1 |
Caractérisation de l’interaction des protéines IMA/MIF2 et CSN5 au niveau moléculaire et physiologiqueLeblond-Castaing, Julie 19 December 2011 (has links)
Les plantes ont la capacité à former de nouveaux organes grâce à une croissance continue assurée par une réserve de cellules souches au sein de structures spécifiques, les méristèmes. Les méristèmes floraux diffèrent des méristèmes végétatifs par leur caractère déterminé aboutissant à la production des fleurs. Le gène IMA (INHIBITOR OF MERISTEM ACTIVITY) code une protéine contenant un motif «doigt à zinc» (MIF) régulant les processus développementaux de la fleur et des ovules chez la tomate. En effet, IMA inhibe la prolifération cellulaire au cours de la terminaison florale en agissant sur l’expression du gène WUSCHEL, responsable du maintien du pool de cellules souches et contrôle le nombre de carpelles (Sicard et al., 2008). De plus, les protéines IMA et son orthologue chez Arabidopsis, MIF2, modulent la réponse à certaines phytohormones. De manière identique à la protéine MIF1 (Hu and Ma, 2006), IMA/MIF2 régule négativement la réponse aux brassinostéroïdes, à l’auxine, aux cytokinines et aux gibbérellines mais positivement la réponse à l’acide abscissique suggérant une fonction commune des protéines MIF dans les voies de réponse aux phytohormones. Un criblage d’une banque d’ADNc par la technique de double hybride a permis de révéler l’interaction entre les protéines IMA/MIF2 et une sous-unité du complexe signalosome, CSN5. De façon intéressante, les plantes mutantes csn5 d’Arabidopsis montrent de nombreuses altérations phénotypiques telles qu’un aspect buissonnant résultant de la perte de la dominance apicale, et une altération de la réponse à l’obscurité et à l’auxine. Ces phénotypes sont fortement ressemblants aux phénotypes des plantes MIF1OE d’Arabidopsis (Hu and Ma, 2006) et des plantes IMAOE de tomate (Sicard et al., 2008). Les résultats obtenus au cours de ce projet montrent que la protéine IMA inhibe la fonction du complexe signalosome grâce à son interaction avec la protéine CSN5. / Plants have the ability to form new organs as a result of indeterminate growth ensured by specific regions of pluripotent cells, called meristems. Flowers are produced by the activity of floral meristems which differ from vegetative meristems in their determinate fate. The INHIBITOR OF MERISTEM ACTIVITY (IMA) gene encoding a Mini Zinc Finger (MIF) protein from tomato (Solanum lycopersicum) regulates the processes of flower and ovule development. IMA inhibits cell proliferation during floral termination, controls the number of carpels during floral development and acts as a repressor of the meristem organizing centre gene WUSCHEL (Sicard et al., 2008). We demonstrated that IMA and its Arabidopsis ortholog MIF2 is also involved in a multiple hormonal signalling pathway, as a putative conserved feature for plant MIF proteins (Hu and Ma, 2006). Alike Arabidopsis MIF1, IMA/MIF2 regulates negatively BR, auxin, cytokinin and gibberellin signalling and positively ABA signaling. Using yeast two-hybrid screening experiments, we identified a strong protein-protein interaction between IMA and the signalosome subunit 5 (CSN5). Interestingly the csn5 mutant in Arabidopsis displays pleiotropic developmental defects such as a bushy phenotype originating from the loss of apical dominance and the alteration in sensitivity to darkness and auxin signals. These phenotypes are strikingly similar to what was described for Arabidopsis MIF1 (Hu and Ma, 2006) and tomato IMA overexpressors plants (Sicard et al., 2008), respectively. Taken together our data strongly suggest that IMA may act as an inhibitor of CSN function through its physical interaction with SlCSN5. The observed converse effects of IMA/MIF2 overexpression or deregulation on plant development and the abundance of developmental marker genes further support the notion of a CSN inhibitory control, since the COP9 signalosome through the specific deneddylation activity of the CSN5 subunit regulates plant hormone signalling.
|
2 |
A role for the CSN/COP9 signalosome in synaptonemal complex assembly and meiotic progressionBrockway, Heather Marie 01 July 2014 (has links)
Defects in meiotic prophase I events, resulting in aneuploidy, are a leading cause of birth defects in humans; however, these are difficult to study in mammalian systems due to their occurrence very early in development. The nematode, Caenorhabditis elegans, is an excellent model for prophase I studies as its gonad is temporally and spatially organized around these meiotic events. Homolog pairing, synapsis, meiotic recombination and crossover formation are essential to the proper segregation of chromosomes into the respective gametes, either the egg or sperm. Disturbances in these events leads to missegregation of chromosomes in the gametes in the meiotic divisions. Synapsis is especially critical in meiosis as it precedes and is required for meiotic recombination in C. elegans. The formation of the synaptonemal complex (SC) is fundamental to chromosomal synapsis, yet the molecular mechanisms of synaptonemal complex morphogenesis are largely unknown. The investigations described in this thesis were undertaken to better understand the molecular contributions to synaptonemal complex morphogenesis. Chapter One reviews knowledge of morphogenesis and its relationship to the events of meiotic prophase I. Recent studies in our laboratory have implicated AKIRIN, a nuclear protein with multiple biological functions, as having a role in synaptonemal complex disassembly, specifically preventing the aggregation of synaptonemal proteins (Clemons et al., 2013). As a result of our efforts to discern the mechanism by which AKIRIN regulates disassembly, we found that the highly conserved CSN/COP9 signalosome has a role in SC assembly, leading to defects in prophase I events and in MAPK signaling , leading to the arrest of nuclei in the later stages of meiosis. While the CSN/COP9 signalosome has been implicated in general fertility in C. elegans (Pintard et al., 2003), no role had been defined in earlier meiotic stages until this study. Chapter Two describes an RNAi enhancer/suppressor screen undertaken in the akir-1 mutant background. Several RNAi clones were selected for future study based on a reduction in brood size; one of which, csn-5/, is the focus of the analysis presented in Chapter 3.
Chapter Three describes the phenotypic characterization of two CSN/COP9 signalosome subunits, csn-2 and csn-5. Alleles of both genes display synaptonemal complex protein aggregation and defects in mitotic cell proliferation, homologous chromosome pairing, meiotic recombination and crossover formation, leading to an increase in apoptosis. Oocyte maturation is also disrupted by a lack of MAPK signaling, resulting in a lack of viable oocytes, which renders the csnmutant homozygotes sterile. These findings support a model suggesting the CSN/COP9 signalosome has an essential role in regulating meiotic prophase I events and oocyte maturation.
Chapter 4 describes the methodology used in this study.
Chapter 5 provides a summary of the thesis findings and examines the future directions to extend this work.
|
3 |
Immunoaffinity isolation of Btk´s signalosome, a proteomic approach to identifying interacting proteinsHerron, John Paul January 2006 (has links)
<p>The Signalosome is a term used to define a putative signalling complex, which assembles near the plasma membrane in response to external signals received at cell surface receptors and then migrates towards downstream effectors. It is proposed to regulate the level of intracellular Ca2+ and subsequent downstream signalling events. To date it has been defined to consist of BTK, BLNK, BCAP, VAV, PLCγ2 and PI3K1-4 in B-Cells.</p><p>This work entailed initiating a new proteomic approach to investigate the nature and extent of Bruton’s tyrosine kinase, Btk, involvement in the signalosome – inherently, the aim was to study multiple interactions of Btk with other molecules. By transfecting host cells with a Btk gene-transfer plasmid, virus particles were produced that were used to up-regulate and analyse the expression of Btk in three haematopoietic cell lines: B-cells, Pre-B-cells and a myeloid cancer cell. The construction of a new gene-transfer vector was successfully carried out by plasmid sub-cloning and it was subsequently found to effectively transfect the host cells and produce virus particles. The recombinant virus particles were employed with success in transducing three haematopoietic cell lines and with immunopurification and subsequent gel separation protein signalosome complexes were obtained ready for analysis by mass spectrometrical fingerprinting (to be carried out as a joint effort in Mount Sinai Hospital in Toronto, Canada).</p>
|
4 |
Immunoaffinity isolation of Btk´s signalosome, a proteomic approach to identifying interacting proteinsHerron, John Paul January 2006 (has links)
The Signalosome is a term used to define a putative signalling complex, which assembles near the plasma membrane in response to external signals received at cell surface receptors and then migrates towards downstream effectors. It is proposed to regulate the level of intracellular Ca2+ and subsequent downstream signalling events. To date it has been defined to consist of BTK, BLNK, BCAP, VAV, PLCγ2 and PI3K1-4 in B-Cells. This work entailed initiating a new proteomic approach to investigate the nature and extent of Bruton’s tyrosine kinase, Btk, involvement in the signalosome – inherently, the aim was to study multiple interactions of Btk with other molecules. By transfecting host cells with a Btk gene-transfer plasmid, virus particles were produced that were used to up-regulate and analyse the expression of Btk in three haematopoietic cell lines: B-cells, Pre-B-cells and a myeloid cancer cell. The construction of a new gene-transfer vector was successfully carried out by plasmid sub-cloning and it was subsequently found to effectively transfect the host cells and produce virus particles. The recombinant virus particles were employed with success in transducing three haematopoietic cell lines and with immunopurification and subsequent gel separation protein signalosome complexes were obtained ready for analysis by mass spectrometrical fingerprinting (to be carried out as a joint effort in Mount Sinai Hospital in Toronto, Canada).
|
5 |
The CSN-CRL pathway and two p27kip1 mutants in renal cancer cellsGummlich, Linda 19 July 2017 (has links)
Nierenzellkarzinome (RCC) gehören zu den häufigsten malignen Tumoren weltweit. Aufgrund der alarmierend hohen Inzidenz- und Sterberate besteht ein dringender Bedarf an neuen therapeutischen Targets zur Behandlung von RCCs. Punktmutationen in der Codesequenz von Proteinen führen zu einer Anhäufung von fehlgefalteten Proteinen in Tumorzellen und erfordern eine stärkere Kontrolle der Proteinqualität. Das Ubiquitin-Proteasome-System (UPS) bietet daher ein ideales therapeutisches Target für die RCC Therapie. Aktuelle Veröffentlichungen deuten auf eine Deregulation des COP9 Signalosome (CSN)-Cullin-RING-Ubiquitin-Ligase-(CRL)-Signalweges hin, einem Bestandteil des UPS. In der vorliegenden Arbeit wurden ausgewählte Komponenten des CSN-CRL Signalweges im RCC Gewebe und in vier RCC Zelllinien untersucht. In immunohistochemischen Studien am klarzelligen RCC-Gewebe konnte keine Hochregulierung einer einzelnen CSN-Untereinheit gezeigt werden. Höchstwahrscheinlich ist der gesamte CSN-Komplex im klarzelligen Nierenkarzinom im Vergleich zu nicht-malignem Nierengewebe stärker exprimiert. Die Untersuchung von vier RCC-Zelllinien zeigte eine interessante Deregulierung der CAND1-Skp2-p27 Achse in einer der Zelllinien. 786-O Zellen wiesen zwei p27Kip1 (p27) Varianten (p27V109G und p27I119T), eine Erhöhung des Skp2 und eine Reduktion des CAND1 Levels auf. Die Expression und Lokalisation von CAND1 wurde weiter in einer größeren RCC-Kohorte untersucht. Dabei zeigte sich eine negative Korrelation zwischen einer hohen zytosolischen CAND1 Expression und dem Gesamtüberleben von Patienten mit klarzelligen renalen Tumoren. Beide p27 Varianten werden durch das UPS abgebaut und binden an das CSN, Skp2, Cdks sowie an Cyclin E. Interessanterweise zeigte die p27 Mutanten beinhaltende Zelllinie 786-O eine höhere Proliferationsrate als die p27-Wildtyp-Zelllinie A498. In einem im Rahmen dieser Arbeit entwickelten Genotypisierungs-Assay konnte eine große RCC-Kohorte nach den beiden p27-Mutanten untersucht werden. In 42,5% der RCC Patienten konnte die Mutante p27V109G heterozygot nachgewiesen werden. Die Präsenz der beiden Mutanten p27V109 und p27I119T im RCC-Gewebe sowie die veränderte Expression von Skp2 und CAND1 machen den CSN-CRL Signalweg zu einem attraktiven therapeutischen Target für die Behandlung von Patienten mit Nierenzellkarzinom. / Renal cell carcinomas (RCC) belong to the most common malignant tumors worldwide. Alarming high incidence and mortality rates elucidate the urgent need for new therapeutic targets in RCCs. Point mutations in protein coding sequences lead to numerous unfolded proteins in cancer cells, requiring effective protein quality control. Therefore, components of the ubiquitin proteasome system (UPS) might be a promising new approach for RCC therapy. Recent publications in renal cancers point to a deregulated COP9 signalosome (CSN)-Cullin-RING Ubiquitin Ligase (CRL) pathway, a segment of the UPS. In the present thesis, selected components of the CSN-CRL pathway were studied in RCC tissues and four RCC cell lines. Immunohistochemistry results did not show an overexpression of a single CSN subunit in clear cell RCC tissues (ccRCC). However, it seems that the CSN holo complex is upregulated in analyzed ccRCCs. Examination of four RCC cell lines revealed a deregulation of the CAND1-Skp2-p27 axis in 786-O cells. These cells harbor two p27Kip1 (p27) mutants (p27V109G and p27I119T), high Skp2 and decreased CAND1 levels. Expression and localization of CAND1 was studied in a larger cohort of RCC tissues and revealed high cytosolic levels of CAND1 to be negatively correlated with overall survival in ccRCC patients. Both p27 variants were found to be degraded by the UPS and bound to the CSN, Skp2, Cdks and cyclin E. Interestingly, 786-O cells appear to grow 3-fold faster than A496 cells expressing p27wt. Further, a large cohort of RCC was screened for both p27 variants using a genotyping assay, specifically designed within the present thesis. 42.5% of the RCC patients harbor p27V109G heterozygously. The occurrence of p27V109G and p27I119T in RCC tissues as well as changed expression of Skp2 and CAND1 make the CSN-CRL pathway an attractive therapeutic target for the treatment of patients with RCC.
|
6 |
Nouveaux mécanismes de régulation des récepteurs couplés aux protéines G : lien entre complexes protéiques, localisation et signalisationPontier, Stéphanie M. January 2005 (has links)
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
|
7 |
Nouveaux mécanismes de régulation des récepteurs couplés aux protéines G : lien entre complexes protéiques, localisation et signalisationPontier, Stéphanie M. January 2005 (has links)
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
|
8 |
Exploring the Roles of TM4SF3 and CSN4 in Prostate CancerBhansali, Meenakshi January 2014 (has links)
No description available.
|
9 |
Funktionelle Charakterisierung der Interaktion des COP9-Signalosoms mit dem Mikrotubuli-bindenden Protein EB1Peth, Andreas 08 October 2007 (has links)
Das COP9-Signalosom (CSN) ist ein evolutionär konservierter Proteinkomplex. Er besteht aus acht Untereinheiten und wird als Paralog des Lid-Subkomplexes des 26S Proteasoms angesehen. Das CSN verfügt über diverse enzymatische Aktivitäten, die es zu einem regulatorischen Faktor des Ubiquitin-Proteasom-Systems (UPS) machen. Das UPS ist für den Abbau von einem Großteil der zellulären Proteine notwendig. Für die Proteolyse bestimmter Proteine werden diese mit einer Polyubiquitinkette markiert. Dies geschieht über eine Enzymkaskade von E1, E2s und E3-Ligasen, wobei die E3s die Substratspezifität bestimmen. Die Interaktion von E3s mit dem CSN ist für deren Assemblierung und Aktivität von entscheidender Bedeutung. Des Weiteren bindet das CSN eine Vielzahl von proteasomalen Substraten und scheint deren Abbau direkt zu kontrollieren. In dieser Arbeit konnte eine Interaktion des CSN mit dem Mikrotubuli-bindenden Protein EB1 nachgewiesen werden. EB1 wirkt präferentiell an den (+)-Enden von Mikrotubuli und fördert die Polymerisierung und Stabilität von Mikrotubulifilamenten. EB1 bindet über die Untereinheit CSN5 an das CSN. Die Interaktion von EB1 mit dem CSN findet im Centrosom statt und führt zur Phosphorylierung und Stabilisierung von EB1. Eine verminderte Bindung von EB1 an das CSN oder eine reduzierte Phosphorylierung von EB1 führt zu einem beschleunigten Abbau. Die Funktion der Interaktion zwischen EB1 und dem CSN wurde in CSN-siRNA-Zelllinien untersucht. Dazu wurden die Untereinheiten CSN1, 3 und 5 in HeLa-Zellen permanent herunterreguliert. Die siRNAs gegen CSN1 und 3 (siCSN1, siCSN3) führen zur Reduktion des gesamten CSN Komplexes, der Knockdown von CSN5 (siCSN5) nur zur Verminderung von CSN5. In allen drei Zelllinien ist der Abbau von EB1 beschleunigt, was auf eine verminderte Bindung an, bzw. Phosphorylierung durch das CSN zurückzuführen ist. Dies hat Konsequenzen für die Stabilität von Mikrotubulifilamenten in siCSN1- und siCSN3-Zellen. Diese zeigen eine erhöhte Sensibilität gegenüber Nocodazol, welches die Polymerisierung von Mikrotubuli inhibiert. Des Weiteren konnte ein durch Nocodazol ausgelöster Zellzyklusarrest durch die Überexpression von EB1 oder CSN1 in HeLa-Zellen überwunden werden. / The COP9 signalosome (CSN) is an evolutionary conserved protein complex. It consists out of eight subunits and is a paralogue to the lid subcomplex of the 26S proteasome. The CSN posesses several activities, supporting its function as a regulator of the Ubiquitin Proteasome System (UPS). The UPS mediates the degradation of the majority of the cellular proteins. Prior to degradation, a poly-ubiquitin chain is attached to the proteins. This process is catalyzed by a cascade of E1, E2s and E3-ligases. The CSN is a regulator of the E3-ligases, which determine substrate selectivity of the ubiquitination. The CSN also directly binds and thereby controls degradation of several proteasomal substrates. In the present study a direct interaction between the CSN and the microtubule binding protein EB1 is shown, which is mediated by the subunit CSN5. EB1 binds preferentially to the (+)-ends of microtubules and thereby promotes polymerisation rates and enhances the stability of microtubule filaments. The interaction between the CSN and EB1 is localized to the centrosome and results in EB1 phosphorylation and stabilization. A compromised binding of EB1 to the CSN results in an accelerated degradation. For functional studies of the CSN-EB1 interaction in HeLa cells, siRNA mediated knockdowns of CSN subunits were used. The subunits CSN1, CSN3 and CSN5 were knocked down permanently resulting in a faster proteolysis of EB1. This was a result of decreased amounts of CSN complex in cells with downregulated CSN1 and CSN3. The knockdown of CSN5 affects only subunit CSN5 levels causing a compromised binding of EB1 to the CSN complex. An increased sensitivity to the microtubule disrupting agent nocodazole was observed in the CSN1 and CSN3 knockdown cells. A cell cycle arrest induced in HeLa cells by nocodazole treatment was rescued by overexpression of EB1 or CSN1. The data presented in this study suggest a functional relationship of EB1 and the CSN resulting in a stabilization of microtubule filaments.
|
10 |
Specific ubiquitin-dependent protein degradation requires a trimeric CandA complex in Aspergillus nidulansKöhler, Anna Maria 28 May 2018 (has links)
No description available.
|
Page generated in 0.0589 seconds