• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 23
  • 22
  • 7
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 119
  • 59
  • 57
  • 56
  • 24
  • 19
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

En social uppsats : En studie i kampanjskapande på Facebook utifrån projektledare och publik.

Johansson, Jonas, Fant, Robert January 2013 (has links)
Studien undersöker tre strategiskt valda Facebook-kampanjer där projektledarna blivit intervjuade om deras uppfattningar av kampanjerna. Fyra grupper undersöktes sedan med fyra deltagare i varje för att se hur denna publik uppfattade kampanjerna. Därefter jämfördes skillnader och likheter i uppfattningarna mellan projektledarna och den utvalda publiken. I studien undersöks även vad båda parter anser karaktärisera en lyckad Facebook-kampanj. Teorierna som används är technology-image expectancy gap teorin som uppmärksammar hur publikens förväntningar kan mötas upp av organisationen och virtuellt kampanjskapande samt marknadsföring i sociala medier. Kvalitativa analyser av projektledarna och den valda publiken har genomförts för att undersöka skillnader och likheter i deras uppfattningar av de utvalda kampanjerna och vad de anser karaktäriserar en lyckad Facebook-kampanj. I analysen av resultatet kunde vi utifrån teorierna hitta skillnader och likheter i projektledarnas och publikens uppfattning av de kampanjer vi undersökte. När det kom till uppfattningarna kring vad som karaktäriserar en lyckad kampanj på Facebook var deras åsikter till största del lika med undantaget att projektledarna även poängterade omvärldsbevakning som en viktig del i kampanjskapandet på Facebook. Vi såg i resultatet att det fanns ett gap mellan projektledare och publiken i den mån att det inte handlar om att skapa den häftigaste kampanjen bara på Facebook då publiken genom andra medier påverkas att interagera med organisationen och därmed ser nyttan med att delta i kampanjen. Intressant och anpassat innehåll för publiken är faktorer som ger spridning på Facebook men främst genom andrahandskällor som exempelvis nyhetsinslag eller videoklipp från externa webbplatser, vilket tyder på att andra medier bör bearbetas under kampanjen. Främst ska kampanjen vara till nytta för publiken i form av underhållning eller en tjänst. Kampanjen bör även väcka en viss nyfikenhet hos publiken genom igenkännande av en produkt eller en känd person. Dagens kampanjer kräver ett gediget förarbete med omvärldsbevakning av publikens intressen vilket kan generera ett intressant innehåll och kunskap för dem som jobbar med kampanjen. Detta följs av omfattande realtidskommunikation med publiken.
112

Kan strålar av ljus tyda det förflutna? : Användning av Reflectance Transformation Imaging (RTI) för att tyda runinskrifter på Pireus-lejonet

Nazerian, Simon January 2014 (has links)
This paper deals with testing the method Reflectance Transformation Imaging (RTI) on the copy of the Piraeus-lion in Historic Museum in Stockholm. The purpose is to find out if it is possible to gather more information about the runic inscriptions. RTI is a method that records the surface normal of individual pixels in a digital photograph by analyzing the impact of light coming from different angles of entrance. RTI produces sort of a 3D-image of the object. There will be an overview of earlier interpretations of the runic scripts written on the lion as well as an overview of Varangians in the southeast. After examination of the lion with RTI, has a conclusion been made that the method should be performed again on similar items, and on the copy of the Piraeus-lion to evaluate its full potential.
113

Capteurs de corrosion à fibre optique pour la surveillance répartie d’ouvrages en béton armé / Distributed corrosion sensing in reinforced concrete structures by optical fiber sensing

Ali Alvarez, Shamyr Sadat 19 September 2016 (has links)
La corrosion des armatures de renforcement des structures en béton représente un enjeu socio-économique majeur. Sa détection et le suivi de son évolution constituent un défi pour la recherche appliquée. Les techniques standards non destructives de détection de corrosion mettent en œuvre des procédés indirects tels la mesure d’impédance, de potentiels, ou par ultrasons. Leurs capacités d’auscultation sont limitées dans l’espace (notamment en profondeur), leur coût reste élevé dans un contexte de maintenance périodique et elles conduisent à des paramètres d’interprétation complexe. Des progrès sont nécessaires dans la détection et l’analyse fiable de la progression des processus de corrosion. Dans ce travail, nous présentons une nouvelle méthode pour détecter la corrosion et le suivi de son évolution, basée sur l’observation directe des changements intervenant à l’interface fer-béton par Capteur à Fibre Optique (CFO). L'attaque par corrosion de la surface de l'armature dépend de plusieurs paramètres électrochimiques (température, pH, carbonatation, présence de chlorures, contamination biologique, etc.). Deux comportements mécaniques à l'interface fer-béton sont distingués. Dans le premier cas (carbonatation), le produit d'oxydation du métal reste à l'interface et augmente la pression interne, pouvant conduire à la fissuration de la couche de béton extérieure. Dans le second cas (piqures), les ions métalliques sont évacués hors de la structure avec comme conséquence une réduction de section des barres d'armature (affaiblissement du renforcement). Un CFO innovant est proposé dans le but de localiser et quantifier les deux types de corrosion précités. Le principe consiste à observer l’impact direct de la corrosion sur l’état de déformation d’une fibre optique préalablement précontrainte par construction. Deux procédés métrologiques sont étudiés : Bragg et réflectométrie fréquentielle (Optical Frequency-Domain Reflectometry - OFDR). Des tests de corrosion accélérée montrent la faisabilité du procédé. Une procédure de fabrication simplifiée et à coût optimisé est proposée pour la surveillance in situ et répartie des structures de génie civil, dans une perspective future de maintenance conditionnée. / Corrosion of reinforced bars (rebars) in concrete structures remains a major issue in civil engineering works, being its detection and evolution a challenge for the applied research. Usual non-destructive corrosion detection methods involve impedance, potential or ultra-sonic indirect measurements of complex interpretation. Besides, they are restricted to near-surface examinations and the maintenance cost is still high (scheduled maintenance). Many efforts remain to be done to survey the onset and progression of corrosion processes in a reliable way. In this work, we present a new methodology to detect the onset of corrosion and to monitor its evolution, based on the direct observation of rebar–concrete interface changes by the use of an Optical Fiber Sensor (OFS). The corrosion attack over rebar surface depends on several physical, chemical and electrochemical parameters (temperature, pH, presence of chlorides/CO2, biological contamination, etc.). Two types of mechanical behavior and described. In the first case (carbonation), metal oxidation products stay at the interface and increase internal pressure, potentially leading to a crack of the external concrete layer. In the second case (pitting), metal ions are evacuated out of the structure, leading to a reduction of the rebar section (structural weakness). An innovative sensor design is proposed with the purpose of localizing and quantifying the amount of both corrosion types. The basic principle consists in measuring the impact of corrosion over the state of strain of a prestressed optical fiber. Two metrological techniques are used: Fiber Bragg Grating (FBG) and Optical Frequency-Domain Reflectometry (OFDR). Accelerated corrosion tests were performed in electrolytic solutions for both kinds of corrosion types (pitting and carbonation) and provide a proof-of-concept for the technique. A low-cost, simplified manufacturing procedure is proposed with the aim to provide distributed and in situ Structural Health Monitoring (SHM), suitable for future Condition-Based Maintenance (CBM) of civil engineering concrete structures.
114

Structural Health Monitoring Of Thin Plate Like Structures Using Active And Passive Wave Based Methods

Gangadharan, R 05 1900 (has links) (PDF)
Aerospace structures comprising of metals and composites are exposed to extreme loading and environmental conditions which necessitates regular inspection and maintenance to verify and monitor overall structural integrity. The timely and accurate detection, characterization and monitoring of structural cracking, corrosion, delaminating, material degradation and other types of damage are of major concern in the operational environment. Along with these, stringent requirements of safety and operational reliability have lead to evolutionary methods for evaluation of structural integrity. As a result, conventional nondestructive evaluation methods have moved towards a new concept, Structural Health Monitoring (SHM). SHM provides in-situ information a bout the occurrence of damage if any, location and severity of damage and residual life of the structure and also helps in improving the safety, reliability and confidence levels of critical engineering structures. While the concepts underlying SHM are well understood, development of methods is still in a nascent stage which requires extensive research that is challenging and has been the main motivating factor for undertaking the work reported in the thesis. Under the scope of the investigations carried out in this thesis, an integrated approach using Ultrasonic (active) and Acoustic Emission (passive) methods has been explored for SHM of metallic and composite plate structures using a distributed array of surface bonded circular piezoelectric wafer active sensors(PWAS). In ultrasonic method, PWAS is used for actuation and reception of Lamb waves in plate structures. The damage detection is based on the interaction of waves with defects resulting in reflection, mode conversion and scattering. In acoustic emission (AE) technique, the same sensor is used to pick up the stress waves generated by initiation or growth of defects or damage. Thus, both the active and passive damage detection methods are used in this work for detection, location and characterization of defects and damage in metallic and composite plates with complex geometries and structural discontinuities. And, thus the strategy adopted is to use time-frequency analysis and time reversal technique to extract the information from Lamb wave signals for damage detection and a geodesic based Lamb wave approach for location of the damage in the structure. To start with experiments were conducted on aluminum plates to study the interaction of Lamb waves with cracks oriented at different angles and on a titanium turbine blade of complex geometry with a fine surface crack. Further, the interaction of Lamb wave modes with multiple layer delaminations in glass fiber epoxy composite laminates was studied. The data acquired from these experiments yielded complex sets of signals which were not easily discern able for obtaining the information required regarding the defects and damage. So, to obtain a basic understanding of the wave patterns, Spectral finite element method has been employed for simulation of wave propagation in composite beams with damages like delamination and material degradation. Following this, time-frequency analysis of a number of simulated and experimental signals due to elastic wave scattering from defects and damage were performed using wavelet transform (WT) and Hilbert-Huang transform(HHT).And, a comparison of their performances in the context of quantifying the damages has given detailed insight into the problem of identifying localized damages, dispersion of multi-frequency non-stationary signals after their interaction with different types of defects and damage, finally leading to quantification. Conventional Lamb wave based damage detection methods look for the presence of defects and damage in a structure by comparing the signal obtained with the baseline signal acquired under healthy conditions. The environmental conditions like change in temperature can alter the Lamb wave signals and when compared with baseline signals may lead to false damage prediction. So, in order to make Lamb wave based damage detection baseline free, in the present work, the time reversal technique has been utilized. And, experiments were conducted on metallic and composite plates to study the time reversal behavior ofA0 andS0Lamb wave modes. Damage in the form of a notch was introduced in an aluminum plate to study the changes in the characteristics of the time reversed Lamb wave modes experimentally. This experimental study showed that there is no change in the shape of the time reversed Lamb wave in the presence of defect implying no breakage of time reversibility. Time reversal experiments were further carried out on a carbon/epoxy composite T-pull specimen representing a typical structure. And, the specimen was subjected to a tensile loading in a Universal testing machine. PWAS sensor measurements were carried out at no load as also during different stages of delamination due to tensile loading. Application of time reversed A 0 and S0 modes for both healthy and delaminated specimens and studying the change in shape of the time reversed Lamb wave signals has resulted in successful detection of the presence of delamination. The aim of this study has been to show the effectiveness of Lamb wave time reversal technique for damage detection in health monitoring applications. The next step in SHM is to identify the damage location after the confirmation of presence of damage in the structure. Wave based acoustic damage detection methods (UT and AE) employing triangulation technique are not suitable for locating damage in a structure which has complicated geometry and contains structural discontinuities. And, the problem further gets compounded if the material of the structure is anisotropic warranting complex analytical velocity models. In this work, a novel geodesic approach using Lamb waves is proposed to locate the AE source/damage in plate like structures. The approach is based on the fact that the wave takes minimum energy path to travel from the source to any other point in the connected domain. The geodesics are computed numerically on the meshed surface of the structure using Dijkstra’s algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first inter section point of these waves, one can get the AE source/damage location. Experiments have been conducted on metallic and composite plate specimens of simple and complex geometry to validate this approach. And, the results obtained using this approach has demonstrated the advantages for a practicable source location solution with arbitrary surfaces containing finite discontinuities. The drawback of Dijkstra’s algorithm is that the geodesics are allowed to travel along the edges of the triangular mesh and not inside them. To overcome this limitation, the simpler Dijkstra’s algorithm has been replaced by a Fast Marching Method (FMM) which allows geodesic path to travel inside the triangular domain. The results obtained using FMM showed that one can accurately compute the geodesic path taken by the elastic waves in composite plates from the AE source/damage to the sensor array, thus obtaining a more accurate damage location. Finally, a new triangulation technique based on geodesic concept is proposed to locate damage in metallic and composite plates. The performances of triangulaton technique are then compared with the geodesic approach in terms of damage location results and their suitability to health monitoring applications is studied.
115

Magnetoelastische Sensoren für die Überwachung von mechanischen Verformungen in Verbundwerkstoffen

Wielage, Bernhard, Mäder, Thomas, Weber, Daisy, Mucha, Herbert 08 March 2013 (has links)
Eine ortsauflösende Spannungs- und Dehnungssensortechnik soll durch die Nutzung magnetostriktiver Materialien auf der Oberfläche von Kohlenstoffeinzelfasern (C-Fasern) und Mikrofeinstrukturierung dieser Schichten erzeugt und zur elektronischen Überwachung des Belastungszustandes von sicherheits- oder servicerelevanten Faserverbundbauteilen eingesetzt werden. Eine auf lokaler Gasphasenabscheidung und Mikrostrukturierung mittels der Focused Ion Beam (FIB)-Technik beruhende Sensorfabrikationsmethode wurde gemeinsam mit dem Institut für Mikrotechnologie Hannover (imt) entwickelt. Mehrschichtig mittels CVD und PVD bedampfte und zusätzlich galvanisch beschichtete C-Fasern weisen neuartige Eigenschaften auf, die im vorgestellten Vorhaben am Lehrstuhl für Verbundwerkstoffe (LVW) charakterisiert wurden. Insbesondere die Untersuchung der verschiedenen Schichten sowie deren Interfaces nehmen eine bedeutende Rolle ein.
116

Tomographie passive par ondes guidées pour des applications de contrôle santé intégré / Passive guided wave tomography for structural health monitoring applications

Druet, Tom 17 November 2017 (has links)
Ce manuscrit présente une méthode d’imagerie quantitative et sans état de référence, de défauts de corrosion d’une plaque mince, exploitant de manière passive un réseau embarqué de capteurs d’ondes élastiques guidées. Les applications visées sont le contrôle santé intégré (SHM) de structures critiques qui amènent de fortes contraintes à la fois d’intrusivité des capteurs et de fiabilité du diagnostic. Une solution prometteuse, permettant de multiplier la densité de points de mesure sans augmenter l’intrusivité du système, est offerte par les réseaux de Bragg sur fibre optique (FBG). Toutefois, contrairement aux transducteurs piézoélectriques (PZT) classiquement employés en SHM, les FBG ne permettent pas d’émettre d’ondes élastiques. L’idée consiste à utiliser des méthodes dites « passives » permettant de retrouver la fonction de Green entre deux capteurs à partir du bruit ambiant, naturellement présent dans la structure, mesuré simultanément entre ces deux capteurs. Nous étudions dans ce manuscrit deux méthodes passives : la corrélation de bruit et le filtre inverse passif. Nous verrons que ce dernier a plus de potentiel lorsqu’il est couplé à l’imagerie par tomographie. Différents algorithmes de tomographie sont évalués par simulation numérique puis lors d’expériences comparatives actives et passives à l’aide d’un réseau de PZT. Afin de rendre la tomographie passive robuste, nous présentons une méthode clé de détection de temps de vol, basée sur une représentation temps-fréquence. Enfin, nous décrivons une première démonstration expérimentale de mesures passives par FBG qui laisse à penser que la tomographie passive par FBG est prometteuse. / This manuscript presents a baseline-free quantitative method for the imaging of corrosion flaws present in thin plates. This method only requires an embedded guided waves sensors network in a fully passive way. The field ofapplications are Structural Health Monitoring (SHM) of critical structures with heavy constrains on both sensors intrusiveness and diagnostic reliability. A promising solution allowing to increase the number of measurement points without increasing the intrusiveness of the system is provided by the Fiber Bragg Gratings (FBGs). However, unlike piezoelectric transducers generally used in SHM, the FBGs cannot emit elastic waves. The idea consists in using passive methods in order to retrieve the Green function from elastic diffuse fields - naturally present in structures - measured simultaneously between two sensors. In this manuscript, two passive methods are studied: the ambient noise correlation and the passive inverse filter. It is shown that the latter gives better results when coupled with tomography. Several tomography algorithms are assessed with numerical simulations and then applied to active and passive datasets measured by a PZT network. In order to make passive tomography robust, a time of flight identification method is proposed, based on a time-frequency representation. Finally, a novel experimental demonstration of passive measurements with FBGs only is presented, suggesting high potential for FBGs passive tomography.
117

Wave Propagation in Healthy and Defective Composite Structures under Deterministic and Non-Deterministic Framework

Ajith, V January 2012 (has links) (PDF)
Composite structures provide opportunities for weight reduction, material tailoring and integrating control surfaces with embedded transducers, which are not possible in conventional metallic structures. As a result there is a substantial increase in the use of composite materials in aerospace and other major industries, which has necessitated the need for structural health monitoring(SHM) of aerospace structures. In the context of SHM of aircraft structures, there are many areas, which are still not explored and need deep investigation. Among these, one of the major areas is the development of efficient damage models for complex composite structures, like stiffened structures, box-type structures, which are the building blocks of an aircraft wing structure. Quantification of the defect due to porosity and especially the methods for identifying the porous regions in a composite structure is another such area, which demands extensive research. In aircraft structures, it is not advisable for the structures, to have high porosity content, since it can initiate common defects in composites such as, delamination, matrix cracks etc.. In fact, there is need for a high frequency analysis to detect defects in such complex structures and also to detect damages, where the change in the stiffness due to the damage is very small. Lamb wave propagation based method is one of the efficient high frequency wave based method for damage detection and are extensively used for detecting small damages, which is essentially needed in aircraft industry. However, in order, to develop an efficient Lamb wave based SHM system, we also need an efficient computational wave propagation model. Developing an efficient computational wave propagation model for complex structures is still a challenging area. One of the major difficulty is its computational expense, when the analysis is performed using conventional FEM. However, for 1D And 2D composite structures, frequency domain spectral finite element method (SFEM), which are very effective in sensing small stiffness changes due to a defect in a structure, is one of the efficient tool for developing computationally efficient and accurate wave based damage models. In this work, we extend the efficiency of SFEM in developing damage models, for detecting damages in built-up composite structures and porous composite structure. Finally, in reality, the nature of variability of the material properties in a composite structure, created a variety of structural problems, in which the uncertainties in different parameters play a major part. Uncertainties can be due to the lack of good knowledge of material properties or due to the change in the load and support condition with the change in environmental variables such as temperature, humidity and pressure. The modeling technique is also one of the major sources of uncertainty, in the analysis of composites. In fact, when the variations are large, we can find in the literatures available that the probabilistic models are advantageous than the deterministic ones. Further, without performing a proper uncertain wave propagation analysis, to characterize the effect of uncertainty in different parameters, it is difficult to maintain the reliability of the results predicted by SFEM based damage models. Hence, in this work, we also study the effect of uncertainty in different structural parameters on the performance of the damage models, based on the models developed in the present work. First, two SFEM based models, one based on the method of assembling 2D spectral elements and the other based on the concept of coupling 2D and 1D spectral elements, are developed to perform high frequency wave propagation analysis of some of the commonly used built-up composite structures. The SFEM model developed using the plate-beam coupling approach is then used to model wave propagation in a multiple stiffened structure and also to model the stiffened structures with different cross sections such as T-section, I-section and hat section. Next, the wave propagation in a porous laminated composite beam is modeled using SFEM, based on the modified rule of mixture approach. Here, the material properties of the composite is obtained from the modified rule of mixture model, which are then used in SFEM to develop a new model for solving wave propagation problems in porous laminated composite beam. The influence of the porosity content on the parameters such as wave number, group speed and also the effect of variation in theses parameters on the time responses are studied first. Next, the effect of the length of the porous region (in the propagation direction) and the frequency of loading, on the time responses, is studied. The change in the time responses with the change in the porosity of the structure is used as a parameter to find the porosity content in a composite beam. The SFEM models developed in this study is then used in the context of wave based damage detection, in the next study. First ,the actual measured response from a structure and the numerically obtained response from a SFEM model for porous laminated composite beam are used for the estimation of porosity, by solving a nonlinear optimization problem. The damage force indicator (DFI) technique is used to locate the porous region in a beam and also to find its length, using the measured wave propagation responses. DFI is derived from the dynamic stiffness matrix of the healthy structure along with the nodal displacements of the damaged structure. Next, a wave propagation based method is developed for modeling damage in stiffened composite structures, using SFEM, to locate and quantify the damage due to a crack and skin-stiffener debonding. The method of wave scattering and DFI technique are used to quantify the damage in the stiffened structure. In the uncertain wave propagation analysis, a study on the uncertainty in material parameters on the wave propagation responses in a healthy metallic beam structure is performed first. Both modulus of elasticity and density are considered uncertain and the analysis is performed using Monte-Carlo simulation (MCS) under the environment of SFEM. The randomness in the material properties are characterized by three different distributions namely normal, Weibul and extreme value distribution and their effect on wave propagation, in beam is investigated. Even a study is performed on the usage of different beam theories and their uncertain responses due to dynamic impulse load. A study is also conducted to analyze the wave propagation response In a composite structure in an uncertain environment using Neumann expansion blended with Monte-Carlo simulation (NE-MCS) under the environment of SFEM. Neumann expansion method accelerates the MCS, which is required for composites as there are many number of uncertain variables. The effect of the parameters like, fiber orientation, lay-up sequence, number of layers and the layer thickness on the uncertain responses due to dynamic impulse load, is thoroughly analyzed. Finally, a probabilistic sensitivity analysis is performed to estimate the sensitivity of uncertain material and fabrication parameters, on the SFEM based damage models for a porous laminated composite beam. MCS is coupled with SFEM, for the uncertain wave propagation analysis and the Kullback-Leibler relative entropy is used as the measure of sensitivity. The sensitivity of different input variables on the wave number, group speed and the values of DFI, are mainly considered in this study. The thesis, written in nine chapters, presents a unified document on wave propagation in healthy and defective composite structure subjected to both deterministic and highly uncertain environment.
118

Ultrasonic Guided Wave Based Models, Devices and Methods for Integrated Structural Health Monitoring

Rathod, Vivek T January 2014 (has links) (PDF)
Structural Health Monitoring (SHM) systems for future structures and vehicles would involve a process of damage identification and prediction of certain quantities of interest that concerns the function and safety. This process provides SHM systems the ability to not only save cost but also enhance the service life, safety and reliability of the structures and vehicles. Integrated SHM system (ISHM) is an advancement of SHM system that has additional capability of predicting the component life/failure. ISHM system development involves detailed understanding of diagnostic waves, hardware components, signal processing paradigms and intelligent use of algorithms. Diagnostic waves like the guided waves are the elastic waves that propagate in a direction defined by the material boundaries. These waves have the capability of traveling large distance probing the entire thickness in plates/shells. Thus, they are widely used by SHM systems in monitoring the plate structures. Piezoelectric transducers are often employed in the interrogation using guided waves. Most SHM systems employing guided waves are designed for specific structures. Current paradigms of SHM systems are unable to enable the transition from simple or ideal structures to realistic and complicated structures. This is due to the challenges at the fundamental level involving transducer, wave propagation and phenomena of guided wave scattering with damages to evaluate the possible solutions through mathematical modeling and signal analysis capability required by ISHM systems. This thesis aims to develop understanding of these problems at a fundamental level. Complex system level understanding is still needed which is left out as open problem. A primary requirement in designing SHM system is the proper understanding of wave characteristics such as number of modes, wavelength and dispersiveness. Although three-dimensional elasticity solution and simplified theories are available to understand them, their applicability in SHM problem requires a much more detailed look. Effort toward this direction has led to the development of simpler models. However, mathematical models are not available for understanding the wave characteristics in complex structures involving stiffeners and adhesive joints. This problem is addressed in this thesis. There is a fair amount of understanding developed regarding transducer characteristics. This is accomplished by analytical and finite element models of transducers in the past. However, simplified transducer model that are computationally fast to suit SHM system requirements needs to be developed. The development of such model is presented in this thesis. Apart from modeling the transducers and wave scattering due to damage, signal correlation and calibration are needed for practical implementation in SHM. Characterization studies reported in published literature are limited to quasi-static and low frequencies applications. However, SHM of aerospace structures employ guided waves typically in the frequency range of 100-500 kHz. Methods to characterize the transducers at this frequency range needs to be developed, which is addressed in this thesis. Another major requirement of SHM system is the design and development of sensor-actuator network and appropriate algorithm. Techniques developed earlier involving transducer arrays in this regard have limitation due to complexity of geometry and signal interpretation that needs to be addressed. The network with suitable algorithm should ideally monitor large area including the critical areas of failure with minimum number of transducers. ISHM systems further require some capability to estimate the useful life of the damaged structure in order to take suitable decisions. Efficient techniques to achieve these are not developed. Overall, there is a need to improve highly interdisciplinary areas involving mathematical modeling, transducer design, fabrication and characterization, damage detection and monitoring strategies. In this thesis, various novel techniques to combine mathematical model with experimental signals to enhance the damage detection capability are presented. In this thesis, developments in the three main aspects of SHM systems are focused upon. They are (1) development of mathematical models of sensors/actuators, wave propagation and scattering due to damage (2) characterization and calibration of transducers and (3) development of technique to monitor wide variety of damages within the scope of ultrasonic guided wave based SHM. The thesis comprises of ten chapters. First chapter is devoted to the background and motivation for the problem addressed in this thesis. In second chapter, brief overview of available mathematical models and conventional damage monitoring strategy is presented. The significant contributions reported in the subsequent chapters in this thesis are outlined below In chapter 3, a reduced-order model of guided wave propagation in thick structures with reduced-order approximation of higher-order elasto-dynamic field is formulated. The surface normal and shear tractions of the thick structure are satisfied in a closed form. The time-frequency Fourier spectral finite element is developed and is validated using detailed and computationally intensive finite element simulations. Natural frequencies obtained from the developed spectral finite element and the detailed finite element simulations are compared. Transient response due to broad frequency band and narrow frequency band excitations given in the form of surface tractions are validated by comparing with the detailed finite element simulations. Using the developed spectral finite element, wave scattering from a free edge and a notch are simulated and validated by comparing with the detailed finite element simulations. In chapter 4, two-dimensional plane wave and flexural wave scattering models for more complicated features such as stiffener with delamination and stiffener with bolt failures in a stiffened panel are derived using ultrasonic ray tracing based approach combined with wave-field representation. Dispersion relations are reformulated for the base plate where it is bolted with the stiffener. Surface conditions due to contact stiffness and contact damping are modeled by introducing springs and dampers. Scattering coefficients for the bonded and bolted stiffeners are derived. The scattering coefficients are evaluated for various different frequencies. Results are compared for different stiffener parameters. In chapter 5, a simplified analytical model of a piezoelectric actuator with uniform electrodes is modeled. The problem is to determine the launched guided wave characteristics in the structure. The analytical model is derived considering two-dimensional elasticity based approach and Airy’s stress function. The actuator model is used to specify the displacement boundary conditions in the detailed finite element model. The radiated wave patterns in a plate due to actuation from transducers of different shapes are obtained and validated with experiments. Phased array actuators are modeled in the detailed finite element model using the displacements estimated from the actuator model. The radiated wave pattern from the detailed finite element simulations are validated with experiments. Chapter 6 is devoted to the design and characterization of transducers for ultrasonic guided wave applications. The characterization techniques involve the estimation of voltage response for the induced strain by the guided wave at various different frequencies. First, a novel removable bonding technique and a calibration technique are demonstrated and related advantages are discussed. Performance of the piezoelectric thin film under quasi-static, dynamic and transient impact loadings are analyzed first. Next, a guided wave technique is developed to characterize piezoelectric thin film sensors and actuators at ultrasonic frequencies. The transducers with inter digital electrodes are characterized for frequency tuning and directional sensitivity. This characterization study enables in the selection of optimal frequency bands for interrogation. Further, the characterization of transducers with thermal degradation is presented. In chapter 7, a novel guided wave technique to calibrate the thin film sensors for ultrasonic applications is presented. Calibration procedure involves the estimation of the piezoelectric coefficient at ultrasonic range of frequencies. Calibration is done by the measurement of voltage generated across thin films when guided waves are induced on them. With the proposed technique, piezoelectric coefficient can be estimated accurately at any frequency of the propagating wave. Similarly, the measurement of piezoelectric coefficient of thin films with inter digital electrodes is presented. The estimation of piezoelectric coefficient at various different directions using laser Doppler vibrometer is presented. Lastly, the degradation of piezoelectric coefficient is studied for increasing thermal fatigue. In chapter 8, toward SHM methodology development, a guided wave based technique to detect and monitor cracks in a structure is presented. To establish the methodology, a detailed study is carried out on the effect of crack and specimen size on the guided wave propagation characteristics. Using the wave characteristics, an analytical way of modeling Lamb wave propagation in the specimen with plastic zone is proposed. The feasibility to determine plastic zone and fatigue crack propagation with integrated piezoelectric transducers is demonstrated experimentally and the results are verified analytically. A method is further established to detect damage at initial stage and crack-tip plastic zone size along with crack length for a given stress amplitude or vice-versa. An approach to estimate fatigue life from the transducer signals is also proposed. In chapter 9, a compact circular array of sensor-actuator network and an algorithm is presented to monitor large plate structures. A method based on the wavelet transforms of transducer signals is established to localize and estimate the severity of damages. Experiments are conducted to demonstrate the capability of the circular array based method in the localization and quantification of various types of damages like debonding of stiffeners, failure of bolted joints, corrosion and hole-enlargement. A damage index is then computed from wavelet time-frequency map that indicates the severity of damage. Chapter 10 ends with the concluding remarks on the work done with simultaneous discussion on the future scope. The work reported in this thesis is interdisciplinary in nature and it aims to combine the modeling and simulation techniques with realistic data in SHM to impart higher confidence levels in the prediction of damages and its prognosis. The work also aims in incorporating various mathematical models of wave propagation and ray tracing based algorithm to optimize the detection scheme employed in SHM. The future direction based on this study could be aimed at developing intelligent SHM systems with high confidence levels so that statistical machine learning would be possible to deal with complex real-world SHM problems.
119

Development of 3D Printing Multifunctional Materials for Structural Health Monitoring

Cole M Maynard (6622457) 11 August 2022 (has links)
<p>Multifunctional additive manufacturing has the immense potential of addressing present needs within structural health monitoring by enabling a new additive manufacturing paradigm that redefines what a sensor is, or what sensors should resemble. To achieve this, the properties of printed components must be precisely tailored to meet structure specific and application specific requirements. However due to the limited number of commercially available multifunctional filaments, this research investigates the in-house creation of adaptable piezoresistive multifunctional filaments and their potential within structural health monitoring applications based upon their characterized piezoresistive responses. To do so, a rigid polylactic acid based-filament and a flexible thermoplastic polyurethane based-filament were modified to impart piezoresistive properties using carbon nanofibers. The filaments were produced using different mixing techniques, nanoparticle concentrations, and optimally selected manufacturing parameters from a design of experiments approach. The resulting filaments exhibited consistent resistivity values which were found to be less variable under specific mixing techniques than commercially available multifunctional filaments. This improved consistency was found to be a key factor which held back currently available piezoresistive filaments from fulfilling needs within structural health monitoring. To demonstrate the ability to meet these needs, the piezoresistive responses of three dog-bone shaped sensor sizes were measured under monotonic and cyclic loading conditions for the optimally manufactured filaments. The characterized piezoresistive responses demonstrated high strain sensitivities under both tensile and compressive loads. These piezoresistive sensors demonstrated the greatest sensitivity in tension, where all three sensor sizes exhibited gauge factors over 30. Cyclic loading supported these results and further demonstrated the accuracy and reliability of the printed sensors within SHM applications.</p>

Page generated in 0.0521 seconds