1 |
The Role of SIRT1 in Pancreatic Beta CellsLuu, Lemieux 05 December 2013 (has links)
SIRT1 has emerged as a critical regulator of glucose homeostasis and metabolism in the past decade. Glucose homeostasis is tightly regulated by insulin however, the factors affecting insulin release are still incompletely understood. Relatively recent evidence has shown SIRT1 to be a positive mediator of insulin secretion although its mechanism is largely unknown. Therefore, the aim of this study was to determine how SIRT1 regulates insulin release. Using a pancreatic beta cell-specific Sirt1 knockout mouse model (Sirt1BKO), oral glucose challenge revealed a glucose intolerant phenotype with reduced insulin secretion. Isolated Sirt1BKO islets also secreted less insulin without changes to insulin content or islet morphology. Intracellular defects were localized to the mitochondria and showed suppressed bioenergetics negatively affecting downstream glucose-induced calcium influx. This is the first study using a Sirt1BKO mouse model to show novel mitochondrial genes under SIRT1 regulation and when impaired, results in reduced insulin secretion.
|
2 |
The Role of SIRT1 in Pancreatic Beta CellsLuu, Lemieux 05 December 2013 (has links)
SIRT1 has emerged as a critical regulator of glucose homeostasis and metabolism in the past decade. Glucose homeostasis is tightly regulated by insulin however, the factors affecting insulin release are still incompletely understood. Relatively recent evidence has shown SIRT1 to be a positive mediator of insulin secretion although its mechanism is largely unknown. Therefore, the aim of this study was to determine how SIRT1 regulates insulin release. Using a pancreatic beta cell-specific Sirt1 knockout mouse model (Sirt1BKO), oral glucose challenge revealed a glucose intolerant phenotype with reduced insulin secretion. Isolated Sirt1BKO islets also secreted less insulin without changes to insulin content or islet morphology. Intracellular defects were localized to the mitochondria and showed suppressed bioenergetics negatively affecting downstream glucose-induced calcium influx. This is the first study using a Sirt1BKO mouse model to show novel mitochondrial genes under SIRT1 regulation and when impaired, results in reduced insulin secretion.
|
3 |
Úloha sirtuinů během formace prvojader po in vitro oplození prasečích oocytů / Role of sirtuins in pronucleus formation in vitro fertilised porcine oocytesMaryníková, Veronika January 2016 (has links)
Recently, the increasing importance of reproductive biotechnologies rises. They provide us to get higher performance of livestock or to improve treatment in human medicine. It is neccessary to have a sufficient amount of developmentaly competent oocytes and further healthy liveable embryos for in vitro culture to supply a progress of reproductive technologies. Immediately after fertilization, pronucleus formation is a key moment for
further embryonicdevelopment. Male and female pronuclei have their own pattern of histone code. For development of early embryo, it is neccessary to supply the correct pattern of histone code. NAD+-dependent histon deacetylases, sirtuins, are one of the mechanism which
plays in regulation of histone code. These family contains seven isoforms, SIRT1-7.
Based on current research, we decided for hypothesis that sirtuins are present in porcine fertilized oocytes and regulate the pronucleus formation. In this thesis, porcine COCs were culture in modificated culture medium and after 44 hr. maturation, only oocytes with extruded first polar body were chosen and used for further in vitro fertilization. Presumed zygotes were subsequently cultured with sirtuins inhibitors, nicotinamide or sirtinol. After 22 hr. of in vitro culture, zygotes were subjected by imunocytochemicaly localization of
methylated and acetylated (on lysine K9) histone H3 and image analysis.
Our results show that SIRT1 is localizated in porcine zygotes, especially in pronuclei. There are changes in acetylation and methylation H3K9 after sirtuin inhibition. Significant increase of H3K9 acetylation and decrese in H3K9 methylation are appeared. Sirtinol usage
has confirmed that the changes are result of SIRT1 action. Role of SIRT1 in histone code regulation of pronucleus formation is still not enought described in porcine.
|
4 |
The Interplay Between the Notch Signaling Pathway and Cellular MetabolismSLANINOVÁ, Věra January 2016 (has links)
We identified four metabolic genes as direct targets of Notch signaling pathway both in vitro and in vivo and investigated the hypothesis that Notch directed metabolic changes support the growth of the imaginal wing dics. Vice versa, we observed the influence of metabolic changes on the activity of Notch signaling pathway and we identified Sirt1 as a metabolic sensor for the Notch pathway that helps to elicit an efficient response to Notch signal, in a metabolism sensitive manner.
|
5 |
Post-transcriptional Regulation of PML protein by Distinct MechanismsGuan, Dongyin 27 January 2016 (has links)
No description available.
|
6 |
The NAD salvage pathway during the progression of non-alcoholic fatty liver diseasePenke, Melanie 01 February 2016 (has links) (PDF)
Non-alcoholic fatty liver disease (NAFLD) is a major chronic liver disease and thus a main reason for liver-related morbidities and mortality. NAFLD covers a wide range of diseases starting with steatosis and frequently progressing to non-alcoholic steatohepatitis (NASH), which is an independent predictor for the development of the hepatocellular carcinoma (HCC). Nicotinamide phosphoribosyltransferase (NAMPT), the key enzyme of the mammalian NAD salvage pathway, recycles nicotinamide to nicotinamide mononucleotide (NMN), which is further converted to nicotinamide adenine dinucleotide (NAD). NAD is not only an important redox partner but also a crucial co-substrate for NAD-dependent enzymes such as sirtuin 1 (SIRT1). Thus, NAD metabolism might be involved in the progression of NAFLD by regulating many cellular processes, such as apoptosis, de novo lipogenesis, glycolysis and gluconeogenesis, in the liver. Interestingly, tumor cells have a high NAD turnover due to their rapid proliferation and high activity of NAD-dependent enzymes. For these reasons, I hypothesized that the NAD salvage pathway is dysregulated during the progression of non-alcoholic fatty liver disease.
Therefore, the first study of the present work deals with the role of the NAD salvage pathway in a diet-induced mouse model of hepatic steatosis. In mice fed a high-fat diet for 11 weeks hepatic NAMPT mRNA, protein abundance and activity as well as NAD levels were increased. Additionally, SIRT1 protein abundance was upregulated indicating a higher SIRT1 activity. This could be confirmed by detecting decreased acetylation or transcription of SIRT1 targets. For example, p53 and nuclear factor κB (NF-κB) were less acetylated demonstrating lower activity of key regulators of apoptosis and inflammation, respectively.
In the second study of this thesis NAMPT activity was inhibited by applying its specific inhibitor FK866 in hepatocarcinoma cells to investigate whether or not NAMPT inhibition could be a potential novel therapeutic approach in HCC treatment. Hepatocarcinoma cells were more sensitive to NAMPT inhibition by FK866 than primary human hepatocytes, presenting a high number of apoptotic cells after FK866 treatment. FK866 induced NAD and ATP depletion which was associated with activation of the key regulator of energy metabolism 5’-AMP-activated protein kinase (AMPK) and decreased activity of its downstream target mammalian target of rapamycin (mTOR).
This thesis shows that the NAD salvage pathway is involved in hepatic steatosis and HCC. During hepatic steatosis NAD metabolism is upregulated to potentially protect against adverse effects of the massive hepatic lipid accumulation. To repress the progression to NASH it might be useful to maintain the hepatic NAD levels during early disease stages by administration of NAD precursors, such as NMN. However, hepatocarcinoma cells have a higher activity of NAMPT and NAD-dependent enzymes. NAMPT inhibition by FK866 could be a potential therapeutic approach in HCC, especially due to the fact that NAD depletion is selectively induced in hepatocarcinoma cells, but not in primary human hepatocytes.
|
7 |
Implication des cellules myéloïdes immunosuppressives (MDSC) et des lymphocytes TH17 dans l’efficacité des chimiothérapies et de l’immunothérapie / Role of myeloïd derived suppressive cells (MDSC) and Th17 lymphocytes in chemotherapy and immunotherapy efficacyLimagne, Emeric 19 January 2017 (has links)
L’oncologie actuelle est encore confrontée à la résistance et à la progression rapide des cancers. Les mécanismes de résistance intrinsèque développés par les cellules tumorales peuvent compromettre l’efficacité des chimiothérapies et des immunothérapies. Il est maintenant admis que l’état de la réponse immunitaire de l’hôte détermine en partie l’issue thérapeutique des patients. L’objectif de notre équipe de recherche est donc de caractériser cette réponse et d’étudier l’impact des thérapies conventionnelles sur celle-ci dans le but d’identifier les mécanismes liés à un échappement futur de la tumeur. Dans ce contexte, nous avons montré qu’une chimiothérapie (5-FU, oxaliplatine, anti-VEGF (« Vascular Endothelium Growth Factor » : FOLFOX-bevacizumab) provoque chez certains patients une chute des gMDSC (cellules myéloïdes immunosuppressives granulocytaires) périphériques qui est associée à une meilleure réponse thérapeutique. Comme chez la souris, cet effet sur les gMDSC provoque néanmoins une élévation des Th17, une population pro-angiogénique, qui limite l’efficacité de la chimiothérapie. La suite de notre travail a eu pour objectif de tester l’effet « anti-Th17 » de l’activation de l’histone désacétylase SIRT1. SIRT1 est une enzyme capable de perturber l’acétylation de STAT3, un facteur essentiel à la différenciation des Th17. Nous avons montré que l’utilisation d’agonistes pharmacologiques de SIRT1 (resvératrol, SRT1720, metformine) inhibe la polarisation des Th17 par la désacétylation de STAT3 et que cet effet permet de limiter la croissance tumorale dans un modèle de cancer colique et de mélanome chez la souris (B16F10, CT26). Nous avons validé ce concept chez l’homme, ce qui suggère qu’il est possible de cibler les Th17 par cette stratégie en complément de la chimiothérapie. Le dernier volet de ce travail est consacré à la comparaison du profil immunologique périphérique de volontaires sains à celui d’une cohorte prospective de cancers bronchiques non à petites cellules. Cette étude nous a permis de mettre en lumière les altérations immunitaires induites par la tumeur et de lier ces altérations à la réponse au nivolumab (anti-PD-1). Un premier modèle prédictif de réponse a pu être généré grâce aux données d’un panel d’analyse des cellules myéloïdes. Ce modèle révèle une fois encore que les cellules gMDSC ont un rôle prédictif défavorable, alors que les populations présentatrices d’antigènes (cellules dendritiques et monocytes) exprimant PD-L1 ont un bon rôle prédictif. Les données présentées dans cette partie sont préliminaires et devront être confirmées avec la cohorte de validation qui est en cours d’inclusion. L’ensemble de ce travail a permis de montrer qu’il est essentiel de cibler spécifiquement les cellules myéloïdes immunosuppressives et les Th17 pour favoriser l’efficacité des chimiothérapies et de l’immunothérapie dans le cancer. / Actual oncology is still facing resistance and rapid progression of cancer. Intrinsic resistance mechanisms developed by tumor cells determine chemotherapy and immunotherapy efficacy. It is now recognized that the host immune response status is in part implicated in the therapeutic outcome of patients. The aim of our research team is to characterize this response and to study the impact of therapies in order to identify the mechanisms associated with future exhaust of the tumor. In this context, we have shown that chemotherapy (5-FU, oxaliplatin, anti-VEGF: FOLFOX-bevacizumab) in some patients causes a drop in devices gMDSC (granulocytic myeloid derived suppressive cells) that is associated with better therapeutic response. Nevertheless, as in mice, this effect on gMDSC causes an elevation of Th17, a pro-angiogenic population, which limits the effectiveness of chemotherapy. The result of our work was aimed to test the effect "anti-Th17" activating SIRT1 deacetylase histone. SIRT1 is an enzyme capable of disrupting the acetylation of STAT3, a key factor in the differentiation of Th17. We have shown that by using pharmacological agonists SIRT1 (resveratrol, SRT1720, metformin) inhibits Th17 polarization by deacetylation of STAT3 and that this effect can limit tumor growth in colorectal and melanoma murine models (B16F10, CT26). We validated this concept in humans, suggesting that it is possible to target Th17 cells by this strategy in addition to chemotherapy. The final component of this work is devoted to the comparison of peripheral immunological profile of healthy volunteers to a prospective cohort of non-small cell lung cancer. This study has allowed us to highlight the immune alterations induced by the tumor and to link these changes in response to nivolumab (anti-PD-1). A first response predictive model could be generated using data from a panel analysis of myeloid cells. This model proves once again that gMDSC have a negative predictive role, while antigen presenting (dendritic cells and monocytes) expressing PD-L1 has a good predictive role. Data presented in this section are preliminary and must be confirmed with the validation cohort that is currently included. All of this work has shown that it is essential to specifically target immunosuppressive myeloid cells and Th17 to promote the efficacy of chemotherapy and immunotherapy in cancer.
|
8 |
Régulation épigénétique de la machinerie de transcription de l'ARN polymérase III par l'histone désacétylase SIRT1 / Epigenetic regulation of polymerase III RNA transcription machinery by histone deacetylase SIRT1Oury, Julien 28 September 2012 (has links)
SIRT1, appartenant à la famille des sirtuines, est une déacétylase NAD-dépendante, jouant un rôle essentiel dans le contrôle de l’expression génique. En plus de modifier les histones, SIRT1 peut affecter l’activité de certains facteurs de transcription et leurs gènes cibles. Une question fondamentale est de comprendre le mécanisme moléculaire par lequel SIRT1 contrôle l'expression des gènes impliqués dans la prolifération cellulaire et le métabolisme énergétique. Pour identifier les partenaires protéiques de SIRT1, nous avons utilisé la méthode de purification TAP-TAG à partir d'une fraction nucléaire soluble et d'une fraction ancrée à la chromatine de cellules Mef exprimant stablement une copie ectopique de SIRT1 (e-SIRT1). Nous avons ainsi pu identifier un complexe SIRT1 associé à la fois au facteur de prolifération cellulaire Ki67, et à la sous-unité TFIIIC, nécessaire à l'assemblage du complexe de pré-initiation de l'ARN Polymérase III. En délétant sirt1, et en inhibant spécifiquement l'expression de Ki67, nous avons montré que la machinerie de transcription de l'ARN Polymérase III et la prolifération cellulaire étaient fortement affectées. L'ensemble de mes résultats démontre très clairement que SIRT1, Ki67, et TFIIIC sont au sein d'un même complexe protéique, SIRT1 et Ki67 agissant de manière coordonnée pour réguler le niveau d'expression des SINEs et des LINEs, transcrits issus de la machinerie de transcription de l'ARN Polymérase III. / SIRT1, member of the sirtuins family, is an NAD-dependent deacetylase, playing an essential role in controlling gene expression. In addition to modifying histones, SIRT1 can affect the activity of several transcription factors and their target genes. A fundamental question is to understand the molecular mechanisms by which SIRT1 controls the expression of genesinvolved in cell proliferation and energy metabolism. To identify protein partners of SIRT1, we used the method of TAP-TAG purification from a soluble nuclear fraction and a chromatin anchored fraction of Mef cells stably expressing ectopic copy of SIRT1 (SIRT1-e). We were able to identify a SIRT1 complex associated with both cell proliferation factor Ki67, and TFIIIC,subunit required for assembly of the RNA polymerase III pre-initiation complex. By deleting Sirt1, and by specifically inhibiting Ki67 expression, we showed that the RNA Polymerase III transcription machinery and cell proliferation were strongly affected. All of my results clearly shows that SIRT1, Ki67, and TFIIIC are within a same protein complex, SIRT1 and Ki67, acting in coordination to regulate the expression level of SINES and LINES, transcribed from RNA polymerase III transcription machinery.
|
9 |
Metabolic pathways and their function in leukemogenesis : the role of MAPK ERK5 / Voies métaboliques et leurs fonctions dans la leucémogénèse : le rôle de MAPK ERK5Rathore, Moeez Ghani 07 December 2012 (has links)
Les cellules cancéreuses utilisent une glycolyse anaérobie pour générer l'ATP au lieu de la phosphorylation oxydative. Cette spécificité métabolique offre certains avantages aux cellules cancéreuses: une prolifération rapide et une évasion immune qui implique la sous-régulation de l'expression du CMH-I à la surface des cellules, phénomène lié au changement métabolique. Dans nos expériences, nous forçons les cellules leucémiques à produire de l'énergie par phosphorylation oxydative en les incubant avec de la glutamine comme source d'énergie en absence de glucose. La respiration ainsi forcée induit une augmentation de la transcription et de l'expression du CMH-I. Ce changement de métabolisme induit aussi une augmentation de l'expression de MAPK ERK5 et son accumulation dans les mitochondries. ERK5 intervient dans les changements de l'expression du CMH-I et du métabolisme. La sur-régulation du CMH-I induite par la respiration est bloquée dans les cellules leucémiques exprimant le shRNA shERK5. ERK5 régule la transcription de l'histone désacétylase de classe III Sirtuin 1 par l'activation de sa cible MEF2, ayant pour conséquence la liaison de MEF2 au promoteur de SIRT1. La régulation transcriptionnelle de SIRT1 induite par ERK5 intervient dans la réponse antioxydante des cellules leucémiques, et la sous-régulation d'ERK5 affecte cette réponse antioxydante. L'augmentation du métabolisme de la glutamine observée dans les cellules leucémiques est initiée par la glutaminase (GLS), enzyme qui est le facteur limitant de la vitesse du métabolisme de la glutamine. miR-23a cible l'ARN messager de GLS et inhibe l'expression de GLS. Le milieu glutamine induit la translocation de p65 dans le noyau, qui mène à une augmentation de l'activité transcriptionnelle de p65. NF-KB p65 inhibe l'expression de miR-23a en amenant HDAC4 sur le promoteur de miR-23a. Cela permet aux cellules leucémiques d'augmenter l'utilisation de la glutamine en tant que source alternative de carbone. Ainsi, la respiration forcée dans les cellules leucémiques contrôle l'expression du CMH-I, la réponse antioxydante et facilite la prolifération tumorale. / Cancer cells have anaerobic-like glycolysis to generate ATPs instead of oxidative phosphorylation. This specific metabolism provides advantages to cancer cells: rapid growth and immune evasion, which involves downregulation of MHC-I at the cell surface and it is linked to metabolic change. In our experiments, we force leukemic cells to produce energy by oxidative phosphorylation by incubating them with glutamine as an energy source in the absence of glucose. The forced respiration increases MHC-I transcription and protein level. This change of metabolism also leads to increase MAPK ERK5 expression and accumulation in mitochondria. ERK5 mediates changes in both MHC-I and metabolism. The respiration-induced upregulation of MHC-I is blocked in leukemic cells stably expressing short hairpin ERK5 (shERK5). ERK5 transcriptionally regulates the class III histone deacetylase Sirtuin 1 through activation of its target MEF2 and subsequently MEF2 binding to SIRT1 promoter. The ERK5-induced transcriptional regulation of SIRT1 mediates the antioxidant response in leukemic cells and downregulation of ERK5 impairs the antioxidant response. The increased glutamine metabolism found in leukemic cells is initiated by glutaminase (GLS), a rate limiting enzyme for glutamine metabolism. miR-23a targets GLS mRNA and inhibits GLS expression. The glutamine medium induces p65 translocation to the nucleus that leads to increase p65 transcriptional activity. NF-KB p65 inhibits miR-23a expression by bringing HDAC4 to the miR-23a promoter. This allows leukemic cells to increase the use of glutamine as an alternative source of carbon. Thus, forcing respiration in leukemic cells controls MHC-I expression, antioxidant response and facilitate tumor growth.
|
10 |
Rôle de la sirtuine 1 dans la modulation des réponses apoptotique et autophagique du coeur au stress du réticulum endoplasmique / Role of Sirtuin 1 in the modulation of ER stress-induced apoptosis and autophagy in heartPires da silva, Julie 31 May 2018 (has links)
Le réticulum endoplasmique rugueux (RE), assure la synthèse, le repliement et la maturation des protéines de la voie de sécrétion. Les altérations des fonctions physiologiques du RE, entrainent l’accumulation de protéines mal repliées dans la lumière du RE, une condition appelée stress RE. En réponse au stress RE, un mécanisme compensatoire adaptatif appelé Unfolded Protein Response (UPR) est activé afin de restaurer l’homéostasie du RE et de permettre la survie de la cellule. Dans le cas d’un stress RE sévère ou prolongé, les altérations ne pouvant plus être compensées, la cellule est éliminée par apoptose contribuant ainsi au développement de pathologies cardiaques. Le but des recherches actuelles sur le stress RE en physiopathologie cardiaque n’est pas d’inhiber la réponse au stress RE, mais plutôt de la moduler afin de limiter l’apoptose des cardiomyocytes et de protéger le cœur. Dans ce contexte, nous avons mis en évidence que le stress RE induit une modification importante de l’architecture des cardiomyocytes associée à une altération de la fonction mitochondriale. De plus, nous avons montré que SIRT1, une désacétylase dépendante du NAD+, inhibe l’apoptose mitochondriale induite par un stress RE en limitant spécifiquement l’activation de la voie PERK de la réponse UPR via la désacétylation du facteur eIF2á sur la lysine K143. Enfin, nos résultats indiquent que SIRT1 protège les cardiomyocytes de l’apoptose induite par le stress RE en favorisant la mitophagie, via une activation de la voie de signalisation eEF2K/eEF2. Ces résultats montrent que SIRT1 est impliquée dans la régulation de la réponse autophagique et apoptotique des cardiomyocytes au stress RE et suggèrent que cette désacétylase serait une cible thérapeutique intéressante pour limiter le développement des pathologies cardiaques liées au stress RE. / The endoplasmic reticulum (ER) functions to properly synthesize, fold and process secreted and transmembrane proteins. Impairment of ER function induces an accumulation of misfolded proteins in the ER lumen, a condition termed ER stress. In response to ER stress, an adaptive compensatory mechanism called Unfolded Protein Response (UPR) is activated to restore ER homeostasis and promote cell survival. In the case of severe or prolonged ER stress, homeostasis cannot be restored and the cell is eliminated by apoptosis contributing to the development of cardiac pathologies. Currently, cardiac therapy based on ER stress modulation to conserve beneficial adaptations and to avoid cardiomyocyte apoptosis is viewed as a promising avenue towards effective therapies of ER stress-associated cardiac diseases.In this context, we demonstrated that ER stress induces architectural modifications and alterations of the mitochondrial function in cardiomyocytes. Furthermore, we showed that SIRT1, a NAD+-dependent deacetylase, inhibits mitochondrial apoptosis by modulating the activation of the PERK pathway of the UPR through deacetylation of the translation initiation factor eIF2á on lysine K143. Our results also indicate that SIRT1 protects cardiomyocyte from ER stress-induced apoptosis by activating mitophagy through eEF2K/eEF2 pathway. Collectively, these data demonstrate that SIRT1 regulates ER stress-induced autophagy and apoptosis in the heart and suggest that this deacetylase may be a therapeutic target to protect the heart against ER stress-induced injury.
|
Page generated in 0.0275 seconds