• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 2
  • 1
  • Tagged with
  • 34
  • 34
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelo esférico quântico de vidro de spin na aproximação de recozimento

Silva, Pedro Castro Menezes Xavier de Mello e January 2005 (has links)
Apresentamos aqui o modelo esférico quântico de vidro de spin usando a aproximação de recozimento. São calculadas a energia livre, bem como a temperatura crítica em função do momentum de inércia e a entropia. São consideradas interações aleatórias de longo alcance (campo médio) com distribuição normal de média zero, e a energia cinética de cada spin. O cálculo é feito utilizando o formalismo funcional de Feynman de integrais de caminhos. O limite clássico é apresentado e coincide com o limite conhecido de teorias anteriores.
12

Propriedades de transporte em nanocavidades : modelo da versão simetrizada do mapa padrão

Heckler, Marla January 2007 (has links)
Propriedades de transporte em nanocavidades balísticas bidimensionais em regime de baixa densidade eletrônica e baixas temperaturas têm sido objetos de estudo desde os primórdios da década de 90. A falta de modelos teóricos que expliquem as estatísticas das flutuações quânticas na condutância eletrônica tornou-se um impedimento para maiores avanços na área. Mais recentemente, modelos matemáticos como mapas com aberturas têm sido propostos para simular as propriedades de transporte para sistemas caóticos. Mapas abertos podem modelar uma cavidade balística acoplada a reservatórios de elétrons e embora sejam sistemas abstratos do ponto de vista físico, eles são por outro lado, em geral, matematicamente tratáveis. Em nosso estudo, utilizamos uma versão simetrizada do mapa padrão de Chirikov com duas aberturas no espaço de fase para simular o efeito de bifurcação no transporte eletrônico em estruturas cujas dinâmicas clássicas podem ter regimes caótico ou regular. Classicamente, o mapa padrão descreve uma partícula movendo-se livremente sobre um círculo sujeita a uma perturbação periódica com intensidade . Dependendo do valor do parâmetro , o regime de movimento pode ser regular ou caótico. O time delay e a condutância quântica são obtidos através da matriz de espalhamento do mapa com canais de entrada e saída. Tiras são inseridas no mapa para simular estes canais. Nosso objetivo é modelar as flutuações do time delay e da condutância no regime semiclássico em termos de grandezas clássicas do mapa. / Transport properties in bidimensional ballistic nanocavities at low electronic density and low temperatures have been the subject of intense research for almost 15 years. Theoretical models that can fully explain the conductance fluctuations statistics are still missing and this is seen as a major problem for further development in this field. More recently quantum open maps have been suggested as good models to simulate transport properties in chaotic systems. Open maps can model general properties of ballistic cavities coupled to electronic reservoirs. Although they are not real physical systems, they are mathematicaly simpler. In our case, we have chosen a symmetrized version of the standard map also known as Chirikov map to with two openings in phase space to study periodic orbits bifurcation effects in transport properties like Wigner time delay and conductance. Classically, the standard map describes a particle moving freely on a circle under the effect of periodic perturbative force of intensity . The time delay and the quantum conductance are derived from the scattering matrix for the map with open channels. Vertical stripes in the map simulate these channels. Our main goal is to model the time delay and the conductance fluctuations in the semiclassical regime in terms of the classical quantities of the map.
13

Sistemas extensos com dimensão instável invariante

Disconzi, Marcelo Mendes January 2005 (has links)
Neste trabalho nós investigamos as relações existentes entre a Variação de Dimensão Instável(Unstable Dimension Variability - UDV) e a dimensão do espaço de fases de uma rede de mapas acoplados com acoplamento difuso. damos suporte teórico e evidências numéricas para a afirmação de que a partir de certo valor fixo da dimensão não há presença de UDV.
14

Teoria de órbitas periódicas no espectro e condutância de grafos quânticos

Wickert, Ricardo Mariense January 2008 (has links)
A transformada de Fourier da densidade de estados de grafos quˆanticos unidimensionais apresenta picos d localizados precisamente nos valores da ac¸ ˜ao de trajet´orias Newtonianas e n˜ao-Newtonianas. Introduzindo fios extendendo-se ao infinito, investigamos o problema de espalhamento correspondente; atrav´es do espectro transformado, encontramos picos que indicam que a condutˆancia tamb´em apresenta uma assinatura destas ´orbitas. C´alculos indicam que resultados de trabalhos anteriores para grafos fechados podem ser extendidos para sistemas abertos. Em particular, uma f´ormula do trac¸o ´e apresentada para trˆes exemplos em particular. / The Fourier transform of the density of states of one-dimensional, closed quantum graph exhibits d-peaks located precisely at the actions of Newtonian and non-Newtonian orbits. By introducing leads extending to infinity, we investigate the corresponding scattering problem; through the Fourier-transformed spectra, peaks are found indicating that also the conductance displays a signature of such periodic orbits. Our calculations indicate that results from previous work on closed graphs can be extended to open systems. In particular, we indicate a trace formula for three different cases.
15

Conductance in Iiffusive Quasi-One-Dimensional Periodic Waveguides: A Semiclassical and Random Matrix Study

Zúñiga Vukusich, Jaime Miguel January 2011 (has links)
En esta tesis estudiamos propiedades de transporte cuántico en guías de onda finitas periódicas quasi-unidimensionales, cuya dinámica clásica asociada es difusiva. Nos enfocamos en el límite semiclásico el cual nos permite emplear un modelo de Teoria de Matrices Aleatorias (TMA) para describir el sistema. El requisito de difusión normal de la dinámica clásica restringe la configuración de la celda unitaria a tener horizonte finito, y significa que los ensembles apropi- ados de TMA son los ensembles circulares de Dyson. El sistema que consideramos corresponde a una configuración de scattering, compuesto de una cadena finita de L celdas unitarias (clási- camente caóticas y con horizonte finito) la cual esta conectada a dos guías planas semi-infinitas en sus extremos. Las partículas dentro de esta cavidad son libres y solo interactúan con los bordes a través de choques elásticos; esto significa que las ondas son descritas por una ecuación de Helmholtz con condiciones de borde tipo Dirichlet en las paredes la guía. Por lo tanto, no hay desorden en el sistema y el scattering es debido a la geometría de la cadena la cual es estática. El análogo al ensemble de desorden es un ensemble de energía, definido sobre un intervalo clási- camente pequeño pero cuyo ancho es varias veces un espaciamiento de niveles promedio (mean level spacing). El número de canales propagativos en las guías planas es N y el límite semiclásico se alcanza cuando N → ∞. Un número importante para las propiedades de transporte en cadenas periódicas es el número de modos de Bloch NB del sistema extendido infinito asociado. Previamente, ha sido conjeturado que en sistemas fuertemente difusivos en el límite semiclásico <NB>∼√(N D), donde D es la constante de difusión clásica. Hemos comprobado numéricamente este resultado en una guía de ondas con forma de coseno obteniendo excelente concordancia. Luego, mediante la aproximación de Machta-Zwanzig para D obtuvimos la expresión analítica <NB> N/π, la cual concuerda perfectamente con los ensembles circulares. Por otro lado, hemos estudiado la conductancia (adimensional) de Landauer g como función de L y N en la guía coseno y mediante nuestro modelo RMT para cadenas periódicas. Hemos encontrado que <g(L)> muestra dos regímenes. Primero, para cadenas de largo LN la dinámica es difusiva tal como en un cable desordenado en el régimen metálico, donde se observa el escalamiento ohmnico típico con <g(L)>= N/(L+1). En este régimen, la distribución de conductancias es Gaussiana con una varianza pequeña (tal que <1/g> ≈ 1/<g>) pero que crece linealmente con L. Luego, para sistemas más largos con L ≫ N , su naturaleza periódica se hace relevante y la conductancia alcanza un valor asintótico constante <g(L → ∞)> ∼ NB. En este caso, la distribución de la conductancia pierde su forma Gaussiana convirtiéndose en una distribución multimodal debido a los valores discretos (enteros) que NB puede tomar. La varianza alcanza un valor constante ∼√N cuando L → ∞. Comparando la conductancia para los ensembles circulares unitario y ortogonal, mostramos que un efecto de localización débil está presente en ambos regímenes. Finalmente, estudiamos la parte no propagativa de la conductancia en el régimen Bloch-balístico, la cual está dominada por el modo con la longitud de decaimiento mayor ℓ que va a cero como gnp = 4 e−2L/ℓ cuando L → ∞. Usando nuestro modelo de TMA obtuvimos que bajo un escalamiento apropiado la pdf P (ℓ) converge, cuando N → ∞, a una distribución límite con cola algebraica P(ℓ) ∼ℓ−3 para ℓ → ∞; esto nos permitió conjeturar el decaimiento <gnp> ∼ L−2, el cual fue observado en nuestra guía de ondas coseno.
16

Teoria de órbitas periódicas no espectro e condutância de grafos quânticos

Wickert, Ricardo Mariense January 2008 (has links)
A transformada de Fourier da densidade de estados de grafos quˆanticos unidimensionais apresenta picos d localizados precisamente nos valores da ac¸ ˜ao de trajet´orias Newtonianas e n˜ao-Newtonianas. Introduzindo fios extendendo-se ao infinito, investigamos o problema de espalhamento correspondente; atrav´es do espectro transformado, encontramos picos que indicam que a condutˆancia tamb´em apresenta uma assinatura destas ´orbitas. C´alculos indicam que resultados de trabalhos anteriores para grafos fechados podem ser extendidos para sistemas abertos. Em particular, uma f´ormula do trac¸o ´e apresentada para trˆes exemplos em particular. / The Fourier transform of the density of states of one-dimensional, closed quantum graph exhibits d-peaks located precisely at the actions of Newtonian and non-Newtonian orbits. By introducing leads extending to infinity, we investigate the corresponding scattering problem; through the Fourier-transformed spectra, peaks are found indicating that also the conductance displays a signature of such periodic orbits. Our calculations indicate that results from previous work on closed graphs can be extended to open systems. In particular, we indicate a trace formula for three different cases.
17

Sistemas extensos com dimensão instável invariante

Disconzi, Marcelo Mendes January 2005 (has links)
Neste trabalho nós investigamos as relações existentes entre a Variação de Dimensão Instável(Unstable Dimension Variability - UDV) e a dimensão do espaço de fases de uma rede de mapas acoplados com acoplamento difuso. damos suporte teórico e evidências numéricas para a afirmação de que a partir de certo valor fixo da dimensão não há presença de UDV.
18

Sistemas extensos com dimensão instável invariante

Disconzi, Marcelo Mendes January 2005 (has links)
Neste trabalho nós investigamos as relações existentes entre a Variação de Dimensão Instável(Unstable Dimension Variability - UDV) e a dimensão do espaço de fases de uma rede de mapas acoplados com acoplamento difuso. damos suporte teórico e evidências numéricas para a afirmação de que a partir de certo valor fixo da dimensão não há presença de UDV.
19

Teoria de órbitas periódicas no espectro e condutância de grafos quânticos

Wickert, Ricardo Mariense January 2008 (has links)
A transformada de Fourier da densidade de estados de grafos quˆanticos unidimensionais apresenta picos d localizados precisamente nos valores da ac¸ ˜ao de trajet´orias Newtonianas e n˜ao-Newtonianas. Introduzindo fios extendendo-se ao infinito, investigamos o problema de espalhamento correspondente; atrav´es do espectro transformado, encontramos picos que indicam que a condutˆancia tamb´em apresenta uma assinatura destas ´orbitas. C´alculos indicam que resultados de trabalhos anteriores para grafos fechados podem ser extendidos para sistemas abertos. Em particular, uma f´ormula do trac¸o ´e apresentada para trˆes exemplos em particular. / The Fourier transform of the density of states of one-dimensional, closed quantum graph exhibits d-peaks located precisely at the actions of Newtonian and non-Newtonian orbits. By introducing leads extending to infinity, we investigate the corresponding scattering problem; through the Fourier-transformed spectra, peaks are found indicating that also the conductance displays a signature of such periodic orbits. Our calculations indicate that results from previous work on closed graphs can be extended to open systems. In particular, we indicate a trace formula for three different cases.
20

Propriedades métricas de sistemas multiparamétricos discretos

Torrico Chávez, César Abraham January 2008 (has links)
Neste trabalho estudamos propriedades métricas de certas estruturas recentemente descobertas em diagramas de fase, chamadas de conjuntos tipo de Mandelbrot. Tais estruturas (conjuntos) são importantes pois aparecem repetidamente em sistemas dinâmicos, em particular, em equações diferenciais que descrevem lasers e outros modelos físicos. De particular interesse, são escalonamentos (scalings) de codimensão 2, i.e. que dependem da variação simultânea de dois parâmetros físicos para serem observados. Através da obtenção de expressões exatas dos pontos de nascimento de domínios de estabilidade {"fiores de cactus'?, conseguimos demonstrar analiticamente que a velocidade de acumulação dos domínios convergepara um valor limite constante igual à unidade. Outras taxas de convergência tais como, por exemplo, a orientação do eixo dos domínios com respeito à horizontal, a diminuição das alturas e das áreas dos domínios, também convergem para a unidade. Tal convergência foi também por nós encontrada no conjunto de Mandelbrot. Em ambos casos as convergências obedecem uma lei de potência com expoentes inteiros, em forte contraste com a convergência típica de Feigenbaum, que também segue uma lei de potências, porém com expoente fracionário. Por razões discutidas em detalhe dentro do trabalho, conjecturamos ser o escalonamento unitário de carácter geral sempre que se tenham fam{lias de fases periódicas participando de um processo de acumulação com adição de períodos. Observamos que os conjuntos de números racionais (números de rotação) que rotulam as infinitas fam{lias de fiores, (fases periódicas) nos conjuntos tipo-Mandelbrot, também exibem a mesma convergência unitária. Tal fato nos leva a crer que, dum ponto de vista teórico, este "scaling"parece originar-se de propriedades métricas dos racwna%s. Além disto, complementamos o estudo das propriedades métricas dos conjuntos tipo-Mandelbrot com um estudo detalhado da sua estrutura interna, via multiplicadores das órbitas periódicas estáveis, reais e complexas. Observamos que a parte real (imaginária) dos multiplicadores define certos eixos de simetria transversal (longitudinal) em cada fior, que podem ser tomados como uma espécie de "sistema de coordenadas cartesiano". Em tal sistema, observamos um ordenamento simétrico dos números de rotação das fiores, de maneira similar ao ordenamento dos números racionais no círculo unitário. Mostrando desta forma que o interior de cada fior é isomorfo ao círculo unitário. A medida que nos aproximamos das zonas de transição isoperiódica (de órbitas complexas para reais), observamos uma rotação dos eixos transversais locais de cadafior em direção aos eixos longitudinais, até ambosficarem alinhados, no limite da acumulação. Esta mudança não ocorre nos círculos do conjunto de Mandelbrot, onde ambos eixos permanecem perpendiculares até alcançar um tamanho nulo no ponto raiz. Isto parece mostrar que, apesar dos conjuntos Mandelbrot e tipo-Mandelbrot compartilharem várias propriedades métricas, a ausência de conectividade local nestes últimos modifica significativamente sua estrutura interna. / In this work we study scaling proprerties of certain structures recently found in phase diagrams, called as Mandelbrot-like sets. Such structures (sets) are important becausethey appear repeatedly in dinamical systems, particularly, in differentials equations that describe lasers and others physical models. Df particular interest, are scalings of codimension-2, i.e., that depend on the simultaneous variation of two physical parameters to be observed. Through the obtention of exact expressions for the birth points of stability domains ("cactus flowers''), we proved analitically that the accumulation rate of the domains converges to a constant limit value equal to unity. Another convergence rates such as, for example, orientation of the domain axis with respect to the horizontal, the decrease of domains heights and areas, also converge to unity. We also founded this convergence in the Mandelbrot set. In both cases, the convergences obey a power law with integer exponents, in contrast with the typical Feigenbaum convergence, that also follows a power law but with fraccionary exponent. For the reasons discuted in detail along the work, we conjecture this unitary scaling to have a general caracter always that one have families of periodic fases participating in a process of accumulation with period adding. We observed that the rational numbers sets that label the infinity flower's families (periodic phases), in the Mandelbrot-like sets, also exhibit the same rate of convergence. This fact lead us to believe, from a theoretical point of view, that this scaling seems to arise from the metrical properties of rationals. Besides this, we complemented the study of scalings in the Mandelbrot-like sets with a detailed study of their internal structure, via multipliers of the stable periodic orbits, both real and complexo We observed that the real (imaginary) part of multipliers define certain transversal (longitudinal) axis of simetry en each flower, that can be take as a sort of local "cartesian coordinates system". In such system, we observe a symmetric ordering of the rotation numbers of flowers, like the ordering of rational numbers in the unitary circle. Showing of this form that the inner of each flower is isomorphic to the unitary circle. As we aproximate to the isoperiodic transition zones (of complexto realorbits),wefounded a rotationof the transversallocalaxis of each flower toward the longitudinal axis, until both axis stay aligned, at the accumulation limito This rotation does not occur inside the Mandelbrot set circles, where both axis remain perpendicular until they reach a null size at the root point. This seems to show that, in spite of Mandelbrot and Mandelbrot-like sets to share several metric properties, the lack of local conectivity in the latest modifies significantly their internal structure.

Page generated in 0.0777 seconds