• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 26
  • 15
  • 6
  • 6
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 117
  • 45
  • 24
  • 24
  • 24
  • 22
  • 15
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Reaktionen im System Metall-Silicium-Chlor-Wasserstoff unter dem Gesichtspunkt der heterogenen Katalyse

Köther-Becker, Sven 13 April 2007 (has links)
Die Hydrodehalogenierung von Siliciumtetrachlorid zu Trichlorsilan läuft bei moderaten Temperaturen von 700°C bis 900°C nur in Gegenwart von Katalysatoren mit hinreichender Geschwindigkeit ab. Die 5d- ÜM- Silicide sowie die unter den Reaktionsbedingungen stabilen Chloride der Erdalkalimetalle katalysieren selektiv die Hydrierung von SiCl4 zu HSiCl3. Ein erweitertes Katalysemodell mit Elektronentransferschritten innerhalb der festen Reaktionsschicht wurde postuliert. Voraussetzung dafür ist eine elektrische Leitfähigkeit in der quaternären M- Si- Cl- H- Reaktionsschicht. Dazu wurde die heterogene Bildung von ÜM- Siliciden unter einer H2/SiCl4-Atmosphäre mittels Widerstandsmessungen verfolgt. Die Aktivierungsenergie der Bildungsreaktion korreliert mit der Metallbindungsstärke. Eine Klassifizierung der Wachstumsmechanismen der ersten Silicidphase bezüglich Insel- oder Schichtwachstum ist möglich. Weiterhin ist die Abscheidung und Lösung von Silicium aus einer H2/SiCl4-Gasphase durch eine Metallchloridmatrix untersucht und die quaternäre M- Si- Cl- H- Mischphase chemisch, strukturell und thermodynamisch charakterisiert worden.
62

Degradation mechanisms of UN and UN–10U3Si2 pellets of varying microstructure by comparative steam oxidation experiments

Uygur, Selim January 2016 (has links)
During an extended LOCA in a LWR, the current UO2 fuel reaches very high temperatures and eventually melts, while the current Zircaloy fuel cladding oxidizes releasing hydrogen. These two consequences can lead to an unacceptable amount of radioactive release by presenting accident routes for containment failure. After such an accident at the Fukushima NPP in 2011, the development of Accident Tolerant Fuels LWRs gained additional momentum which aims to increase the margin to fuel melting, and to preserve cladding integrity as long as possible. Among the top ATF candidates compounds are UN and U3Si2, which have a high thermal conductivity and high uranium density. UN melts at 2850 °C on par with UO2, while U3Si2 melts at only 1665 °C. U3Si2 may serve as a second phase in UN–U3Si2 composites with better material properties than pure UN. Early studies on powders and dense samples, found the chemical UN corrosion by steam at all T,p pairs to generate a sandwiched UN/α‒U2N3+x/UO2 corrosion layer with inferior density. It was seen that dense polycrystalline UN would perform poorly due to an intergranular cracking mechanism due to the stresses caused by the growth of this layer. Due to the missing technological ability to control parameters like grain size and open porosity no work exist on the microstructure dependence of high density UN pellet corrosion in steam, and the intergranular cracking mechanism was never captured by imaging techniques. Also, as UN–U3Si2 composites are fairly new, the degradation mechanism of high density samples under steam is not known as no degradation study has yet been published. This work aimed at increasing understanding of the high pressure steam degradation mechanism of Spark Plasma sintered, microstructure controlled, UN and UN–10U3Si2 (wt %) composite samples, and to analyze the influence of grain size and density on the UN corrosion rate. A further goal was to image corrosion progress in the microstructure. For this, HPBAC steam exposure tests on UN and UN–10U3Si2 at 303 °C and 9 MPa were done. Durations were up to 1.5 hours. Samples were 96–99.9% of theoretical density and grain sizes were 6–24 µm. The corrosion in the microstructure of all samples is imaged by Light Optical Microscopy (LOM). Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS) were used to track the change in chemical composition at the grain boundaries. Two continuous steam exposures in flowing Ar and N2 at 400 °C and 1 atm have been done to study the role of N2 and NH3 on the degradation. One TGA on the residue of one of the autoclave tests was done to confirm the final oxidation state. TGA confirms that at 303 °C and 9 MPa the final product is UO2, while Digerator results show that under N2 the corrosion is faster. LOM and SEM/EDS show that UN–pellets exposed to steam are breaking apart by intergranular cracks generated by a layered precipitation of U2N3+x/UO2 in the grain boundaries. As the density of the products differs greatly from that of UN, high intergranular stresses result in cracking. Cracking makes progressively more surfaces available to oxidation/hydrolysis. An increase in density and reduction of open porosity slows the corrosion process, while an increase in grain size accelerates the degradation. Consequently, all other considerations cast aside the most waterproofed microstructure of a pure polycrystalline UN sample will have maximized density, eliminated open porosity, while maintaining a small grain size. As clusters of UN grains are enveloped by the U3Si2 phase in UN–10%U3Si2, the cracking was seen to be predominantly intragranular. Irrespective of the quality of the microstructure polycrystalline UN will fail by intergranular corrosion. U3Si2 seems to react preferentially with the steam precipitating UO2, delaying the attack on the UN grains. The low degree of maximum weight gain and different corrosion progression in the microstructure of UN–10U3Si2 are strong indications that the composite may provide significantly higher steam tolerance than pure UN.
63

Ductile-phase toughening of in situ niobium silicide-niobium composites

Rigney, Joseph David January 1994 (has links)
No description available.
64

Fatigue Crack Growth and Toughness of Niobium Silicide Composites

Herman, David M. January 2009 (has links)
No description available.
65

Nanostructurization of Transition Metal Silicides for High Temperature Thermoelectric Materials

Perumal, Suresh January 2012 (has links) (PDF)
Transition Metal Silicides (TMS) are well known refractory materials because of their high thermal and structural stability at elevated temperature. In addition TMS materials are known for their moderate thermoelectric applications at high temperature since they exhibit superior semiconducting behavior. But TMS materials have relatively higher thermal conductivity which limits their applications in the field of thermoelectrics. So it is important to reduce their thermal conductivity to enhance conversion efficiency. In this regard, the work is performed to reduce the thermal conductivity of selected silicides such as CrSi2, MnSi2, and β-FeSi2 through alloys scattering and nano-structuring by mechanical alloying. A brief introduction about basic principles of thermoelectricity and related parameters are described in the chapter 1. Thermoelectric material’s figure of merit (zT) depends on the ratio of carrier charge transport and thermal energy transport. The conversion efficiency can be significantly enhanced by increasing the zT value. This chapter discusses the methods to increase the zT and list out some of the state-of-art of thermoelectric materials which possesses high zT value. Chapter 2 covers the preparation of selected silicides, such as CrSi2, MnSi2 and β-FeSi2, and the characterization techniques used to define the thermoelectric performance. In this chapter the suitability and the performance of transition metal silicides for high temperature thermoelectric application are discussed. In summary, the objective of the thesis has been framed. Chapter 3 deals with thermoelectric properties of pure and Mn, Al doped chromium disilicide (CrSi2). This chapter has been divided into three parts and discussed the effect of composition variation (CrSi1.90-2.10), point defects (by introducing Al at Si site), and mass-fluctuation scattering (by co-substitution of Mn and Al) on thermoelectric properties of polycrystalline CrSi2 in the temperature range of 300K-800K. In the first part, it is observed that CrSi2 has a homogeneity range of CrSi1.95-CrSi2.02. The secondary phases evolve above and below this homogeneity range. These secondary phases significantly scatter phonons and reduce the thermal conductivity. In the second part, Al has been introduced at Si site in CrSi2 and creates the point defects which is also scatter the short wavelength phonons and lead to low thermal conductivity. The third part explores the influence of co-substitution of Mn at Cr site and Al at Si site on lattice thermal conductivity. Here, substitution of Al creates point defects and addition of Mn leads to mass fluctuation scattering. These combined effects result in huge reduction in lattice thermal conductivity and thereby enhanced the zT. Chapter 4 deals with efforts of nano-structuring the CrSi2 through Mechanical Alloying (MA) using SS (stainless steel) and WC (Tungsten Carbide) milling media. The effects of two milling media on crystallite size reduction are discussed. It is seen that as milling time increases the rate of crystallite size reduction also increases. The X-ray diffraction studies of hot pressed pellets show the formation of secondary metallic phase like Cr1-xFexSi from SS milled samples and CrSi from WC milled samples. It indicates that CrSi2 gains metallic Fe atoms during mechanical alloying and the secondary phases are formed. As milling time increases it is observed that weight loss from the milling balls also increases. The Fe content coming from SS ball forms a solid solution with CrSi phase. The transport properties like resistivity, Seebeck coefficient and thermal conductivity were measured for milled samples from 300K-800K. It is observed that formation of the secondary metallic phase reduces resistivity and Seebeck coefficient of overall ceramics. Very large reduction in thermal conductivity was found for samples which were 15hrs-WC-milled (7.4 W/m.K at 375K) due to increased phonon scattering by grain boundaries. The 15hrs-SS-milled samples show thermal conductivity ~10 W/m.K which is considerably low as compared to the as-cast CrSi2 (13.5 W/m.K). This chapter explores the structural studies and mechano-chemical decomposition of CrSi2. In addition, the influences of mechanical milling media and micron size secondary phase on transport properties of CrSi2 are also discussed. Chapter 5 deals with the influence of microstructures of MnSi2 densified by hot uni-axial pressing (HP) and spark plasma sintering (SPS) on thermoelectric properties. The effects of these densification processes on arresting the grain growth during sintering are explored. The powder X-ray diffraction studies show higher manganese silicide (HMS) with secondary Si phase. The SEM and EPMA results confirmed the presence of Si phase. The TEM micrographs are shown the particle size distribution of HMS to be <200nm with fine precipitates of Si, of 5-10nm size, in the HMS matrix. The ball milled samples of MnSi2 showed increase in resistivity and Seebeck coefficient with large reduction in total thermal conductivity as compared to that seen in as-cast sample. The SPS densified samples show lower thermal conductivity, with reduction by about 52%, as compared to HP sample’s (45%) reduction for same conditions. An enhancement in zT by 73% could be achieved for the SPS densified for 2 min at 1060˚C. Chapter 6 examines (i) the decomposition of α–FeSi2, generally known as α-Fe2Si5, (eutectoid reaction) into β-FeSi2 with Si dispersoids (ii) formation of β-FeSi2 from ε-FeSi and α-Fe2Si5 (peritectoid reaction). This is accompanied by a discussion of the microstructural effect on thermoelectric properties. Prolonged annealing of peritectoid composition decomposes the α– FeSi2 phase, replaces the ε–FeSi phase, and forms pure β-FeSi2 whereas eutectoid composition of α–FeSi2 decomposes into lamellar structure of β-FeSi2 and Si dispersions. The aging heat treatment carried out for composition prepared from eutectoid reaction at various temperatures (600°C, 700°C, 800°C and 850°C for duration of 100hrs, 10hrs, 4hrs and 10hrs, respectively) below the equilibrium eutectoid temperature were found to have fine and homogenous dispersions of Si particles. The XRD and SEM studies confirmed the presence of a secondary Si phase on the matrix of β-FeSi2 for the heat treated eutectoid composition. The excess Si phase in β-FeSi2 increases the resistivity and Seebeck coefficient by the reducing carrier concentration of system as compared to those that of pure β-FeSi2, which is prepared from peritectoid composition. The samples heat treated at 600°C showed relatively low thermal conductivity as compared to that of β-FeSi2. This chapter gives a route map for reducing the thermal conductivity by micro structural engineering through Si dispersions on β-FeSi2. In addition, this comparison of two the decomposition processes and its influence on the microstructure and thermoelectric properties is made. Chapter 7 summarizes the key conclusions of the work performed in this thesis. The work reported in this thesis has been carried out by the candidate as a part of Ph.D training programme. He hopes that this would constitute a worthwhile contribution to the field of thermoelectrics for understanding the (i) effect of alloy scattering, (ii) mass fluctuation scattering, (iii) and nano-structuring of transition metal silicides for high temperature thermoelectric materials.
66

Wachstum epitaktischer CoSi$_2$-Schichten durch Reaktion metallischer Doppelschichten mit Si(100)

Gebhardt, Barbara 04 November 1999 (has links)
Die Bildung von CoSi$_2$-Schichten mittels TIME-Verfahren (TIME: Ti-Interlayer Mediated Epitaxy) wurde untersucht. Dabei wurde die Ti-Zwischenschicht durch eine Hf-Zwischenschicht ersetzt. Der Einfluss der Prozessparameter (Tempertemperatur, Temperzeit, Aufheizrate und Ausgangsschichtdicken) und des Metalls (Hf, Ti, Zr) der Zwischenschicht auf die Reaktion der metallischen Doppelschichten mit Si(100) wurde ermittelt. Zur Charakterisierung der Proben wurden RBS-, TEM-, XRD- und AES-Untersuchungen durchgefuehrt. Die Ausbildung eines Mehrschichtsystems nach der Temperung der Doppelschichten in Abhaengigkeit der Prozessparameter wird dargestellt. Es wird gezeigt, dass die Prozessparameter die Temperatur bestimmen, bei der die CoSi$_2$-Keimbildung stattfindet. Anhand dieser Untersuchungen wird nachgewiesen, dass sich mit Erhoehung der CoSi$_2$-Keimbildungstemperatur die epitaktische Qualitaet der gebildeten CoSi$_2$-Schicht verbessert. Die Erklaerung des Reaktionsablaufs der metallischen Doppelschichten mit Si(100) erfolgt anhand eines aufgestellten Reaktionsschemas. Zur Entfernung der Deckschicht wurden verschiedene Aetzverfahren angewandt und deren Wirkung verglichen. / The formation of a CoSi$_2$ layer by solid phase reaction of metallic bilayer with Si (TIME: Ti-Interlayer Mediated Epitaxy) was investigated. In this work the Ti was replaced by Hf. The influence of the annealing temperature, the annealing time, the heating rate and the thicknesses of the metallic layers on the reaction of the bilayer with Si was determined. The samples were characterised by Rutherford-backscattering (RBS), Transmission-Electron-Microscopy (TEM), X-ray-Diffraction and Auger-Electron-Spectroscopy (AES) studies. During the annealing of the samples a system of layers is formed. It was shown, that the annealing parameters and the thicknesses of the layer determine the temperature, on which the nucleation of CoSi$_2$ occurs. A decrease of this nucleation temperature leads to an improvement of the quality of the epitaxial CoSi$_2$ layer. A model of reaction is presented, which explains the reaction of the metallic bilayer with Si. The removal of the top layer by several etching procedures was investigated and the results were compared.
67

Synthesis and characterizations of novel magnetic and plasmonic nanoparticles

Dahal, Naween January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Viktor Chikan / This dissertation reports the colloidal synthesis of iron silicide, hafnium oxide core-gold shell and water soluble iron-gold alloy for the first time. As the first part of the experimentation, plasmonic and superparamagnetic nanoparticles of gold and iron are synthesized in the form of core-shell and alloy. The purpose of making these nanoparticles is that the core-shell and alloy nanoparticles exhibit enhanced properties and new functionality due to close proximity of two functionally different components. The synthesis of core-shell and alloy nanoparticles is of special interest for possible application towards magnetic hyperthermia, catalysis and drug delivery. The iron-gold core-shell nanoparticles prepared in the reverse micelles reflux in high boiling point solvent (diphenyl ether) in presence of oleic acid and oleyl amine results in the formation of monodisperse core-shell nanoparticles. The second part of the experimentation includes the preparation of water soluble iron-gold alloy nanoparticles. The alloy nanoparticles are prepared for the first time at relatively low temperature (110 oC). The use of hydrophilic ligand 3-mercapto-1-propane sulphonic acid ensures the aqueous solubility of the alloy nanoparticles. Next, hafnium oxide core-gold shell nanoparticles are prepared for the first time using high temperature reduction method. These nanoparticles are potentially important as a high κ material in semiconductor industry. Fourth, a new type of material called iron silicide is prepared in solution phase. The material has been prepared before but not in a colloidal solution. The Fe3Si obtained is superparamagnetic. Another phase β-FeSi2 is a low band gap (0.85 eV) semiconductor and is sustainable and environmentally friendly. At last, the iron monosilicide (FeSi) and β-FeSi2 are also prepared by heating iron-gold core-shell and alloy nanoparticles on silicon (111) substrate. The nucleation of gaseous silicon precursor on the melted nanoparticles results the formation of nanodomains of FeSi and β-FeSi2. A practical application of these nanoparticles is an important next step of this research. Further improvement in the synthesis of β-FeSi2 nanoparticles by colloidal synthetic approach and its application in solar cell is a future goal.
68

Comparison of fission gas swelling models for amorphous u₃si₂ and crystalline uo₂

Winter, Thomas Christopher 27 May 2016 (has links)
Theoretical models are used in support of the I2S-LWR (Integral Inherently Safe LWR) project for a direct comparison of fuel swelling and fission gas bubble formation between U₃Si₂ and UO₂ fuels. Uranium silicide is evaluated using a model developed by Dr. J. Rest with the fuel in a amorphous state. The uranium dioxide is examined with two separate models developed using a number of papers. One model calculates the swelling behavior with a fixed grain radius while the second incorporates grain growth into the model. Uranium silicide rapidly becomes amorphous under irradiation. The different mechanisms controlling the swelling of the fuels are introduced including the knee point caused by the amorphous state for the U₃Si₂. The outputs of each model are used to compare the fuels.
69

Masės pernešimo reiškiniai titano ant silicio padėklo dangose, oksiduotose vandens garų plazmoje / Study of mass-transport phenomena in titanium on silicon substrate films oxidized by water-vapor plasma

Vilkinis, Paulius 22 January 2014 (has links)
Darbe atlikta literatūros analizė šių procesų: (i) vykstančių vandens garų plazmoje; (ii) titano dangų oksidacija vandens garų plazmoje ir (iii) titano dioksido fotokatalitinės ir hidrofilinės savybės. TiO2 dangos buvo gautos po titano dangų ekspozicijos H2O garų plazmoje. Tyrimai parodė, kad TiO2 danga vandens garų plazmos aplinkoje formuoja elektrocheminį elementą. Darbe tirtos plazma aktyvuotos vandens skaldymo reakcijos. Parodyta, kad susidarę protonai pernešami per kietą TiO2 elektrolitą, o elektronai migruoja per plazmoje susiformavusią išorinę grandinę. Proceso metu dangos paviršinis sluoksnis formuojasi į TiO2–SiO2 kompozitą. Nors procesai vyksta žemoje temperatūroje, gauti rezultatai parodė masės pernešimo reiškinius, būdingus aukštoms temperatūroms. Pateikti nagrinėtų procesų mechanizmai. Darbo metu bandinių eksperimentinė analizė atlikta elektroninės dispersinės spektroskopijos (EDS), rentgeno spindulių difrakcijos (RSD), Auger elektroninės spektroskopijos (AES), skenuojančio elektroninio mikroskopo (SEM), optinės mikroskopijos ir kontaktinio profilometro metodais. / Processes in water vapor plasma, titania film oxidation in water vapor plasma and titanium dioxide photocatalytic and hydrophilic properties are discussed in this paper. Titatium dioxide thin films were obtained after titanium thin film exposure in water vapor plasma. Specimen together with H2O plasma forms electrochemical cell. In plasma film surface is activated and photocatalytic water splitting reactions occurs. Generated hydrogen ions are transported through solid titanium electrolyte and electrons are conducted to an external circuit via plasma. Titanium dioxide films surfaces are converted into composited composed of TiO2 and SiO2. Although oxidation process occurs in room temperature results showed mass transfer processes which occurs in high temperature. Specimens were analysed by electron dispersion spectroscopy (EDS), (X-ray diffraction (XRD), Auger electron spectroscopy (AES), glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), optical microscopy and nanoprofilometer methods.
70

Integration of metallic source/drain contacts in MOSFET technology

Luo, Jun January 2010 (has links)
The continuous and aggressive downscaling of conventional CMOS devices has been driving the vast growth of ICs over the last few decades. As the CMOS downscaling approaches the fundamental limits, novel device architectures such as metallic source/drain Schottky barrier MOSFET (SB-MOSFET) and SB-FinFET are probably needed to further push the ultimate downscaling. The ultimate goal of this thesis is to integrate metallic Ni1-xPtx silicide (x=0~1) source/drain into SB-MOSFET and SB-FinFET, with an emphasis on both material and processing issues related to the integration of Ni1-xPtx silicides towards competitive devices. First, the effects of both carbon (C) and nitrogen (N) on the formation and on the Schottky barrier height (SBH) of NiSi are studied. The presence of both C and N is found to improve the poor thermal stability of NiSi significantly. The present work also explores dopant segregation (DS) using B and As for the NiSi/Si contact system. The effects of C and N implantation into the Si substrate prior to the NiSi formation are examined, and it is found that the presence of C yields positive effects in helping reduce the effective SBH to 0.1-0.2 eV for both conduction polarities. In order to unveil the mechanism of SBH tuning by DS, the variation of specific contact resistivity between silicide and Si substrates by DS is monitored. The formation of a thin interfacial dipole layer at silicide/Si interface is confirmed to be the reason of SBH modification. Second, a systematic experimental study is performed for Ni1-xPtx silicide (x=0~1) films aiming at the integration into SB-MOSFET. A distinct behavior is found for the formation of Ni silicide films. Epitaxially aligned NiSi2-y films readily grow and exhibit extraordinary morphological stability up to 800 oC when the thickness of deposited Ni (tNi) &lt;4 nm. Polycrystalline NiSi films form and tend to agglomerate at lower temperatures for thinner films for tNi≥4 nm. Such a distinct annealing behavior is absent for the formation of Pt silicide films with all thicknesses of deposited Pt. The addition of Pt into Ni supports the above observations. Surface energy is discussed as the cause responsible for the distinct behavior in phase formation and morphological stability. Finally, three different Ni-SALICIDE schemes towards a controllable NiSi-based metallic source/drain process without severe lateral encroachment of NiSi are carried out. All of them are found to be effective in controlling the lateral encroachment. Combined with DS technology, both n- and p-types of NiSi source/drain SB-MOSFETs with excellent performance are fabricated successfully. By using the reproducible sidewall transfer lithography (STL) technology developed at KTH, PtSi source/drain SB-FinFET is also realized in this thesis. With As DS, the characteristics of PtSi source/drain SB-FinFET are transformed from p-type to n-type. This thesis work places Ni1-xPtx (x=0~1) silicides SB-MOSFETs as a competitive candidate for future CMOS technology. / QC20100708 / NEMO, NANOSIL, SINANO

Page generated in 0.092 seconds