11 |
Evolution of quartz and calcite microstructures exhumed from deep brittle-ductile shear zones in the Southern Alps of New Zealand : a thesis submitted to the Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Geology /Hill, Matthew P. January 2005 (has links)
Thesis (M.Sc.)--Victoria University of Wellington, 2005. / Includes bibliographical references.
|
12 |
Brittle-Ductile Shear Zones Northwest of the Grenville Front Mylonite Zone, Killarney, OntarioNacha, Suzanne 21 June 1989 (has links)
<p> Small shear zones located northwest of the Grenville Front Mylonite Zone exhibit both a brittle and ductile deformation history. Textures reveal that an earlier mylonitic rock has been overprinted by one which demonstrates textures typical of brittle cataclasis.</p> <p> ductile deformation has occurred under greenschist facies conditions, while a later, brittle event has occurred below lower greenschist temperatures. These produce high shear strain values which lie between 14.44 and 10.79.</p> <p> Upper and lower age limits for the initiation of shear
zones have been determined as being prior to the emplacement of pegmatite dykes, and up until the formation of brittle-ductile shear zones found locally. Thus, they have developed
between 1400 ± 50 Ma and approximately 1100 + ? Ma.</p> / Thesis / Bachelor of Arts (BA)
|
13 |
Strain Localization Mechanisms in the Scituate Granite, Rhode IslandKrasner, Paul 10 August 2017 (has links)
No description available.
|
14 |
Structural Analysis of a Potential Peri-Gondwana Detachment: George River Suite-Bras d’Or Gneiss Contact Relations in the Creignish Hills, Cape Breton, Nova ScotiaWessel, Zachary R. 29 July 2004 (has links)
No description available.
|
15 |
Tectonothermal evolution of the Sarandí del Yí Shear Zone and adjacent blocks (Uruguay): Implications for the assembly of Western GondwanaOriolo, Sebastián 14 July 2016 (has links)
No description available.
|
16 |
Evolução estrutural das zonas de cisalhamento dúcteis na porção centro-leste do domínio da Zona Transversal na Província Borborema / Structural evolution of ductil shear zones on Central Eastern segment of transversal zone domain on Borborema ProvinceAlan Wanderley Albuquerque Miranda 31 August 2010 (has links)
A área estudada está inserida no Domínio Transversal da Província Borborema. As unidades litoestratigráficas que compõem o embasamento paleoproterozócio (riaciano) são representadas por rochas ortoderivadas dos Complexos Salgadinho e Cabaceiras. Esses complexos foram individualizados de acordo com as suas diferenças composicionais, texturais e/ou geocronológicas. As rochas metassedimentares de idade paleoproterozóica (Orosiriano) foram interpretadas como constituintes do Complexo Sertânia. O magmatismo no estateriano é caracterizado por ortognaisses sienogranítcos da Suíte Carnoió-Caturité e por metanortositos do Complexo Metanortosítico Boqueirão. As unidades litoestratigráficas do Neoproterozóico são representadas por sucessões metassedimentares Criogenianas do Complexo Surubim e ortognaisses granodioríticos e sienograníticos do início do Ediacarano, denominados de Complexo Sumé e Ortognaisse Riacho de Santo Antônio, respectivamente. O magmatismo granítico do Ediacarano foi caracterizado pelo alojamento dos Plutons Inácio Pereira e Marinho. Os dados geocronológicos (U-Pb em zircão) obtidos indicam, no mínimo, o desenvolvimento de três eventos tectono-magmáticos. As idades de 2042 + 11Ma e 1996 + 13Ma obtidas nos ortoanfibolitos do Complexo Cabaceiras foram interpretadas como a idade de cristalização do protólito e metamorfismo, respectivamente. A idade de 1638 + 13Ma proveniente de hornblenda ortognaisse sienogranítico da Suíte Carnoió-Caturité foi interpretada como a idade de cristalização do protólito, marcando um evento magmático Estateriano de afinidade anorogênica. A idade de 550 + 3.1Ma encontrada em monzogranito porfirítico do Pluton Marinho é um registro do último evento magmático no final do Ediacarano, associado ao estágio tardio de desenvolvimento da Zona de Cisalhamento Coxixola. Os dados estruturais permitiram a individualização de três fases de deformação dúcteis, individualizadas como D1, D2 e D3. A fase D1 foi responsável pela geração de uma foliação S1, observada somente na charneira de dobras F2. O evento D2 é assinalado por uma tectônica contracional com transporte para NNW, observado a partir de bandas de cisalhamento assimétricas e dobras de arrasto em cortes paralelos a lineação de estiramento (L2x). Zonas de cisalhamento dúcteis de geometria e cinemática distintas desenvolveram-se durante a fase D3. As zonas de Cisalhamento Boa Vista, Carnoió e Congo estão orientadas na direção NE-SW e exibem cinemática sinistral em cortes paralelos à lineação de estiramento (L3x). As terminações meridionais dessas zonas de cisalhamento estão conectadas com a Zona de Cisalhamento Coxixola. Essa zona de cisalhamento, de direção WSW-ENE e cinemática destral, atravessa toda a área de estudo, com uma espessura média de rochas miloníticas de 300m. A Zona de Cisalhamento Inácio Pereira ocorre na porção leste da área de estudo, orientada na direção WNW-ESE. A análise geométrica e cinemática dessa zona de cisalhamento sugere uma evolução deformacional através de regime transpressivo oblíquo sinistral. O padrão anastomosado final resultante do desenvolvimento de todas as zonas de cisalhamento da área é relacionado à evolução estrutural de um sistema de zonas de cisalhamento dúcteis conjugadas. / The studied area is inserted in the Transversal Domain of Borborema Province. The Paleoproterozoic (Riacian) basement encompasses mainly by metaplutonic rocks from Salgadinho and Cabaceiras Complex. These complexes were individualized according to their compositional, textural and/or geochronological datas. The Paleoproterozoic (Orosirian) metasedimentary rocks were interpreted as components of Sertânia Complex. The Estatherian magmatic event is characterized by syenogranitic orthogneisses of the Carnoió-Caturité Suite and metaplutonic rocks of Metanorthositic Boqueirão Complex. The Neoproterozoic lithostratigraphic units are represented by Cryogenian metasedimentary successions of Complex Surubim and by Early-Ediacaran granodioritic and syenogranitic orthogneisses and of the Sumé Complex and Riacho de Santo Antonio orthogneisses, respectively. The Ediacaran granitic magmatism was characterized by the emplacement of Inácio Pereira and Marinho Plutons. The geochronological data (LA-ICPMS) indicate at least of three tectono-magmatic events. The 2042 + 13Ma and 1996 + 11Ma ages from amphibolites of Cabaceiras Complex were interpreted as the crystallization age of the protolith and metamorphism, respectively. The age of 1638 + 13Ma from the syenogranitic hornblende orthogneiss of Carnoió-Caturité Suite was interpreted as the crystallization age of the protolith, marking an Estatherian anorogenic magmatic event. The age of 550 + 3.1Ma acquired in a porphyritic monzogranite of Marinho Pluton is a record of the last magmatic event in the Late-Ediacaran, associated with the final stage of development of the Coxixola Shear Zone. The structural data allowed the individualization of three deformation phases, individualized as D1, D2 and D3. D1 was responsible for generating a S1 foliation, observed only at the hinge of F2 folds. The D2 event is marked by a thrust regime with transport to NNW, observed from asymmetrical shear bands and drag folds in sections parallel to stretching lineation (L2x). Ductile shear zones of different geometry and kinematics had been developed during the D3 phase. The NE-SW Boa Vista, Carnoió and Congo Shear zones exhibit sinistral kinematic in sections parallel to stretching lineation (L3x). The southern limits of these shear zones are connected with Coxixola Shear Zone. This WSW-ENE shear zone with dextral kinematics crosscut the entire studied area, with an average of 300m thickness of mylonitic rocks. The WNW-ESE Inácio Pereira Shear Zone is situated in the eastern portion of the studied area, shows geometric and kinematic characteristics in agreement with an evolution through an oblique-sinistral transpressive regime. The structural evolution of a system of conjugate ductile shear zones is responsible by anastomosed framework exposed in a map view.
|
17 |
Kinematic evolution of the Homestake and Slide Lake shear zones, central Colorado: Implications for mid-crustal deformation during the MesoproterozoicLee, Patricia Elizabeth 01 May 2011 (has links)
Kinematic analysis and field mapping of the Homestake shear zone (HSZ) and Slide Lake shear zone (SLSZ) in central Colorado provide new evidence for strain partitioning in the mid-crust at ~1.4 Ga. The northeast-striking, steeply dipping HSZ comprises a ~10-km-wide set of anastomosing ductile shear zones and pseudotachylyte-bearing faults. Approximately 3-km south of the HSZ, the north-northeast-striking, shallowly dipping mylonites of the SLSZ form three 1-10-m-thick shear zone splays. Both top-up-to-the-northwest and top-down-to-the-southeast shear sense are recorded in the SLSZ and HSZ. Oblique stretching lineations in both shear zones show vertical (top-down-to-the-southeast and top-up-to-the-northwest) and dextral movement occurred during mylonite development. Quartz and feldspar deformation mechanisms and quartz [c] axis lattice preferred orientation (LPO) patterns are consistent with deformation temperatures ranging from ~280-500°C in the HSZ to ~280-600°C in the SLSZ. Mean kinematic vorticity and quartz [c] axis LPOs for parts of each shear zone suggest plane and non-plane strain general shear with contributions of 47-69% pure shear and 31-53% simple shear. Based on micro- and mesoscale kinematics along with mean kinematic vorticity values and deformation temperature estimates, we propose that HSZ and SLSZ formed during strain localization and partitioning within a mid-crustal transpressional shear zone system that involved subvertical shuffling at ~1.4 Ga.
|
18 |
Multiphase gas transport in a shear zoneJódar Bermúdez, Jorge 09 July 2007 (has links)
In the post-operational phase of a Low/Intermediate-Low radioactive waste repository, gas will be generated in the caverns due to anaerobic corrosion of metals, and also chemical and microbial degradation of organic substances. Previous investigations on gas migration have indicated that discrete water conducting features (e.g. shear zones) are mainly responsible for gas transport from the caverns through the geosphere. Two phase flow processes occur in these water conducting features; the continuity and spatial distribution of pore spaces, the pore size distribution and the interfacial forces of the three phases gas-water-rock have a significant influence on gas transport.The main difficulties to be resolved when simulating two-phase flow processes in fractured rock are:- The description of the internal heterogeneity of the individual water conducting features. The influence of channelling along preferential flow paths is even more important than for single phase fluid flow, because gas transport takes place more or less exclusively along the most transmissive channels. - The determination of effective mass exchange coefficients of the relevant components of the system. Mass exchange may occur between three phases (gas-water-rock). It depends on the spatial distribution of water and gas along the water conducting features (i.e. specific surface of contact areas between phases), and on the solubility and diffusivity of the different components, but also on a couple of state variables of liquid phase (initial content of dissolve/free gas, initial pressure).The work presented in this thesis aims to improve the understanding of the physics of single and multiphase transport phenomena, to be able to develop a quantitative description of gas transport in shear zones to overcome in a satisfactory way the problems described above.
|
19 |
Dynamic and cyclic properties in shear of tuff specimens from Yucca Mountain, NevadaJeon, Seong Yeol, 1972- 11 September 2012 (has links)
Yucca Mountain was designated as the proposed high-level radioactive waste repository by the U.S. Government in 1987. The proposed repository design requires high safety for a long maintenance period of 10,000 years. To satisfy this requirement, evaluation of the influence of earthquakes on the repository is necessary. Prediction of earthquake-induced ground motions around the repository requires knowledge of the dynamic properties of the geologic materials around the repository. The main geologic materials in the vicinity of Yucca Mountain are tuffs (ignimbrites) which are formed by the deposition of volcanic ash mixed with erupted volcanic gas, water vapor and pyroclastic material. Two types of dynamic tests, (1) the free-free, unconfined, resonant column and direct arrival test (freefree URC test) and (2) the fixed-free resonant column and torsional shear test (fixed-free RCTS test), were used to measure the dynamic properties of tuffs. The emphasis in this dynamic testing was evaluation of shear modulus (G) and material damping ratio (D) of the tuffs in the small-strain (linear) and mildly nonlinear (to strains of about 0.02 %) ranges. To evaluate the influence of various parameters on G and D of tuffs, correlations with other features such as total unit weight, porosity and stratigraphic unit were performed and general relationships between them are proposed. In addition, an unconfined, slow-cyclic torsional shear (CTS) device was developed and used to measure the cyclic shear properties of the tuffs from Yucca Mountain at larger strain amplitudes than possible in the fixed-free RCTS tests. Additionally, the CTS device was also used to determine the shear failure strength of the tuffs. By combining the cyclic shear properties of the tuffs from the CTS tests and the dynamic properties of the tuffs from the fixed-free RCTS tests, complete dynamic property curves from small-strain to failure strain were evaluated. / text
|
20 |
Reflection seismic investigation in the Skellefte ore district : A basis for 3D/4D geological modelingDehghannejad, Mahdieh January 2014 (has links)
The Skellefte ore district in northern Sweden is a Palaeoproterozoic volcanic arc and one of the most important ones hosting volcanogenic massive sulfide (VMS) deposits, producing mainly base metals and orogenic gold deposits. Due to high metal prices and increased difficulties in finding shallow deposits, the exploration for and exploitation of mineral resources is quickly being moved to greater depths. For this reason, a better understanding of the geological structures in 3D down to a few kilometers depth is required as a tool for ore targeting. As exploration and mining go deeper, it becomes more and more evident why a good understanding of geology in 3D at exploration depths, and even greater, is important to optimize both exploration and mining. Following a successful pilot 3D geological modeling project in the western part of the district, the Kristineberg mining area, a new project "VINNOVA 4D modeling of the Skellefte district" was launched in 2008, with the aim of improving the existing models, especially at shallow depth and extending the models to the central district. More than 100 km of reflection seismic (crooked) profiles were acquired, processed and interpreted in conjunction with geological observations and potential field data. Results were used to constrain the 3D geological model of the study area and provided new insights about the geology and mineral potential at depth. Results along the seismic profiles in the Kristineberg mining area proved the capability of the method for imaging reflections associated with mineralization zones in the area, and we could suggest that the Kristineberg mineralization and associated structures dip to the south down to at least a depth of about 2 km. In the central Skellefte area, we were able to correlate main reflections and diffractions with the major faults and shear zones. Cross-dip analysis, reflection modeling, pre-stack time migration, swath 3D processing and finite-difference seismic modeling allowed insights about the origin of some of the observed reflections and in defining the imaging challenges in the associated geological environments. / VINNOVA 4D modeling of the Skellefte district
|
Page generated in 0.0561 seconds