterial infections. The GA module is a bacterial albumin-binding domain from a surface protein expressed by pathogenic strains of the human commensal bacterium Finegoldia magna. The structure of the GA module in complex with human serum albumin (HSA) provides insights into bacterial immune evasion, where pathogenicity is acquired by the bacterial cell through the ability to coat (and disguise) itself with serum proteins. The structure shows binding of the GA module to HSA in the presence of fatty acids, and reveals interactions responsible for the host range specificity of the invading bacterium. The complex resulting from binding of the GA module to HSA readily forms stable crystals that permit structural studies of drug binding to HSA. This was exploited to study the specific binding of the drug naproxen to the albumin molecule. Antibiotics play a major role in controlling infections by attacking invading bacteria. The enzyme deacetylcephalosporin C acetyltransferase (DAC-AT) catalyses the last step in the biosynthesis of the beta-lactam antibiotic cephalosporin C, one of the clinically most important antibiotics in current use. The enzyme uses acetyl coenzyme A as cofactor to acetylate a biosynthetic intermediate. Structures of DAC-AT in complexes with reaction intermediates have been determined. The structures suggest that the acetyl transfer reaction proceeds through a double displacement mechanism, with acetylation of a catalytic serine by the cofactor through a suggested tetrahedral transition state, followed by acetyl transfer to the intermediate through a second suggested tetrahedral transition state. The structure of DAC-AT yields valuable information for the continued study of cephalosporin biosynthesis in the context of developing new beta-lactam compounds.
717

A Drosophila Disease-Model for Transthyretin-associated Amyloidosis

Pokrzywa, Malgorzata January 2008 (has links)
Amyloidoses comprise a group of gain-of-toxic function protein misfolding diseases, in which normally soluble proteins in their functional state undergo conformational changes into highly organized and generally intractable thread-like aggregates, termed amyloid fibrils. These structures accumulate predominantly in the extracellular space but growing evidence suggests that amyloids may start to form intracellularly. At least 26 different human proteins, intact or in fragmented form, are known to form amyloid, which is linked with many debilitating neurodegenerative diseases such as Alzheimer’s disease (AD), Creutzfeldt-Jakob disease, and transthyretin (TTR)-related amyloidosis (ATTR). In this work, we focus on ATTR, which is one of the most frequent systemic amyloid diseases. A functional link was established between hereditary ATTR, a severe and fatal disorder and the enhanced propensity of the human plasma protein transthyretin (TTR) to form aggregates, caused by single point mutations in the TTR gene. The disease is heterogeneous and clinical symptoms vary from cardiomyopathy to progressing sensorimotor polyneuropathy depending on TTR variant involved and the amyloid deposition site. Despite the fact that TTR-derived amyloid accumulates in different organs such as heart, kidney, eyes, and predominantly in the peripheral nerves of ATTR patients, the exact mechanism of the disease development is not understood. In contrast to the case of AD, it has been difficult to generate an animal model for ATTR in transgenic mice that would be useful in understanding TTR aggregation processes and the mechanisms of the associated toxicity as these mice did not develop any neuropathic phenotype besides amyloid deposits. Therefore, we created a disease-model in Drosophila due to its huge repertoire of genetic techniques and easy genotype – phenotype translation, as well as its success in modeling human neurodegeneration. We have generated transgenic flies that over-express the clinical amyloidogenic variant TTRL55P, the engineered variant TTR-A (TTRV14N ⁄ V16E), and the wild-type protein. All TTR variants were found in the secreted form in the hemolymph where misfolding occurred and depending on the pool of toxic species, the fate of the fly was decided. Within a few weeks, both mutants (but not the wild-type TTR) demonstrated a time-dependent aggregation of misfolded molecules in vivo. This was associated with neurodegeneration, change in wing posture, attenuation of locomotor activity including compromised flying ability, and shortened life span. In contrast, expression of the wild-type TTR had no discernible effect on either longevity or fly behavior. In this work, we also addressed the correlation between TTR transgene dosage and thus, protein levels, with the severity of the phenotypes observed in TTR-A flies which developed a “dragged wing” phenotype. Remarkably, we established that degenerative changes such as damage to the retina strictly correlated with increased levels of mutated TTR but inversely with behavioral alterations and the dragged wing phenotype. We characterized formation of aggregates in the form of 20 nm spherules and amyloid filaments intracellularly in the thoracic adipose tissue and brain glia (both tissues that do not express the transgene). Moreover, we detected a fraction of neurotoxic TTR-A in the hemolymph of young but not old flies. We proposed that these animals counteract formation and persistence of toxic TTR-A species by removal from the circulation into intracellular compartments of glial and fat body cells and this is part of a mechanism that neutralizes the toxic effects of TTR. We validated the fly model for ATTR by applying a genetic screen during study of modifier genes. We found Serum amyloid P component (a product of the APCS gene) as a potent modifier of TTR amyloid-induced toxicity that was effective in preventing the apoptotic response in cell culture assay and capable of reducing the dragged wings when co-expressed in TTR-A flies. Finally, we optimized this fly model in order to screen for therapeutic compounds effective against ATTR. Feeding assays showed the effectiveness of several compounds among known native-state kinetic stabilizers of TTR against its aggregation. We described several early endpoints in this model, which can be used as a rapid and cost-effective method for optimizing concentrations and pre-screening of drug candidates. As the proof of principle, by feeding flies with increasing doses of diflunisal analogue (an FDA-approved Non-Steroidal Anti-Inflammatory Drug) a dose-dependent reduction of the dragged wings was observed.
718

Electrospray Ionization Mass Spectrometry for Determination of Noncovalent Interactions in Drug Discovery

Benkestock, Kurt January 2008 (has links)
Noncovalent interactions are involved in many biological processes in which biomolecules bind specifically and reversibly to a partner. Often, proteins do not have a biological activity without the presence of a partner, a ligand. Biological signals are produced when proteins interact with other proteins, peptides, oligonucleotides, nucleic acids, lipids, metal ions, polysaccharides or small organic molecules. Some key steps in the drug discovery process are based on noncovalent interactions. We have focused our research on the steps involving ligand screening, competitive binding and ‘off-target’ binding. The first paper in this thesis investigated the complicated electrospray ionization process with regards to noncovalent complexes. We have proposed a model that may explain how the equilibrium between a protein and ligand changes during the droplet evaporation/ionization process. The second paper describes an evaluation of an automated chip-based nano-ESI platform for ligand screening. The technique was compared with a previously reported method based on nuclear magnetic resonance (NMR), and excellent correlation was obtained between the results obtained with the two methods. As a general conclusion we believe that the automated nano-ESI/MS should have a great potential to serve as a complementary screening method to conventional HTS. Alternatively, it could be used as a first screening method in an early phase of drug development programs when only small amounts of purified targets are available. In the third article, the advantage of using on-line microdialysis as a tool for enhanced resolution and sensitivity during detection of noncovalent interactions and competitive binding studies by ESI-MS was demonstrated. The microdialysis device was improved and a new approach for competitive binding studies was developed. The last article in the thesis reports studies of noncovalent interactions by means of nanoelectrospray ionization mass spectrometry (nanoESI-MS) for determination of the specific binding of selected drug candidates to HSA. Two drug candidates and two known binders to HSA were analyzed using a competitive approach. The drugs were incubated with the target protein followed by addition of site-specific probes, one at a time. The drug candidates showed predominant affinity to site I (warfarin site). Naproxen and glyburide showed affinity to both sites I and II. / QC 20100705
719

Acute Occlusion of the Superior Mesenteric Artery : Diagnosis and treatment

Block, Tomas January 2010 (has links)
Acute occlusion of the superior mesenteric artery (SMA) is a condition associated with high mortality and morbidity. The aim of this thesis is to evaluate diagnostic and therapeutic approaches for acute SMA occlusion. In a prospective study of patients with suspected intestinal ischemia, no biomarker was sufficiently accurate to detect this condition. In a second retrospective study, pancreatic amylase and troponin-I were elevated in a substantial proportion of patients with verified SMA occlusion. In an experimental animal model of acute SMA occlusion, microarray studies of ischemic small bowel wall were used to characterize the mRNA response to ischemia. Thrombospondin, Monocyte Chemoattractant Protein 1 and Gap Junction Alpha 1 were consistently up-regulated in all pigs with intestinal ischemia. Genes encoding previously proposed biomarkers for intestinal ischemia were either up-regulated, such as lactate dehydrogenase and creatine kinase, or down-regulated, such as intestinal fatty acid binding protein and glutathione S-transferase. In a study of the role of computed tomography in the diagnosis of SMA occlusion, it was shown that computed tomography with intravenous contrast was associated with improved survival. A retrospective analysis of all acute SMA revascularizations in Sweden 1999-2006 revealed that D-dimer was elevated in all 35 measured cases.  Endovascular surgery was associated with better outcome than open surgery, both in short and in long term. The presence of postoperative short bowel syndrome was a strong independent risk-factor for decreased long-term survival. Conclusions: Data affirm that D-dimer may serve as an exclusion test for acute SMA occlusion, whereas elevated troponin-I and pancreatic amylase are potential diagnostic pitfalls. Contrast-enhanced computed tomography of the visceral arteries seems to be the best diagnostic method. Endovascular surgery is an option to open surgery in selected cases, and was associated with favourable outcome.
720

Retención de medicación en los equipos de sueroterapia: repercusión clínica y acciones de mejora

García Matarin, Adellna 27 January 2012 (has links)
El text del capítol 4 ha estat retirat seguint instruccions de l’autorai, en existir participació d’empreses, existir conveni de confidencialidad o existeix la possibilitat de generar patents / El texto del capítulo 4 ha sido retirado siguiendo instrucciones de la autora, al existir participación de empresas, convenio de confidencialidad o la posibilidad de generar patentes. / The text of chapter 4 has been withdrawn on the instructions of the author, as there is participation of undertakings, confidentiality agreement or the ability to generate patent / OBJETIVO: Conocer el método de administración intermitente de un fármaco endovenoso en un servicio de urgencias (SU) y si la retención de fármaco en el equipo de sueroterapia, una vez finalizada la perfusión, repercute sobre la respuesta clínica. MÉTODO: Estudio prospectivo, observacional y descriptivo en una primera fase. En una segunda fase ha sido intervencionista y analítico. Fase 1: análisis de la técnica de perfusión y su repercusión en la respuesta terapéutica sobre el paciente. Fase 2: análisis de la técnica de perfusión intermitente tras acción docente de mejora dirigida al personal de enfermería y su repercusión en la respuesta terapéutica sobre el paciente. Fármaco analizado: Paracetamol 1 g/ev. Variables: edad, sexo, peso, minutos de perfusión, volumen residual post-perfusión en los equipos, escala de dolor y/o temperatura basal (15’, 60’ y 4 horas), concentración plasmática de paracetamol a las 4 horas. Población de estudio: Individuos de ambos sexos mayores de 15 años de edad que acuden al SU y que se les prescribe paracetamol 1 g/ev. RESULTADOS: Se incluye 119 pacientes, 60 durante la 1ª fase y 59 en la 2ª fase. Ninguna perfusión considerada administrada en su totalidad había sido purgada durante la fase 1. El tiempo de administración de la perfusión fue de 25,7 ± 10,9 minutos. La omisión de purga conllevó un volumen residual medio retenido en el sistema de perfusión de 12,6 ± 2,9 ml, alcanzándo una concentración plasmática media de paracetamol de 4,3 ± 5,0 μg/ml, frente a los 5,27 ± 4,42 μg/ml en los casos en los que sí se realizó purga (fase 2). La relación entre concentración de fármaco y la mejoría del dolor se mostró estadísticamente significativa en la medición del mismo a las 4 horas (p = 0,05). El efecto antitérmico no estuvo relacionado con el volumen residual obtenido. CONCLUSIONES: El volumen residual es considerable en los equipos de perfusión y puede tener una repercusión en la respuesta clínica y terapéutica. Consideramos que la práctica de una purga del equipo de sueroterapia es una medida necesaria y debe considerarse su implantación y realización rutinaria. / OBJECTIVES: To determine whether acetaminophen is retained inside intravenous infusion bottles and lives after intermittent administration of fluids in the emergency department and whether such retention has an effect on outcomes. METHODS: Prospective, observational study in the first phase, followed by a second phase to analyze the effect of technical instruction and intervention. In the first phase, the completeness of intravenous administration of medication and the patient’s response to therapy were recorded. In the second phase, after instruction to improve the staff’s technical performance of intravenous infusion of medication, completeness of administration and patient response were again recorded. The medication studied was acetaminophen (1 g) infused through an intravenous line. Variables recorded were age, sex, weight, duration of infusion, residual volume left in the intravenous infusion equipment, score on a pain scale and/or temperature (at 15 minutes, 1 hour, and 4 hours), and plasma concentration of acetaminophen at 4 hours. The study population consisted of male and female emergency department patients aged 15 years or older who were prescribed 1 g of intravenous Acetaminophen. RESULTS: A total of 119 patients were enrolled; 60 were studied in the first phase and 59 in the second. In the first phase, the infusion equipment failed to draim completely in all cases. Intravenous administration took a mean (SD) of 25.7 (10.9) minutes during this phase and omission of a flush maneuver at the end led to leaving a mean residual volume of 12.65 (2.95) mL in the system. The mean plasma concentration of acetaminophen in the first phase (no instruction to flush the line) was 4.28 (5.04) micrograms/mL; in the second phase, after the staff had been instructed to flush the system, the mean plasma concentration was 5,27 (4,42) micrograms/mL. We observed a statistically significant relation between drug plasma concentration and pain relief at 4 hours (P=.05), but no correlation between temperature and residual volume in the equipment. CONCLUSIONS: Considerable volume is left inside intravenous infusion systems, and loss of infusion may affect clinical response and therapy. We believe routine flusing of intravenous infusion system is essential.

Page generated in 0.0575 seconds