• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 23
  • 22
  • 7
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 118
  • 59
  • 57
  • 56
  • 24
  • 19
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Detecting Structural Defects Using Novel Smart Sensory and Sensor-less Approaches

Baghalian, Amin 17 October 2017 (has links)
Monitoring the mechanical integrity of critical structures is extremely important, as mechanical defects can potentially have adverse impacts on their safe operability throughout their service life. Structural defects can be detected by using active structural health monitoring (SHM) approaches, in which a given structure is excited with harmonic mechanical waves generated by actuators. The response of the structure is then collected using sensor(s) and is analyzed for possible defects, with various active SHM approaches available for analyzing the response of a structure to single- or multi-frequency harmonic excitations. In order to identify the appropriate excitation frequency, however, the majority of such methods require a priori knowledge of the characteristics of the defects under consideration. This makes the whole enterprise of detecting structural defects logically circular, as there is usually limited a priori information about the characteristics and the locations of defects that are yet to be detected. Furthermore, the majority of SHM techniques rely on sensors for response collection, with the very same sensors also prone to structural damage. The Surface Response to Excitation (SuRE) method is a broadband frequency method that has high sensitivity to different types of defects, but it requires a baseline. In this study, initially, theoretical justification was provided for the validity of the SuRE method and it was implemented for detection of internal and external defects in pipes. Then, the Comprehensive Heterodyne Effect Based Inspection (CHEBI) method was developed based on the SuRE method to eliminate the need for any baseline. Unlike traditional approaches, the CHEBI method requires no a priori knowledge of defect characteristics for the selection of the excitation frequency. In addition, the proposed heterodyne effect-based approach constitutes the very first sensor-less smart monitoring technique, in which the emergence of mechanical defect(s) triggers an audible alarm in the structure with the defect. Finally, a novel compact phased array (CPA) method was developed for locating defects using only three transducers. The CPA approach provides an image of most probable defected areas in the structure in three steps. The techniques developed in this study were used to detect and/or locate different types of mechanical damages in structures with various geometries.
92

Enhanced piezoelectric energy harvesting powered wireless sensor nodes using passive interfaces and power management approach

Giuliano, Alessandro January 2014 (has links)
Low-frequency vibrations typically occur in many practical structures and systems when in use, for example, in aerospaces and industrial machines. Piezoelectric materials feature compactness, lightweight, high integration potential, and permit to transduce mechanical energy from vibrations into electrical energy. Because of their properties, piezoelectric materials have been receiving growing interest during the last decades as potential vibration- harvested energy generators for the proliferating number of embeddable wireless sensor systems in applications such as structural health monitoring (SHM). The basic idea behind piezoelectric energy harvesting (PEH) powered architectures, or energy harvesting (EH) more in general, is to develop truly “fit and forget” solutions that allow reducing physical installations and burdens to maintenance over battery-powered systems. However, due to the low mechanical energy available under low-frequency conditions and the relatively high power consumption of wireless sensor nodes, PEH from low-frequency vibrations is a challenge that needs to be addressed for the majority of the practical cases. Simply saying, the energy harvested from low-frequency vibrations is not high enough to power wireless sensor nodes or the power consumption of the wireless sensor nodes is higher than the harvested energy. This represents a main barrier to the widespread use of PEH technology at the current state of the development, despite the advantages it may offer. The main contribution of this research work concerns the proposal of a novel EH circuitry, which is based on a whole-system approach, in order to develop enhanced PEH powered wireless sensor nodes, hence to compensate the existing mismatch between harvested and demanded energy. By whole-system approach, it is meant that this work develops an integrated system-of-systems rather than a single EH unit, thus getting closer to the industrial need of a ready- to-use energy-autonomous solution for wireless sensor applications such as SHM. To achieve so, this work introduces: Novel passive interfaces in connection with the piezoelectric harvester that permit to extract more energy from it (i.e., a complex conjugate impedance matching (CCIM) interface, which uses a PC permalloy toroidal coil to achieve a large inductive reactance with a centimetre- scaled size at low frequency; and interfaces for resonant PEH applications, which exploit the harvester‟s displacement to achieve a mechanical amplification of the input force, a magnetic and a mechanical activation of a synchronised switching harvesting on inductor (SSHI) mechanism). A novel power management approach, which permits to minimise the power consumption for conditioning the transduced signal and optimises the flow of the harvested energy towards a custom-developed wireless sensor communication node (WSCN) through a dedicated energy-aware interface (EAI); where the EAI is based on a voltage sensing device across a capacitive energy storage. Theoretical and experimental analyses of the developed systems are carried in connection with resistive loads and the WSCN under excitations of low frequency and strain/acceleration levels typical of two potential energy- autonomous applications, that are: 1) wireless condition monitoring of commercial aircraft wings through non-resonant PEH based on Macro-Fibre Composite (MFC) material bonded to aluminium and composite substrates; and wireless condition monitoring of large industrial machinery through resonant PEH based on a cantilever structure. shown that under similar testing conditions the developed systems feature a performance in comparison with other architectures reported in the literature or currently available on the market. Power levels up to 12.16 mW and 116.6 µW were respectively measured across an optimal resistive load of 66 277 kΩ for an implemented non-resonant MFC energy harvester on aluminium substrate and a resonant cantilever-based structure when no interfaces were added into the circuits. When the WSCN was connected to the harvesters in place of the resistive loads, data transmissions as fast as 0.4 and s were also respectively measured. By use of the implemented passive interfaces, a maximum power enhancement of around 95% and 452% was achieved in the two tested cases and faster data transmissions obtained with a maximum percentage improvement around 36% and 73%, respectively. By the use of the EAI in connection with the WSCN, results have also shown that the overall system‟s power consumption is as low as a few microwatts during non- active modes of operation (i.e., before the WSCN starts data acquisition and transmission to a base station). Through the introduction of the developed interfaces, this research work takes a whole-system approach and brings about the capability to continuously power wireless sensor nodes entirely from vibration-harvested energy in time intervals of a few seconds or fractions of a second once they have been firstly activated. Therefore, such an approach has potential to be used for real-world energy- autonomous applications of SHM.
93

Détection d'endommagement sans état de référence et estimation de la température pour le contrôle santé intégré de structures composites par ondes guidées / Baseline free damage detection and temperature estimation for structural health monitoring of composite structures using guided waves

Lizé, Emmanuel 20 December 2018 (has links)
Ce travail de thèse concerne le contrôle santé intégré (SHM : Structural Health Monitoring) de structures composites aéronautiques par ondes guidées avec des transducteurs piézoélectriques (PZT). La majorité des méthodes de détection classiques reposent sur la comparaison de signaux issus de la structure inspectée à l’état courant avec ceux mesurés dans un état sain (la baseline). La température altère significativement les signaux mesurés et le diagnostic associé si son influence n’est pas prise en compte dans la baseline. D’autre part, l’acquisition de la baseline est très contraignante en vue d’un déploiement des systèmes SHM en condition réelles. La première contribution de cette thèse est l’estimation du champ de température à partir des mesures des PZTs (décalage du spectre fréquentiel et capacité statique), qui permet de compenser l’effet de la température dans la baseline sans ajouter de capteurs dédiés. La seconde contribution concerne les méthodes sans état de référence (baseline free). Les performances de détection de quatre méthodes sont comparées (rupture de réciprocité, variation d’amplitude, analyse des modes de Lamb et baseline instantanée) sur un modèle numérique et des cas expérimentaux d’endommagement à différentes températures sur une plaque de composite fortement anisotrope. Les résultats obtenus démontrent que la décomposition des modes de Lamb dans les signaux mesurés par l’intermédiaire de dual PZTs (PZTs constitués de deux électrodes concentriques – un anneau et un disque – sur leur face supérieure) permet d’améliorer de façon significative les performances de détection de ces méthodes. Un processus de dimensionnement du réseau de dual PZTs est proposé pour le déploiement de ces méthodes sur des structures complexes et prenant en compte la forte anisotropie des matériaux. Ces résultats ouvrent des perspectives prometteuses contribuant potentiellement au transfert des technologies de SHM des laboratoires vers l’industrie. / This thesis work concerns the Structural Health Monitoring (SHM) of aeronautical composite structures by guided waves with piezoelectric transducers (PZT). Conventional detection methods are based on the comparison of signals from the inspected structure in the current state with those measured in a healthy state (the baseline). Temperature significantly alters the measured signals and the associated diagnosis if its influence is not considered in the baseline. Also, the acquisition of the baseline is very constraining for the deployment of SHM systems in real conditions. The first contribution of this thesis is the estimation of the temperature field from the PZT measurements (modal frequency shift and static capacity), which allows to compensate the effect of temperature in the baseline without adding dedicated sensors. The second contribution of this thesis concerns baseline free methods. The detection performance of four methods are compared (reciprocity principle, amplitude variation, Lamb mode analysis and instantaneous baseline) on a numerical model and experimental cases of damages at different temperatures on a highly anisotropic composite plate. The results obtained show that the decomposition of Lamb wave modes in signals measured via dual PZTs (PZTs consisting of two concentric electrodes - a ring and a disk - on their upper side) significantly improves the detection performance of these methods. A dimensioning process for the deployment of these methods on complex anisotropic structures is proposed. These results open up promising opportunities that potentially contribute to the transfer of SHM technologies from laboratories to industry.
94

Development and experimental validation of vibration based damage indicator on a specific twin-wall sandwich structure / Développement et validation expérimentale d'indicateur d'endommagement basé sur la réponse vibratoire de structures sandwichs

Hui, Yi 30 November 2018 (has links)
La surveillance de santé structurale (SHM) a attiré beaucoup d'attention dans de nombreux domaines tels que l'industrie civile, aéronautique, mécanique, etc., car il est important de surveiller l'état de la structure afin d'éviter des défaillances structurelles imprévues. Le processus d'identification des endommagements à quatre niveaux: existence, localisation, sévérité et prédiction de l'évolution des endommagements peut être partiellement réalisé si un propre indicateur est bien choisi. Il existe différents indicateurs d'endommagements dont la gamme d'application de la fréquence s'étend de la réponse vibratoire à basses fréquences aux régimes ultrasoniques dans la gamme méga hertz.Les structures sandwich sont largement utilisées dans diverses applications d'ingénierie en raison de son rapport rigidité / poids exceptionnellement élevé par rapport aux structures monocoques. Dans ce travail, une structure sandwich a été étudiée et des indicateurs basés sur la réponse vibratoire ont été conçus en utilisant ses caractéristiques de directivité de propagation et d'amortissement relativement élevé de la structure. Des investigations numériques sur différents scénarios d'endommagement (càd, différents types d'endommagement et leurs combinaisons) et une discussion associée sur la plage d'application ont d'abord été effectuées. La configuration expérimentale a été facilement réalisée à l'aide d'un vibromètre laser à balayage Doppler (SLDV). L'endommagement a été détecté avec succès par les indicateurs proposés. / Structural health monitoring (SHM) has attracted much attention in many engineering fields like civil, aeronautic, mechanical industry, etc. since it is important to monitor the healthy condition of the operational structure in order to avoid unpredicted structural failure which may have severe consequences. The four-level damage identification process: existence, localization, severity and prediction of damage evolution, can be partly realized if a suitable indicator is chosen. It exists different damage indicators whose application range of frequency spans from vibrational response at low frequencies to the ultrasonic regimes in the mega hertz range.The sandwich structures are widely used in various engineering applications due to its exceptionally high flexural stiffness-to-weight ratio compared to monocoque structures. In this thesis a specified twin-wall sandwich structure in polypropylene was studied and vibration-based indicators were designed by taking use of its relative high damping and propagation directivity characteristics. Numerical investigations on different damage scenarios (i.e., different types of defect and their combinations) and an associated discussion on the range of application were first carried out. Experimental configuration was easily realized with the help of a scanning laser doppler vibrometer (SLDV). Defect was successfully detected by the proposed indicators.
95

Magnetoelastische Sensoren für die Überwachung von mechanischen Verformungen in Verbundwerkstoffen

Wielage, Bernhard, Mäder, Thomas, Weber, Daisy, Mucha, Herbert 08 March 2013 (has links) (PDF)
Eine ortsauflösende Spannungs- und Dehnungssensortechnik soll durch die Nutzung magnetostriktiver Materialien auf der Oberfläche von Kohlenstoffeinzelfasern (C-Fasern) und Mikrofeinstrukturierung dieser Schichten erzeugt und zur elektronischen Überwachung des Belastungszustandes von sicherheits- oder servicerelevanten Faserverbundbauteilen eingesetzt werden. Eine auf lokaler Gasphasenabscheidung und Mikrostrukturierung mittels der Focused Ion Beam (FIB)-Technik beruhende Sensorfabrikationsmethode wurde gemeinsam mit dem Institut für Mikrotechnologie Hannover (imt) entwickelt. Mehrschichtig mittels CVD und PVD bedampfte und zusätzlich galvanisch beschichtete C-Fasern weisen neuartige Eigenschaften auf, die im vorgestellten Vorhaben am Lehrstuhl für Verbundwerkstoffe (LVW) charakterisiert wurden. Insbesondere die Untersuchung der verschiedenen Schichten sowie deren Interfaces nehmen eine bedeutende Rolle ein.
96

Impact de la matière organique sur le comportement des terres rares en solution: étude expérimentale et modélisation

Pourret, Olivier 06 October 2006 (has links) (PDF)
Les objectifs de cette thèse ont été principalement de comprendre l'impact de la matière organique sur le comportement des terres rares en solution et notamment: (i) de comprendre pourquoi le développement d'anomalie de cérium négative dans des eaux organiques oxydantes ne se produit pas; (ii) de tester la capacité des modèles à prédire la spéciation des terres rares dans des eaux organiques; (iii) d'évaluer les réactions compétitives de complexation des terres rares avec les acides humiques et les carbonates.<br />La première partie a été consacrée à deux études expérimentales de l'impact de la complexation organique sur le comportement redox du cérium et l'adsorption des terres rares à la surface d'oxydes de fer et de manganèse. La complexation des terres rares par la matière organique inhibe à la fois, l'oxydation du Ce(III) en Ce(IV) et le développement d'un effet tetrad visible sur les spectres de terres rares des eaux. Cette inhibition est due au développement d'un écran organique entre les terres rares et les surfaces oxydantes/adsorbantes que représentent les oxydes de fer et de manganèse.<br />La deuxième partie présente une évaluation de deux modèles, Model VI et SHM, quant à leur faculté à prédire la spéciation organique dans les eaux naturelles. La comparaison entre les résultats calculés et les expériences d'ultrafiltration a permis de valider Model VI dans sa capacité à prédire la spéciation des terres rares dans les eaux organiques. Par contre, la divergence entre les résultats obtenus avec SHM et les résultats expérimentaux indique que SHM, dans l'état actuel du programme, n'est pas apte à décrire précisément la spéciation des terres rares dans une eau naturelle. Dans un deuxième temps, cette étude a permis de fournir un jeu de constantes terres rares - acides humiques spécifiques à Model VI, fiables et cohérentes.<br />La troisième partie de ce travail a été consacrée aux réactions de compétitions entre ligands, acides humiques et carbonates, pour la complexation des terres rares. En fonction du pH et du rapport entre acide humique et carbonate, les terres rares vont se répartir entre ces deux ligands. La compétition entre les deux ligands induit également la formation d'une anomalie positive de cérium sur les acides humiques et négative dans la solution. Un nouveau mécanisme capable de développer sans surface oxydante ou bactérie, une anomalie négative de Ce dans les eaux naturelles a ainsi été mis en évidence.<br />La matière organique est responsable d'une forte complexation des terres rares dans les eaux naturelles. Une plus grande attention doit donc être portée à cette forme complexée pour étudier le transport des terres rares dans les eaux. Cette étude remet également en cause l'utilisation de l'anomalie de Ce comme témoin des conditions redox dans des eaux riches en matières organiques.
97

Uma Contribuição aos Sistemas de Monitoramento de Integridade Estrutural Baseados na Impedância Eletromecânica

Baptista, Fabricio Guimarães [UNESP] 08 January 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:32Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-01-08Bitstream added on 2014-06-13T18:40:52Z : No. of bitstreams: 1 baptista_fg_dr_ilha.pdf: 1105245 bytes, checksum: d9df8c940603a26591e01168eaac4aaa (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / A técnica da impedância eletromecânica (E/M) tem sido amplamente pesquisada para o desenvolvimento de sistemas de SHM (Structural Health Monitoring – monitoramento de integridade estrutural) em diversas aplicações. Embora existam muitos trabalhos que indiquem a eficiência e a viabilidade dessa técnica, alguns problemas práticos em aplicações reais ainda precisam ser investigados. A medição da impedância elétrica, etapa básica da técnica, geralmente é realizada por instrumentos comerciais volumosos, pesados e de alto custo, características proibitivas para muitas aplicações. A seleção da faixa de frequência em que a impedância deve ser medida para assegurar boa sensibilidade ao dano é feita por métodos de tentativa e erro ou por metodologias que utilizam dados medidos em uma quantidade considerável de testes. Além disso, o dimensionamento dos transdutores é feito sem um embasamento teórico, independentemente das características da estrutura monitorada. Neste trabalho é proposto um sistema de medição de impedância elétrica rápido, versátil e de baixo custo que substitui com eficiência os instrumentos comerciais. A partir de um circuito eletromecânico equivalente, o efeito de carregamento do transdutor devido à estrutura monitorada foi analisado. A análise do efeito de carregamento permite dimensionar corretamente o transdutor de acordo com a estrutura monitorada e assegurar um bom desempenho do sistema. O circuito eletromecânico também foi utilizado para determinar, teoricamente, as faixas de frequência em que o transdutor tem boa sensibilidade e auxiliar na seleção da faixa de frequência adequada para a detecção de danos estruturais. Todas as metodologias propostas foram verificadas através de experimentos em estruturas de alumínio e houve uma boa concordância entre os resultados teóricos e experimentais / The electromechanical (E/M) impedance technique has been widely studied for the development of Structural Health Monitoring (SHM) systems in various applications. Although there are many studies indicating the effectiveness and feasibility of this technique, some practical issues in real applications yet should be investigated. The electrical impedance measurement, basic stage of the technique, is usually performed by bulky, heavy and expensive instruments; these features are prohibitive for many applications. The selection of the frequency range in which the electrical impedance must be measured to ensure good sensitivity for damage detection is performed by trial and error methods or by methodologies that use measured data in a considerable amount of tests. Furthermore, the design of the transducer is done without theoretical basis, regardless the characteristics of the host structure. In this work, a fast, versatile and low-cost electrical impedance measurement system was developed; the proposed system successfully replaces the conventional instruments. From an equivalent electromechanical circuit, the transducer loading effect due to the host structure was analyzed. The analysis of the loading effect allows the correct design of the transducer according to the host structure for ensure a good performance of the system. The electromechanical circuit was also used to theoretically determine the frequency ranges in which the transducer has good sensitivity and assist in the selection of the suitable frequency range for structural damage detection. All proposed methodologies were validated by experimental tests on aluminum structures and there was a good match between the theoretical and practical results
98

Contrôle santé des structures composites : génération de délaminages par choc laser et quantification par apprentissage machine / Structural Health Monitoring of composite structures : LASER shock delamination generation and machine learning-based quantification

Ghrib, Meriem 07 December 2017 (has links)
Dans ce travail, nous abordons la quantification de dommage de type délaminage dans des stratifiés en CFRP. Le problème de quantification est transformé en un problème de classification multiclasses au sens de l'apprentissage statistique. Chaque classe correspond à une certaine sévérité de dommage. Le modèle de machine à vecteurs de support (SVM) est utilisé pour effectuer la classification. Généralement, des descripteurs de dommage basés sur une utilisation directe des signaux mesurés (SBF) sont utilisés pour apprendre les modèles décisionnels. Dans ce travail, nous nous basons sur l'hypothèse qu'un dommage génère nécessairement une part de non linéarité dans la réponse dynamique de la structure et nous investiguons la pertinence de l'utilisation de descripteurs de dommage basés sur un modèle non linéaire (NMBF) pour améliorer les performances du modèle décisionnel. Les NMBF proposés sont calculés en se basant sur le modèle de Hammerstein en parallèle identifié avec un signal de type "sweep exponentiel". Une réduction de dimension du vecteur des caractéristiques en utilisant l'ACP est également conduite et son effet sur les performances du processus de quantification suggéré est étudié. L'approche de quantification proposée a été testée et validée en utilisant des résultats de simulation puis des résultats expérimentaux obtenus sur des plaques composites en CFRP équipées d'éléments piézoélectriques et contenant diverses sévérités de délaminage. Les dommages de type délaminage ont été générés au sein des échantillons de manière calibrée et réaliste à l'aide de la technique du choc LASER et plus particulièrement du choc LASER symétrique. Nous avons démontré expérimentalement que cette configuration de choc LASER est une alternative efficace aux méthodes classiques de génération de dommage telles que les impacts classiques et les patches de Téflon, permettant une meilleure calibration du dommage en type, profondeur et taille. / In this work, we approach delamination quantification in Carbon Fiber Reinforced Polymer (CFRP) laminates as a classification problem whereby each class corresponds to a certain damage extent. A Support Vector Machine (SVM) is used to perform multi-class classification task. Classically, Signal Based Features (SBF) are used to train SVMs when approaching SHM from a machine learning perspective. In this work, starting from the assumption that damage causes a structure to exhibit nonlinear response, we investigate whether the use of Nonlinear Model Based Features (NMBF) increases classification performance. NMBF are computed based on parallel Hammerstein models which are identified with an Exponential Sine Sweep (ESS) signal. Dimensionality reduction of features vector using Principal Component Analysis (PCA) is also conducted in order to find out if it allows robustifying the quantification process suggested in this work. The proposed quantification approach was first tested and validated using simulation results. Thereafter, experimental results on CFRP composite plates equipped with piezoelectric elements and containing various delamination severities are considered for demonstration. Delamination-type damage is introduced into samples in a calibrated and realistic way using LASER Shock Wave Technique (LSWT) and more particularly symmetrical LASER shock configuration. We have experimentally demonstrated that such a configuration of LASER shock is an effective alternative to conventional damage generation techniques such as conventional impacts and Teflon inserts since it allows for a better calibration of damage in type, depth and size.
99

A Study On Characterization Of Failure Modes In Composites By Acoustic Emission Using PVDF Film Sensor For Health Monitoring

Nandan Bar, Himadri 02 1900 (has links) (PDF)
No description available.
100

Artificial Intelligence Guided In-Situ Piezoelectric Sensing for Concrete Strength Monitoring

Yen-Fang Su (11726888) 19 November 2021 (has links)
<p>Developing a reliable in-situ non-destructive testing method to determine the strength of in-place concrete is critical because a fast-paced construction schedule exposes concrete pavement and/or structures undergoing substantial loading conditions, even at their early ages. Conventional destructive testing methods, such as compressive and flexural tests, are very time-consuming, which may cause construction delays or cost overruns. Moreover, the curing conditions of the tested cylindrical samples and the in-place concrete pavement/structures are quite different, which may result in different strength values. An NDT method that could directly correlate the mechanical properties of cementitious materials with the sensing results, regardless of the curing conditions, mix design, and size effect is needed for the in-situ application.</p><p>The piezoelectric sensor-based electromechanical impedance (EMI) technique has shown promise in addressing this challenge as it has been used to both monitor properties and detect damages on the concrete structure. Due to the direct and inverse effects of piezoelectric, this material can act as a sensor, actuator, and transducer. This research serves as a comprehensive study to investigate the feasibility and efficiency of using piezoelectric sensor-based EMI to evaluate the strength of newly poured concrete. To understand the fundamentals of this method and enhance the durability of the sensor for in-situ monitoring, this work started with sensor fabrication. It has studied two types of polymer coating on the effect of the durability of the sensor to make it practical to be used in the field.</p><p>The mortar and concrete samples with various mix designs were prepared to ascertain whether the results of the proposed sensing technique were affected by the different mixtures. The EMI measurement and compressive strength testing methods (ASTM C39, ASTM C109) were conducted in the laboratory. The experimental results of mortar samples with different water-to-cement ratios (W/C) and two types of cement (I and III) showed that the correlation coefficient (R<sup>2</sup>) is higher than 0.93 for all mixes. In the concrete experiments, the correlation coefficient between the EMI sensing index and compressive strength of all mixes is higher than 0.90. The empirical estimation function was established through a concrete slab experiment. Moreover, several trial implementations on highway construction projects (I-70, I-74, and I-465) were conducted to monitor the real-time strength development of concrete. The data processing method and the reliable index of EMI sensing were developed to establish the regression model to correlate the sensing results with the compressive strength of concrete. It has been found that the EMI sensing method and its related statistical index can effectively reflect the compressive strength gain of in-place concrete at different ages.</p><p>To further investigate the in-situ compressive strength of concrete for large-scale structures, we conducted a series of large concrete slabs with the dimension of 8 feet × 12 feet × 8 inches in depth was conducted at outdoor experiments field to simulate real-world conditions. Different types of compressive strength samples, including cast-in-place (CIP) cylinder (4” × 6”) – (ASTM C873), field molded cylinder (4” × 8”) – (ASTM C39), and core drilled sample (4” × 8”) – (ASTM C42) were prepared to compare the compressive strength of concrete. The environmental conditions, such as ambient temperatures and relative humidity, were also recorded. The in-situ EMI monitoring of concrete strength was also conducted. The testing ages in this study were started from 6 hours after the concrete cast was put in place to investigate the early age results and continued up to 365 days (one year) later for long-term monitoring. The results indicate that the strength of the CIP sample is higher than the 4” x 8” molded cylinder , and that core drilled concrete is weaker than the two aforementioned. The EMI results obtained from the slab are close to those obtained from CIP due to similar curing conditions. The EMI results collected from 4 × 8-inch cylinder samples are lower than slab and CIP, which aligns with the mechanical testing results and indicates that EMI could capture the strength gain of concrete over time.</p><p>The consequent database collected from the large slab tests was used to build a prediction model for concrete strength. The Artificial Neuron Network (ANN) was investigated and experimented with to optimize the prediction of performances. Then, a sensitivity analysis was conducted to discuss and understand the critical parameters to predict the mechanical properties of concrete using the ML model. A framework using Generative Adversarial Network (GAN) based on algorithms was then proposed to overcome real data usage restrictions. Two types of GAN algorithms were selected for the data synthesis in the research: Tabular Generative Adversarial Networks (TGAN) and Conditional Tabular Generative Adversarial Networks (CTGAN). The testing results suggested that the CTGAN-NN model shows improved testing performances and higher computational efficiency than the TGAN model. In conclusion, the AI-guided concrete strength sensing and prediction approaches developed in this dissertation will be a steppingstone towards accomplishing the reliable and intelligent assessment of in-situ concrete structures.</p><br>

Page generated in 0.0557 seconds