• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 21
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Vývoj mikrostruktury pokročilých oxidových keramických materiálů při rychlém slinování / The microstructure evaluation of advanced oxide ceramics during fast sintering

Prajzler, Vladimír January 2017 (has links)
The diploma thesis deals with influence of fast pressure-less sintering on the microstructure of advanced ceramic materials, namely -Al2O3 and tetragonal ZrO2 (doped by 3 mol% Y2O3) with particle sizes ranging from 60 nm to 270 nm. Fast and controlled heating rate was enabled by utilization of the special superkanthal furnace with moving sample holder. Defect-free bulk and dense samples were prepared using heating rates in order of 100-200 °C/min. Higher densities reached the samples pressed by higher pressures; the specimens with densities higher than 99 % t.d. were prepared within tens of minutes for alumina as well as for zirconia with very low thermal conductivity. Different behavior was observed only for material TZ-3Y, which exhibited core-shell structure with dense surface and porous centre after sintering at heating rates higher than 10 °C/min. It was shown in this work that such behavior was not primarily caused by the high thermal gradient resulting from high heating rates. Its creation was probably caused by chlorine impurities. The mechanism of desintering of these samples was described and eliminated by calcination of the samples at 1000 °C for 10 hours prior to fast sintering at 1500 °C, so even this material could be fast sintered up to 99.9 % theoretical density.
12

Stavebně technologický projekt bytového domu v Brně / CONSTRUCTION AND TECHNOLOGICAL PROJECT OF RESIDENTIAL BUILDING IN BRNO

Hoffmann, Ondřej January 2015 (has links)
Final thesis deals with solution of technological project of apartment block. Thesis contains technological prescription, control and test plans and budget for stage of ground works, shell construction and roofing. Roofing system design, timetables and plan of resources are also included.
13

Nanopartículas magnéticas metálicas recobertas com óxido de ferro: intensificação das propriedades magnéticas da nanopartícula e funcionalização para aplicação em biomedicina / Iron oxide-coated metal magnetic nanoparticles: improved magnetic properties and surface functionalization for biomedical applications

Beck Júnior, Watson 28 February 2011 (has links)
A utilização de nanopartículas (NP) magnéticas em várias áreas da biomedicina e biotecnologia vem recebendo elevado destaque nos últimos anos, graças à versatilidade de aplicações tais como: reparo de tecidos, diagnósticos, imagens por ressonância magnética, tratamento contra o câncer, separação celular, transporte controlado de drogas, entre outras. Atualmente, as NP com potencialidade de aplicação em biomedicina baseiam-se principalmente em óxidos magnéticos de ferro, os quais apresentam comportamento superparamagnético a temperatura ambiente e baixa magnetização da ordem de 60 emu g-1. A utilização dos óxidos se baseia em duas razões principais: facilidade e versatilidade de modificação da superfície e funcionalização devido aos grupos hidroxila na superfície das NP e pela baixa toxicidade comparada às NP magnéticas metálicas. Biocompatibilidade e funcionalidade específica são obtidas geralmente pela incorporação de materiais paramagnéticas e/ou diamagnéticos na superfície das NP contribuindo para diminuir ainda mais o baixo valor de magnetização de saturação dos óxidos. Nesse contexto, é necessário o desenvolvimento de novos núcleos magnéticos com elevado valor de magnetização, próximos aos valores observados para ferro metálico (~200 emu g-1). Entretanto, esses valores são observados apenas em NP metálicos com elevada toxicidade. Assim, neste trabalho, NP magnéticas bimetálicas de FePt, CoPt e NiPt recobertas óxido de ferro ou ferritas de Co e Ni foram sintetizadas pelo processo poliol modificado combinado com a metodologia de crescimento mediado por semente. As NP obtidas apresentaram tamanho e distribuição de tamanho compatíveis para aplicações biomédicas e a magnetização de saturação dos diferentes sistemas foi intensificada quando comparada às de NP de óxidos magnético puros. Os surfactantes ácido oleico e oleilamina presentes na superfície das NP como sintetizadas foram substituídos por moléculas de APTMS (3-aminopropiltrimetoxisilano) resultando em sistemas de NP dispersáveis em água. Adicionalmente, moléculas de carboximetil-dextrana foram conjugadas com as moléculas de APTMS modificando a superfície das NP e levando a formação de sistemas de NP magnéticas biocompatíveis, com estabilidade em dispersões aquosa e resposta magnética melhorada. As NP sintetizadas apresentam, em resumo, grande potencialidade para diversas aplicações em biomedicina. / In recent years, the magnetic nanoparticles uses in many biomedical and biotechnological areas have received great attention due to their applications possibilities such as: tissue repair, diagnostics, magnetic resonance imaging, cancer treatment, cell separation, and controlled drug delivery, among others. Today, the magnetic nanoparticles applications are mainly based on magnetic iron oxides, which exhibit superparamagnetic behavior at room temperature and low saturation magnetization around 60 emu g-1. Magnetic oxide uses was based in two main reasons: easily and versatility of surface changes and functionalization due to hydroxyl groups present on the oxide nanoparticles surface, and low toxicity compared with the magnetic metallic nanoparticles. Biocompatibility and targetable functionalizations are generally obtained by paramagnetic and/or diamagnetic materials incorporations onto the nanoparticle surface contributing to decreases the already low oxide saturation magnetization. In this context, the development of new magnetic nuclei with high magnetizations values closed to the metallic iron values (~200 emu g-1) is required. However, this value is only generally observed in highly toxic metallic nanoparticles. Therefore, in this study, bimetallic magnetic nanoparticles of FePt, CoPt and NiPt coated with iron oxide and Ni- or Co-ferrites in a core-shell structure are synthesized by using the modified polyol process combined with the seed-mediated growth method. Obtained nanoparticles presented size and size distribution compatible for biomedical applications and the saturation magnetization of the different synthesized systems were enhanced compared with the pure magnetic oxide nanoparticles. Oleic acid and oleylamine present on the as-synthesized magnetic nanoparticles surface were properly changed by (3-aminopropyl)trimethoxysilane (APTMS) molecules leading to water-dispersible magnetic nanoparticles system. In addition, carboxymethyl-dextran molecules were conjugated with the APTMS molecules changing the nanoparticles surfaces and resulting in biocompatible water-soluble magnetic nanoparticles systems with improved magnetic response. These synthesized biocompatible magnetic systems present a great potential for many biomedical applications.
14

Development and Engineering Application of Flat Shell Element by the Vector Form Intrinsic Finite Element Method

Chung, Pei-yin 30 August 2010 (has links)
Abstract This study focuses on the development of a plate-shell element using the vector form intrinsic finite element (VFIFE) method to analyze the structural behavior of thin shell structure subjected to various exerting forces. The shell element employed here is the flat three-node triangular shell element proposed by Bathe and Ho, which is obtained by superimposing CST (constant strain triangle) element with DKT (discrete Kirchhoff theory) triangular plate element. The nodal coordinates, displacements, rotations, and the motion equations of the structure are defined in a fixed global set of coordinates. The strains of the shell element, the element internal nodal forces and the element stiffness matrix are defined in terms of co-rotational coordinates, which are corresponding to the configuration of the shell element. Based on the co-rotational coordinate principle, the nodal displacement between two adjacent time steps can be separated into displacements induced from rigid body motion or deformation, and the incremental internal nodal forces can also be obtained. Finally, following the Newton's 2nd law, the equations of motion can be built to analyze the dynamic responses of thin shell structures. The theory derived in this study, were further verified to be able to simulate the behavior of thin shell structures subjected to both static and dynamic loadings. This new analytical model was proved to be an effective tool that can be an alternertive to traditional finite element procedure to solve for complicated engineering problems in thin shell structures.
15

Electrophoretic deposition of semiconducting polymer metal oxide nanocomposites and characterization of the resulting films

Vu, Quoc Trung 17 December 2005 (has links) (PDF)
Conducting polymer nanocomposites composed of metal oxides and polythiophene was synthesized by chemical polymerization in colloidal suspensions. The electrochemical and photoelectrochemical properties of such nanocomposites have been studied. For these investigations films of nanocomposites were prepared by an electrophoretic deposition process. The deposition process was studied in greater detail and kinetic details were determined. The high voltage electrophoretic deposition process was combined with a quartz crystal microbalance (QCM). Then the films were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and photocurrent spectroscopy.
16

Über die Entwicklung der Realraumindikatoren Cp mit besonderem Hinblick auf C0.6

Finzel, Kati 19 October 2011 (has links) (PDF)
Es besteht der Wunsch nach Indikatoren, deren Signaturen dem chemischen Verständnis entsprechen. Die Suche nach chemischen Signaturen im Realraum ist unter anderem deshalb ein so fruchtbares Arbeitsfeld, weil trotz der Fülle von Indikatoren (die alle einen unterschiedlichen Aspekt der Bindung beleuchten) die Frage nach dem Abbild der chemischen Bindung im Realraum immer noch auf Antwort wartet. Ein Teil von Indikatoren zerlegt den Raum in Bereiche, in denen sich Elektronenpopulationen berechnen lassen. Die Güte dieser Realrauminidkatoren wird daher in der Regel danach beurteilt, ob sie den Gesamtraum in genau solche Teile zerlegen, in denen sich die nach dem Aufbauprinzip erwartete Elektronenpopulation findet: das heißt bei Atomen in sphärische Schalen; bei Molekülen und Festkörpern in Rümpfe, Bindungen und freie Elektronenpaare mit jeweils ganzen, dem Aufbauprinzip entsprechenden Elektronenzahlen. Neben dem Wunsch nach chemischen Signaturen kann man bei der Arbeit mit Realraumindikatoren auch andere Ergebnisse erzielen, wenn man die Indikatoren auf derselben Basis entwickelt, das heißt, wenn man sie vergleichbar macht. Ein Satz vergleichbarer Indikatoren ermöglicht die Suche nach Gemeinsamkeiten und Unterschieden zwischen den einzelnen Indikatoren. Die gewonnenen Ergebnisse können dann auf die den Indikatoren zugrunde liegenden Eigenschaften übertragen werden und in anderen Bereichen der Theorie genutzt werden. Eine solche gemeinsame Basis bietet das Konzept der w-bestimmten Populationen. In der vorliegenden Arbeit wird am Beispiel der Realraumindikatoren Cp gezeigt, wie man anhand dieses Konzeptes eine ganze Schar von Funktionalen kreieren und deren Eigenschaften systematisch testen kann. Das Konzept der w-bestimmten Populationen besteht im Wesentlichen aus zwei Teilschritten. Im ersten Schritt, der w-bestimmten Partitionierung des Raumes (w-RSP), wird der Gesamtraum in kompakte, raumfüllende, nicht überlappende Zellen, sogenannte Mikrozellen, zerlegt, wobei die Summe der Volumina der Mikrozellen stets das Volumen des Gesamtraums ergibt. Die Forderung, dass die Mikrozellen kompakt sein müssen, gewährleistet eine lokale Beschreibung. Aus den möglichen Partitionierungen wählt man nun eine derjenigen aus, für die die Mikrozellen alle dieselbe Menge w einer bestimmten Kontrollgröße haben, das heißt, das Integral über die Kontrollfunktion soll in jeder Mikrozelle denselben Wert w haben. Dadurch erhält man Probenräume, die bezüglich der Kontrolleigenschaft gleich sind. Im zweiten Schritt wird dann in den so erhaltenen Mikrozellen der Wert einer zweiten Größe, der Probengröße, bestimmt. Die resultierende Verteilung der Pobengröße ist natürlich vom expliziten Wert der Kontrolleigenschaft abhängig. Um diese Abhängigkeit zu umgehen, wird die diskrete Verteilung der Probengröße durch eine geeignete Potenz von w geteilt. Nach diesem Reskalierungsprozess liegt eine quasi-kontinuierliche Verteilung vor. Sie ist diskret per Definition, kann jedoch an jedem beliebigen (endlichen) Set von Aufpunkten (und eventuell weiterer Aufpunkte) berechnet werden. Der Limes nach Reskalieren ergibt eine kontinuierliche Funktion. Je nach Wahl der Kontroll- und Probenfunktion können mit diesem Konzept ganze Klassen von Funktionalen erzeugt werden. Die Funktionale sind besonders dann leicht miteinander vergleichbar, wenn sie entweder die Kontroll- oder Probenfunktion gemeinsam haben. Dieser Weg wurde in der vorliegenden Doktorarbeit beschritten. Anhand des eben dargestellten Konzeptes wurden die Realraumindikatoren Cp hergeleitet. Wie auch bei ELI-D ist die Probenfunktion bei den Cp-Indikatoren die Elektronendichte, das heißt die in den Mikrozellen geprobte Größe ist die Elektronenpopulation. Während für ELI-D die Raumpartitionierung durch die Anzahl der Paare in den Mikrozellen bestimmt wird, wird bei den Cp-Indikatoren die Inhomogenität der Elektronendichte als Kontrollgröße gewählt. Die Inhomogenität der Elektronendichte wird anhand des Abstandes der Elektronendichte zu ihrem Mittelwert in der jeweiligen Mikrozelle definiert: Ip(i) = pvuutZmi |r (~r)−r¯i|p dV . (1) Die Inhomogenität ist für jeden positiven Parameter p definiert. Je nach Wahl des Inhomogenitätsparameters p kommen kleinen beziehungsweise großen Abständen mehr Bedeutung zu. Die anhand des Konzeptes der w-bestimmten Populierung hergeleitete Funktionalschar Cp berechnet sich näherungsweise aus der Dichte und dem Dichtegradienten an den Aufpunkten ~ai der Mikrozellen: Cp(~ai) r (~ai) \"[2p(p+1)] |~Ñr (~ai)|p #3/(p+3) r (~ai) VIp , (2) wobei die Volumenfunktion VIp proportional zum Volumen einer festen Größe an Elektronendichteinhomogenität ist. Cp beruht ausschließlich auf Einelektroneneigenschaften, die sich aus der Elektronendichte ableiten lassen. Daher ist es prinzipiell möglich, Cp direkt aus dem Experiment zu bestimmen. ELI-D hingegen beruht sowohl auf der Elektronendichte, als auch auf der Paardichte, einer Zweiteilcheneigenschaft: ¡D(~ai) r (~ai) 12 g(~ai)| 3/8 r (~ai) VD . (3) Zur Berechnung der Paarvolumenfunktion VD ist die Kenntnis der Krümmung des Fermiloches g an der Elektronenkoaleszenz von Nöten. Die freie Wahl des Inhomogenitätsparameters p erlaubt es, die Volumenfunktion VIp zu justieren. Gelänge es, für ein bestimmtes Inhomogenitätsmaß die Proportionalität von VD und VIp zu erzeugen, so hätte man mit der entsprechenden Inhomogenität den Raumanspruch eines Paares abgebildet. Letztlich hätte dies zu einem Ausdruck für die Fermilochkrümmung als Funktion der Dichte geführt. (Dieser Ausdruck wiederum wäre in vielen Bereichen der Theorie von großem Nutzen.) Im Rahmen dieser Doktorarabeit konnte gezeigt werden, dass eine direkte Anpassung der Volumenfunktionen jedoch nicht in befriedigendem Maße gelingt. Daher wurde die Forderung der Proportionalität beider Indikatoren ein wenig abgeschwächt und lediglich verlangt, dass die Kurvenverläufe von Cp und ELI-D ähnlich sind. Besonderer Fokus wurde hier auf die Lage der Extrema gelegt. Die Forderung der ähnlichen Verläufe kann man durch die Anpassung der logarithmischen Gradienten der Volumenfunktionen gewährleisten. Die Anpassung erfolgte durch die Methode der kleinsten Fehlerquadrate und wurde für die Atome Li bis Xe durchgeführt. Die nach diesen Gesichtspunkten idealen Inhomgenitätsparameter konzentrieren sich alle unabhängig vom berechneten System bei Werten um p = 0.6. Das erhaltene Funktional C0.6 ist somit unabhängig vom Atomtyp und kann daher auch bei Molekülen und Festkörpern angewandt werden. C0.6 zeigt bei Atomen eine ähnliche Schalenstruktur wie ELI-D. Insbesondere die Elektronenpopulationen in den inneren Schalen spiegeln recht gut das Aufbauprinzip wieder. Bei den Übergangselementen und den direkt nachfolgenden Elementen fehlt allerdings der erwartete Separator zwischen der Valenz- und der letzten Rumpfschale. Bei Molekülen verlaufen die Bassingrenzen der Rumpfregionen sehr ähnlich, sodass die Elektronenpopulationen bis auf eine Differenz von 0.1 Elektron gleich sind. Im Bereich der freien Elektronenpaare zeigen beide Indikatoren dieselbe Anzahl von Attraktoren, wobei die C0.6-Attraktoren im Vergleich zu denen der ELI-D etwas näher am Kernort liegen. In den Regionen der freien Elektronenpaare können die Bassinpopulationen beider Indikatoren durchaus voneinander abweichen. Hierbei liegen die Elektronenpopulation von C0.6 im Mittel näher an den nach dem Lewisbild erwarteten Elektronenzahlen. Im Bereich der Bindung können große Unterschiede zwischen den Indikatoren auftreten, da C0.6 hier hauptsächlich durch den Gradiententerm dominiert ist und an jedem bindungskritischen Punkt einen Attraktor aufweisen muss. Atomare Verbindunglinien werden durch C0.6 entweder einfach zweifach oder dreifach markiert, wobei einfach markierte Linien bei unpolaren Bindungen und zweifach markierte bei polaren Bindungen zu finden sind. Dreifach markierte Linien entsprechen ungebundenen Zuständen. ELI-D hingegen zeigt keine Mehrfachmarkierung bei Einfachbindungen. Die an Molekülen abgeleiteten Aussagen über die Bindungsmarkierung lassen sich bei Festkörpern auf die nächsten Nachbarn übertragen. Durch die Zweifachmarkierung bei polaren Bindungen kann man auf einfache Weise die Gesamtelektronenpopulation eines Elementes im Verbund bestimmen (es gibt in der Regel keine geteilten Bassins). Dadurch lassen sich Ladungen berechnen und eine Skala der topologischen Kenngröße (vergleichbar mit einer Elektronegativitätsskala) aufstellen. Letzlich ist zu konstatieren, dass C0.6 nicht in der Lage ist, ELI-D hinreichend gut abzubilden. In Molekülen und Festkörpern erreicht der Gradient der Elektronendichte den Wert Null. An diesen Stellen ist C0.6 nicht an ELI-D anpassbar, da C0.6 hier einen Attraktor ausbilden muss. Dennoch hat diese Arbeit gezeigt, wie man anhand des Konzeptes der w-bestimmten Populationen Funktionale generieren und systematisch vergleichen, sowie gegebenenfalls aneinander anpassen kann. Die so gewonnenen Ergebnisse lassen sich auch in anderen Bereichen der Theorie anwenden. So mag C0.6 nicht nur in der Bindungsanalyse - wo es im Gegensatz zu ELI-D direkt aus dem Experiment bestimmt werden kann - Verwendung finden, sondern kann möglicherweise auch hilfreich bei der Entwicklung von Funktionalen in der Dichtefunktionaltheorie sein, da hier Funktionaltypen Anwendung finden, deren ortsabhängige Mischung der Austauschanteile durch Funktionen des Typs ˜Cp geregelt werden.
17

Modellierung und Bemessung von dünnwandigen Platten- und Schalentragwerken aus textilbewehrtem Beton

Scholzen, Alexander, Chudoba, Rostislav, Hegger, Josef 05 December 2011 (has links) (PDF)
Als Großdemonstrator des Sonderforschungsbereichs 532 soll auf dem Gelände der Fakultät für Bauingenieurwesen der RWTH Aachen ein Ausstellungspavillon mit einer Dachkonstruktion aus Textilbeton errichtet werden. Der Beitrag zeigt die automatisierte Bemessung dieser komplexen Tragstruktur mit Hilfe eines hierfür entwickelten numerischen Bemessungsstools. Die Auswertung erfolgt für alle Lastfallkombinationen nach DIN 1055-100 und unter Berücksichtigung der Reduktion der Tragfähigkeit der textilen Bewehrung infolge einer Umlenkung im Riss sowie einer Erhöhung der aufnehmbaren Textilspannungen infolge Biegebeanspruchung. Zur Ermittlung der Tragfähigkeit der Textilbetonschale wurden am Institut für Massivbau Dehnkörper- und Biegeversuche durchgeführt, die in Bewehrungsgrad und Dicke dem realen Bauwerk am Schalenrand entsprachen. / Within the collaborate research center 532 at RWTH Aachen University the construction of an exposition hall with a double-curved roof structure consisting of textile reinforced concrete is currently planned. A numerical tool has been developed to calculate the necessary number of reinforcement layers. Further, the tool evaluates the characteristic stresses of the load case combinations in the ultimate limit state taking into account a reduction of the load-bearing capacity of the textile reinforcement due to alignment of the rovings in the crack bridge and a better activation of the inner filaments for bending induced tension. The resistance of the material has been determined in experimental investigations of tensile and bending specimens of the same thickness and reinforcement ratio as the planned shell structure.
18

Nanopartículas magnéticas metálicas recobertas com óxido de ferro: intensificação das propriedades magnéticas da nanopartícula e funcionalização para aplicação em biomedicina / Iron oxide-coated metal magnetic nanoparticles: improved magnetic properties and surface functionalization for biomedical applications

Watson Beck Júnior 28 February 2011 (has links)
A utilização de nanopartículas (NP) magnéticas em várias áreas da biomedicina e biotecnologia vem recebendo elevado destaque nos últimos anos, graças à versatilidade de aplicações tais como: reparo de tecidos, diagnósticos, imagens por ressonância magnética, tratamento contra o câncer, separação celular, transporte controlado de drogas, entre outras. Atualmente, as NP com potencialidade de aplicação em biomedicina baseiam-se principalmente em óxidos magnéticos de ferro, os quais apresentam comportamento superparamagnético a temperatura ambiente e baixa magnetização da ordem de 60 emu g-1. A utilização dos óxidos se baseia em duas razões principais: facilidade e versatilidade de modificação da superfície e funcionalização devido aos grupos hidroxila na superfície das NP e pela baixa toxicidade comparada às NP magnéticas metálicas. Biocompatibilidade e funcionalidade específica são obtidas geralmente pela incorporação de materiais paramagnéticas e/ou diamagnéticos na superfície das NP contribuindo para diminuir ainda mais o baixo valor de magnetização de saturação dos óxidos. Nesse contexto, é necessário o desenvolvimento de novos núcleos magnéticos com elevado valor de magnetização, próximos aos valores observados para ferro metálico (~200 emu g-1). Entretanto, esses valores são observados apenas em NP metálicos com elevada toxicidade. Assim, neste trabalho, NP magnéticas bimetálicas de FePt, CoPt e NiPt recobertas óxido de ferro ou ferritas de Co e Ni foram sintetizadas pelo processo poliol modificado combinado com a metodologia de crescimento mediado por semente. As NP obtidas apresentaram tamanho e distribuição de tamanho compatíveis para aplicações biomédicas e a magnetização de saturação dos diferentes sistemas foi intensificada quando comparada às de NP de óxidos magnético puros. Os surfactantes ácido oleico e oleilamina presentes na superfície das NP como sintetizadas foram substituídos por moléculas de APTMS (3-aminopropiltrimetoxisilano) resultando em sistemas de NP dispersáveis em água. Adicionalmente, moléculas de carboximetil-dextrana foram conjugadas com as moléculas de APTMS modificando a superfície das NP e levando a formação de sistemas de NP magnéticas biocompatíveis, com estabilidade em dispersões aquosa e resposta magnética melhorada. As NP sintetizadas apresentam, em resumo, grande potencialidade para diversas aplicações em biomedicina. / In recent years, the magnetic nanoparticles uses in many biomedical and biotechnological areas have received great attention due to their applications possibilities such as: tissue repair, diagnostics, magnetic resonance imaging, cancer treatment, cell separation, and controlled drug delivery, among others. Today, the magnetic nanoparticles applications are mainly based on magnetic iron oxides, which exhibit superparamagnetic behavior at room temperature and low saturation magnetization around 60 emu g-1. Magnetic oxide uses was based in two main reasons: easily and versatility of surface changes and functionalization due to hydroxyl groups present on the oxide nanoparticles surface, and low toxicity compared with the magnetic metallic nanoparticles. Biocompatibility and targetable functionalizations are generally obtained by paramagnetic and/or diamagnetic materials incorporations onto the nanoparticle surface contributing to decreases the already low oxide saturation magnetization. In this context, the development of new magnetic nuclei with high magnetizations values closed to the metallic iron values (~200 emu g-1) is required. However, this value is only generally observed in highly toxic metallic nanoparticles. Therefore, in this study, bimetallic magnetic nanoparticles of FePt, CoPt and NiPt coated with iron oxide and Ni- or Co-ferrites in a core-shell structure are synthesized by using the modified polyol process combined with the seed-mediated growth method. Obtained nanoparticles presented size and size distribution compatible for biomedical applications and the saturation magnetization of the different synthesized systems were enhanced compared with the pure magnetic oxide nanoparticles. Oleic acid and oleylamine present on the as-synthesized magnetic nanoparticles surface were properly changed by (3-aminopropyl)trimethoxysilane (APTMS) molecules leading to water-dispersible magnetic nanoparticles system. In addition, carboxymethyl-dextran molecules were conjugated with the APTMS molecules changing the nanoparticles surfaces and resulting in biocompatible water-soluble magnetic nanoparticles systems with improved magnetic response. These synthesized biocompatible magnetic systems present a great potential for many biomedical applications.
19

Origine et impact de la synergie Cu-ZnO sur l'hydrogénation catalytique du CO2 en méthanol / Origin and impact of the Cu-ZnO synergy on catalytic CO2 hydrogenation to methanol

Tisseraud, Céline 23 November 2016 (has links)
L’hydrogénation catalytique du CO2 est considérée comme l’une des voies de valorisation les plus prometteuses pour la production du méthanol. Cette synthèse, souvent accompagné par une formation de CO, a fait l’objet de nombreuses études dans la littérature. Cependant, les résultats obtenus sur des catalyseurs à base de Cu et de ZnO ont démontré que cette réaction n’est pas aussi simple qu’elle y paraissait. Il y a encore beaucoup de controverses et d’interrogations sur la nature des sites actifs et sur les différentes étapes réactionnelles mises en jeu lors de la réaction. L’objectif de ce travail est d’apporter des éléments de compréhension sur la nature des sites actifs et leur rôle sur l’activation du CO2 et de H2. L’étude sur des catalyseurs modèles (mélanges mécaniques et matériaux préparés par coprécipitation) a permis de mettre en évidence un effet de synergie entre Cu et ZnO lié à des phénomènes de migration. Ce travail a montré que la production de méthanol est étroitement liée à la création d’une phase oxyde de type CuxZn(1-x)Oy (lacunaire en oxygène) induit par un effet de Kirkendall à l’interface Cu-ZnO, favorisant l’épandage de l’hydrogène. Différents modèles mathématiques ont été développés afin de déterminer la concentration des contacts entre Cu et ZnO. Les résultats obtenus ont démontré qu’il est possible de corréler directement l’activité du catalyseur avec la concentration de contacts et que cela peut permettre ainsi de prédire la composition chimique idéale du catalyseur pour un design de matériau donné. L’expertise complète de la relation design-activité a permis le développement de matériaux Cu-ZnO de type cœur-coquille 100% sélectif en méthanol. / The catalytic CO2 hydrogenation is considered to be one of the most promising methods for methanol production. This synthesis, often accompanied by a CO formation, had been the subject of many studies in the literature. However, the results obtained on Cu and ZnO based catalysts demonstrated that the reaction is not as simple as it appear to be. There is still a lot of controversies and interrogations concerning the nature of the active sites and the different reactional steps involved during the reaction. The objective of this work is a better understanding of the nature of the active sites and their role on CO2 an H2 activation. A study on model catalysts (mechanical mixtures and materials prepared by coprecipitation) allowed to demonstrate that the synergetic effect between Cu and ZnO linked to a migration phenomenon. This work showed that the methanol production was closely linked to the CuxZn(1-x)Oy oxide phase creation (with oxygen vacancies) induced by a Kirkendall effect on Cu-ZnO interface, thereby promoting the hydrogen spillover. Different mathematical models were developed to determine the concentration of contacts between Cu and ZnO. The results obtained demonstrated that it is possible to directly correlate the catalyst’s activity with the concentration of contacts between Cu and ZnO, which in turn allowed predicting optimal catalyst chemical composition for a particular design of a material. The full expertise of the design-activity relationship allowed the development of Cu-ZnO core-shell type materials with a 100% selective to methanol.
20

Synthesis and optical properties of plasmonic fluorescent quantum dots / Synthèse et propriétés optiques de quantum dots fluorescents plasmoniques

Ji, Botao 11 July 2014 (has links)
Grâce aux plasmons de surface des nanoparticules métalliques et aux propriétés optiques et électroniques des quantum dots (QDs), les nanostructures QD/métal suscitent beaucoup d'intérêt. Cependant, bien que prometteurs, les hybrides QD/or colloïdaux n'ont été que rarement obtenus.Nous avons mis au point la première méthode de synthèse généralisée conduisant à des structures hybrides cœur/coque/coque QD/SiO2/Au (appelées QDs dorés). Tout d'abord, les QDs hydrophobes sont encapsulés individuellement dans des billes de silice par émulsion inverse. Les nanoparticules obtenues sont ensuite recouvertes d'une coque d'or continue via un processus de dépôt en solution. Les épaisseurs de silice et d'or peuvent être ajustées indépendamment aux dimensions voulues. Nous avons montré que les QDs dorés individuels à base de QDs CdSe/CdS à coque épaisse possèdent une émission stable et poissonienne à température ambiante et sont très photostables. Cette nouvelle structure se comporte comme un résonateur plasmonique avec un facteur de Purcell élevé (~6), en très bon accord avec les simulations.Nous présentons également des auto-assemblages de QDs hydrophobes en superparticules (SPs). Un choix judicieux de QDs donne aux SPs des propriétés exceptionnelles telles qu'une émission de fluorescence intense, non-clignotante et multicolore. Des SPs multifonctionnelles peuvent aussi être obtenues en associant des nanocristaux magnétiques et fluorescents. La croissance d'une coque de silice sur les SPs a permis d'augmenter leur stabilité et nous avons démontré que cette couche de silice pouvait être recouverte d'une coque d'or pour améliorer la photostabilité et la biocompatibilité de ces SPs. / Due to the surface plasmons in metallic nanostructures and the exceptional optical and electrical properties of colloidal semiconductor quantum dots (QDs), QD/metal hybrid nanostructures attract much attention. However, although these structures are very promising, colloidal single QD/gold hybrids have rarely been synthesized.We managed to develop for the first time a generalized synthetic route to synthesize a QD/SiO2/Au core/shell/shell hybrid structure (golden QDs). First, hydrophobic QDs are individually encapsulated in silica beads via reverse microemulsion. The obtained QD/SiO2 nanoparticles are then coated with a continuous gold nanoshell using a solution deposition process. The thicknesses of the silica and the gold layers can be tailored independently to various dimensions. We showed that single golden thick-shell CdSe/CdS QDs provide a system with a stable and poissonian emission at room temperature and a high photostability. This novel hybrid golden QD structure behaves as a plasmonic resonator with a strong (~ 6) Purcell factor, in very good agreement with simulations. We also present the self-assembly of hydrophobic QDs into colloidal superparticles (SPs). With a fine choice of QDs, SPs could indeed possess outstanding properties including non-blinking fluorescence, high fluorescence intensity and multi-color emission. Multi-functional SPs could also be obtained by mixing fluorescent or magnetic nanocrystals. The subsequent growth of a silica shell on the SPs allowed an enhancement of their stability and we demonstrated this silica shell could itself be covered by a gold nanoshell to further improve the SPs photostability and biocompatibility.

Page generated in 0.0647 seconds