• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 10
  • 8
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 82
  • 82
  • 82
  • 45
  • 14
  • 14
  • 13
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Type 2 diabetes impairs venous, but not arterial smooth muscle cell function: possible role of differential RhoA activity

Riches-Suman, Kirsten, Warburton, P., O'Regan, D.J., Turner, N.A., Porter, K.E. 02 March 2014 (has links)
Yes / Background/purpose Coronary heart disease is the leading cause of morbidity in patients with type 2 diabetes mellitus (T2DM), frequently resulting in a requirement for coronary revascularization using the internal mammary artery (IMA) or saphenous vein (SV). Patency rates of SV grafts are inferior to IMA and further impaired by T2DM whilst IMA patencies appear similar in both populations. Smooth muscle cells (SMC) play a pivotal role in graft integration; we therefore examined the phenotype and proliferative function of IMA- and SV-SMC isolated from non-diabetic (ND) patients or those diagnosed with T2DM. Methods/materials SMC were cultured from fragments of SV or IMA. Morphology was analyzed under light microscopy (spread cell area measurements) and confocal microscopy (F-actin staining). Proliferation was analyzed by cell counting. Levels of RhoA mRNA, protein and activity were measured by real-time RT-PCR, western blotting and G-LISA respectively. Results IMA-SMC from T2DM and ND patients were indistinguishable in both morphology and function. By comparison, SV-SMC from T2DM patients exhibited significantly larger spread cell areas (1.5-fold increase, P < 0.05), truncated F-actin fibers and reduced proliferation (33% reduction, P < 0.05). Furthermore, lower expression and activity of RhoA were observed in SV-SMC of T2DM patients (37% reduction in expression, P < 0.05 and 43% reduction in activity, P < 0.01). Conclusions IMA-SMC appear impervious to phenotypic modulation by T2DM. In contrast, SV-SMC from T2DM patients exhibit phenotypic and functional changes accompanied by reduced RhoA activity. These aberrancies may be epigenetic in nature, compromising SMC plasticity and SV graft adaptation in T2DM patients.
42

MicroRNA‐21 drives the switch to a synthetic phenotype in human saphenous vein smooth muscle cells

Alshanwani, A.R., Riches-Suman, Kirsten, O'Regan, D.J., Wood, I.C., Turner, N.A., Porter, K.E. 2018 April 1916 (has links)
Yes / Cardiovascular disease is a leading cause of morbidity and mortality. Smooth muscle cells (SMC) comprising the vascular wall can switch phenotypes from contractile to synthetic, which can promote the development of aberrant remodelling and intimal hyperplasia (IH). MicroRNA‐21 (miR‐21) is a short, non‐coding RNA that has been implicated in cardiovascular diseases including proliferative vascular disease and ischaemic heart disease. However, its involvement in the complex development of atherosclerosis has yet to be ascertained. Smooth muscle cells (SMC) were isolated from human saphenous veins (SV). miR‐21 was over‐expressed and the impact of this on morphology, proliferation, gene and protein expression related to synthetic SMC phenotypes monitored. Over‐expression of miR‐21 increased the spread cell area and proliferative capacity of SV‐SMC and expression of MMP‐1, whilst reducing RECK protein, indicating a switch to the synthetic phenotype. Furthermore, platelet‐derived growth factor BB (PDGF‐BB; a growth factor implicated in vasculoproliferative conditions) was able to induce miR‐21 expression via the PI3K and ERK signalling pathways. This study has revealed a mechanism whereby PDGF‐BB induces expression of miR‐21 in SV‐SMC, subsequently driving conversion to a synthetic SMC phenotype, propagating the development of IH. Thus, these signaling pathways may be attractive therapeutic targets to minimise progression of the disease. / King Saud University; College of Medicine , Riyadh, Saudi Arabia
43

Preservation of Smooth Muscle Cell Integrity and Function: A Target for Limiting Abdominal Aortic Aneurysm Expansion?

06 May 2022 (has links)
Yes / (1) Abdominal aortic aneurysm (AAA) is a silent, progressive disease with significant mortality from rupture. Whilst screening programmes are now able to detect this pathology early in its development, no therapeutic intervention has yet been identified to halt or retard aortic expansion. The inability to obtain aortic tissue from humans at early stages has created a necessity for laboratory models, yet it is essential to create a timeline of events from EARLY to END stage AAA progression. (2) We used a previously validated ex vivo porcine bioreactor model pre-treated with protease enzyme to create "aneurysm" tissue. Mechanical properties, histological changes in the intact vessel wall, and phenotype/function of vascular smooth muscle cells (SMC) cultured from the same vessels were investigated. (3) The principal finding was significant hyperproliferation of SMC from EARLY stage vessels, but without obvious histological or SMC aberrancies. END stage tissue exhibited histological loss of α-smooth muscle actin and elastin; mechanical impairment; and, in SMC, multiple indications of senescence. (4) Aortic SMC may offer a therapeutic target for intervention, although detailed studies incorporating intervening time points between EARLY and END stage are required. Such investigations may reveal mechanisms of SMC dysfunction in AAA development and hence a therapeutic window during which SMC differentiation could be preserved or reinstated. / This research was funded in part by The Leeds Teaching Hospitals Charitable Foundation (R11/8002). E.R.C. was supported by a PhD studentship from the Engineering and Physical Sciences Research Council (EPSRC; EP/F500513/1). R.J.H. was the recipient of an Intercalated Batchelor of Science Degree in Science award from the Royal College of Surgeons of England. M.A.B.(FS/18/12/33270 and FS/12/54/29671), K.I.B. (FS/12/26/29395), and K.J.G. (FS/11/91/29090) were supported by BHF Clinical Research Training Fellowships.
44

Phenotypic differences between microvascular and macrovascular smooth muscle cells and their contribution to coronary microvascular dysfunction

06 May 2022 (has links)
Yes / Coronary microvascular dysfunction (CMD) is an under-diagnosed condition characterized by functional alteration of the small coronary arterioles and the cardiac capillary bed. The vessels do not dilate appropriately in response to changes in cardiac oxygen demand, leading to chest pain and symptoms of angina. These blood vessels contain two major cell types: the endothelial cells, which line the blood vessels and detect changes in oxygen demand, and smooth muscle cells (SMC) which respond to these changes by contracting or relaxing to provide an optimal blood supply to the cardiac tissue. Many CMD studies have focused on the endothelial cells as these cells secrete vasorelaxants and vasoconstrictors. However, comparably fewer studies have examined SMC despite their functional role in contracting and relaxing. A variety of health conditions and lifestyle choices, such as diabetes, hypertension and cigarette smoking, can promote the development of both CMD and macrovascular coronary artery disease; a condition where SMC have been studied extensively. This review article will consider the influence of CMD on SMC phenotype. It will discuss the structural, cellular and molecular changes in CMD, and will summarise how co-morbidities can have differing effects on micro- and macro-vascular SMC phenotype and function, which complicates the development of new therapeutic avenues for CMD.
45

Role of Mitogen-activated Kinases in Cd40-mediated T Cell Activation of Monocyte/macrophage and Vascular Smooth Muscle Cell Cytokine/chemokine Production

Milhorn, Denise M. 01 August 1999 (has links)
This dissertation represents efforts to determine the functional consequences acquired by vascular smooth muscle cells (SMC) in response to CD40 ligation by activated CD154+ T cells, and to elucidate components of the signaling pathway(s) activated in response to CD40 signaling in both monocytes and SMC. To study the consequences of CD40 stimulation, primary human monocytes and aortic SMC were treated with plasma membranes purified from CD154 + , CD4+ T cells. The results presented in this dissertation demonstrate that SMC, like monocytes/macrophages, are capable of interacting with T cells in a manner that results in reciprocal activation events. SMC were shown to present antigen to, and activate T cells. In turn T cell stimulus resulted in the activation of proinflammatory function in SMC initiated through the CD154:CD40 interaction. CD40 stimulation of SMC resulted in the production of the chemokines interleukin 8 (IL-8) and macrophage chemotactic protein-1 (MCP-1), and the upregulation of intercellular adhesion molecule (ICAM). Examination of the intracellular signaling pathways activated through CD40 signaling revealed the involvement of MAPKs in the pathway leading to induction of proinflammatory activity. Evaluation of CD40 signaling in monocytes demonstrated the activation of the MAPK family members ERK1/2, but not the MAPK family members p38 or c-jun-N-terminal kinase (JNK). In contrast, CD40 signaling in SMC was shown to result in ERK1/2 and p38 activation, and both of these kinases were shown to play a critical role in the induction of chemokine synthesis. An examination of the ability of anti-inflammatory cytokines to modulate CD40 signaling in monocytes and SMC demonstrated that the anti-inflammatory cytokines IL-4 and IL-10 abrogate CD40-mediated induction of inflammatory cytokine production by monocytes. This inhibition was shown to be a result of a negative influence of IL-4 and IL-10 on CD40 mediated ERK1/2, activation in monocytes. However, IL-4 and IL-10 did not inhibit SMC proinflammatory responses indicating a difference in the intracellular responses to these cytokines by the two cell types. (Abstract shortened by UMI.)
46

Mécanismes moléculaires de la transdifférenciation des cellules musculaires lisses et calcification dans l'athérosclérose / Molecular mechanisms of vascular smooth muscle cell trans-differentiation and calcification in atherosclerosis

Roszkowska, Monika 06 April 2018 (has links)
Chez les patients atteints d'athérosclérose, les calcifications vasculaires sont une caracteristique des plaques d'athérome. Elles résultent de la trans-différenciation des cellules musculaires lisses (CMLs) en cellules de type ostéoblastique et/ou chondrocytaire, notamment en réponse à des cytokines inflammatoires. Les CMLs forment alors des cristaux par l'activité de la phosphatase alcaline non-spécifique du tissu (TNAP). A la lumière de résultats récents, nous avons émis l'hypothèse que la TNAP module la trans-différenciation des CMLs. Nos objectifs étaient donc de déterminer l'effet de la TNAP dans la trans-différenciation des CMLs, et d'étudier les mécanismes impliqués dans son induction. Nous avons observé que l'ajout de phosphatase alcaline purifiée ou la surexpression de TNAP stimule l'expression de marqueurs chondrocytaires en culture de CMLs et de cellules souches mésenchymateuses. De plus, l'inhibition de la TNAP bloque la maturation de chondrocytes primaires. Nous avons observé un rôle des cristaux formés par la TNAP, puisque l'ajout de cristaux seuls ou associés à une matrice collagénique a reproduit les effets de la TNAP. Nous suspectons que la TNAP agit en hydrolysant le PPi et en générant des cristaux. Ces cristaux ensuite induisent l'expression du facteur ostéogénique BMP-2 et l'inhibition des effets de la BMP-2 annule les effets de la TNAP. De plus, nous étions intéressés par les la localisation et la fonction de marqueurs de minéralisation comme les annexines en parallèle de la TNAP. Nous avons observé que l'activité TNAP des CMLs induit la minéralisation en grande partie quand la TNAP est associée aux vésicules matricielles et au fibres de collagène / Vascular calcification (VC) is a hallmark of atherosclerosis plaques. Calcification (formation of apatite) of advanced lesions share common features with endochondral ossification of long bones and appears to stabilize plaques. This process is associated with trans-differentiation of vascular smooth muscle cells (VSMCs) into chondrocyte-like cells. On the other hand, microcalcification of early plaques, which is poorly understood, is thought to be harmful. The two proteins necessary for physiological mineralization are tissue-nonspecific alkaline phosphatase (TNAP) and collagen. Under pathological conditions, TNAP is activated by inflammatory cytokines in VSMCs, whereas collagen is produced constantly. The activation of TNAP appears to induce calcification of these cells. Therefore, the objective of this PhD thesis was to study the role of TNAP and generated apatite crystals in the VSMC trans-differentiation and determine underlying molecular mechanisms. Based on the obtained results, we propose that activation of BMP-2, a strong inducer of ectopic calcification, and formation of apatite crystals generated by TNAP represents a likely mechanism responsible for stimulation of VSMC trans-differentiation. Moreover, we were interested in localization and function of mineralization markers such as TNAP and annexins in mineralization process mediated by trans-differentiated VSMCs and VSMC-derived matrix vesicles (MVs). We observed that, similarly as in the case of typical mineralizing cells, increased TNAP activity in VSMC-derived MVs and association with collagen were important for their ability to mineralize
47

MECHANISMS OF CYCLOOXYGENASE-2-DEPENDENT HUMAN AORTIC SMOOTH MUSCLE CELL PHENOTYPIC MODULATION

Adedoyin, Oreoluwa O 01 January 2014 (has links)
Abdominal aortic aneurysm (AAA) is a disease of the aorta characterized by pathological remodeling and progressive weakening of the vessel resulting in the increased risk of rupture and sudden death. In a mouse model of the disease induced by chronic Angiotensin II (AngII) infusion, progression of AAAs is associated with reduced differentiation of smooth muscle cells (SMCs) at the site of lesion development. In the mouse model, the effectiveness of cyclooxygenase-2 (COX-2) inhibition for attenuating AAA progression is associated with maintenance of a differentiated SMC phenotype. However, the safety of COX-2 inhibitors is currently in question due to the increased risk of adverse cardiovascular events. Thus, it is crucial to identify mediators downstream of COX-2 that may provide new targets for treatment of this disease. Recent studies in humans and mouse models have suggested that the microsomal prostaglandin E synthase (mPGES-1) enzyme, which acts downstream of COX-2, may also be involved in the pathogenesis of the disease. We hypothesized that increased prostaglandin E2 (PGE2) synthesis resulting from the induction of both COX-2 and mPGES-1 may result in reduced differentiation of SMCs, and that disruption of this pathway would preserve the differentiated phenotype. To test this hypothesis, human aortic smooth muscle cells (hASMCs) were utilized to examine the effects of a variety of agents involved in AAA development and the COX-2 pathway. My findings suggest that one of the effects of exposing hASMCs to AngII involves a specific induction of mPGES-1 expression. Furthermore, although different COX-2-derived products may have opposing effects, mPGES-1-derived PGE2 may be the primary prostanoid synthesized by SMCs which functions to attenuate differentiation. Therefore, mPGES-1 inhibition may provide inhibition of PGE2 that is more specific than COX-2 inhibitor treatment and may serve as a therapeutic target for attenuating AAA progression by maintaining a differentiated SMC phenotype.
48

Efeito do tratamento neonatal com 17-'beta'-estradiol sobre o penis de rato em diferentes idades : aspectos estruturais do orgão e expressão do receptor de androgeno pelas celulas musculares lisas e endoteliais in vitro / Effects of neonatal 17-'beta'-estradiol treatment on the rat penis at different ages : structural aspects of the organ and androgen receptor expression by smooth muscle cells and endothelial cells in vitro

Cardoso, Lilian Caroline Vaz 13 August 2018 (has links)
Orientador: Hernandes Faustino de Carvalho / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-13T19:33:26Z (GMT). No. of bitstreams: 1 Cardoso_LilianCarolineVaz_M.pdf: 2401125 bytes, checksum: 71ef0bb78a4f9804919ce3f2d13b8a0a (MD5) Previous issue date: 2009 / Resumo: Os hormônios androgênicos (testosterona e diidrotestosterona) regulam a diferenciação e o crescimento das estruturas penianas via receptor de andrógenos (AR), tendo este função reguladora da transcrição de genes relacionados a aspectos do desenvolvimento de indivíduos do sexo masculino. A presença de receptores de estrógenos no pênis permite assumir que o 17-â-estradiol (E2) e moléculas similares tenham efeito direto sobre sua fisiologia. De forma geral, o estrógeno tem efeito anti-androgênico, atuando sobre o eixo hipotálamo-hipófise e, assim, reduzindo a produção de testosterona pelos testículos. O estrógeno é essencial para funcionamento reprodutivo em machos, no entanto, a exposição ao estrógeno ou xenobióticos durante períodos críticos do desenvolvimento pode ter conseqüências negativas para o trato reprodutivo e para a fertilidade, através de um mecanismo conhecido como imprinting estrogênico. Um dos efeitos do imprinting estrogênico causado por altas doses de estrógeno é o comprometimento do desenvolvimento peniano. Embora seja controverso na literatura, este efeito se daria pela regulação negativa da expressão do AR e reduzida resposta aos andrógenos. Sendo assim, para estudar o efeito do imprinting estrogênico no desenvolvimento do pênis foram administrados 25 µL de óleo de milho contendo E2 a 15 mg/kg (dose alta) (Putz, et al., 2001 a, b) a ratos Wistar, nos dias 1, 3 e 5 após o nascimento e observação dos efeitos nos períodos pré-púbere (28 dias), púbere (49 dias) e adulto (90 dias). Foi feito ainda isolamento de células musculares lisas (CML), cultivadas com e sem T, e endoteliais do órgão. Para cada situação, a expressão do AR foi verificada por Western blotting e a localização por imunocitoquímica. Para o órgão e as células CML, a expressão do RNAm do AR foi analisado por Real-time PCR. Nos animais adultos foram quantificados: colágeno solúvel, hidroxiprolina e glicosaminoglicano (GAG). O tratamento neonatal com E2 resultou na queda do peso corporal, má formação do pênis, menor quantidade de hidroxiprolina e maior quantidade de GAG. A expressão do AR aumentou em animais de 28 dias e reduziu aos 90 dias. Nessas idades a marcação do AR foi menos intensa nos animais estrogenizados em todos os compartimentos penianos. Nas CML, a expressão do AR exibiu padrão diferente quando cultivadas com ou sem T. Nas células endoteliais a expressão não varia com a idade, porém diminui naquelas isoladas de animal tratado. A exposição neonatal ao E2 causa má formação do pênis o que pode estar relacionado à alteração da expressão do AR no órgão, nas CML e endoteliais presentes no mesmo. / Abstract: The androgens, testosterone and dihydrotestosterone, regulate the differentiation and growth of penile structures through the androgen receptor (AR), which regulates the transcription of genes associates with several aspects of the development of male individuals. In contrast to the prostate, the AR expression in the penis of the rat falls with age according to the androgen levels reached in the adult. The presence of estrogen receptor in the penis allows the assumption that 17-â- estradiol (E2) and similar molecules have direct effect on its physiology. It is known that estrogen has an anti-androgenic effect acting on the hypothalamic-pituitary axis reducing the production of testosterone by the testes. The estrogen is essential for reproductive function in males, but the exposure to estrogen or xenobiotics during critical periods of the development has negative consequences for the reproductive tract and fertility, through a mechanism known as estrogenic imprinting. One of the effects of estrogenic imprinting caused by high doses of estrogen is defective penile development. Although controversial in the literature, this effect occurs by down regulation of androgens receptors and reduced response to androgens. To study the effect of estrogenic imprinting on penis development, Wistar rats received subcutaneous injections of 25 µL of corn oil containing E2 at a dose of 15 mg/kg body weight (Putz, et al., 2001 a, b) on days 1, 3, and 5 after birth and observation of the effects on 28, 49 or 90 days after birth (prepubertal, pubertal and adulthood stages, respectively). Smooth muscle cells (SMC) and endothelial cells were isolated from the organ. For each situation, AR expression was verified by Western blotting and the localization by immunocitochemstry. Androgen receptor mRNA expression was done for the penis and SMC by Real-time PCR. In adult animals soluble collagen, hydroxyproline and glycosaminoglycans (GAGs) were quantified. Neonatal treatment with E2 resulted in reduction of weight and abnormal development of the penis at all ages, reduction in hydroxyproline and increase in GAGs. The AR expression increased at 28 days, but not at 90 days and in these ages the staining intensity of AR was smaller in all penile compartments. In SMC, AR expression exhibited a different expression pattern when cultured with or without T. In endothelial cells, the AR expression increased on day 28, reducing in the other ages, but without difference in comparison to control, what leds us to believe that endothelial cells do not interfere in the reduction AR expression after sexual maturation. The neonatal treatment with E2 leds to abnormal penile development what may be related to an alteration of AR expression in the organ and in their SMC and endothelial cells. / Mestrado / Biologia Celular / Mestre em Biologia Celular e Estrutural
49

Atividade biologica e citotoxicidade de matriz polimerica com doador de oxido nitrico / Biological activity and cytotoxicity of polymeric matrix with nitric oxide donor

Soraggi, Claudia de Lourdes 23 November 2006 (has links)
Orientadores: Maria Edwirges Hoffmann, Marta Helena Krieger / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-07T20:12:26Z (GMT). No. of bitstreams: 1 Soraggi_ClaudiadeLourdes_D.pdf: 1381104 bytes, checksum: c9a1645ee2ea31e5e43d843d4db6a1fd (MD5) Previous issue date: 2006 / Resumo: O óxido nítrico é uma molécula multifuncional, a qual está envolvida numa extensa variedade de funções fisiológicas, estendendo-se da neurotransmissão, citotoxicidade de macrófagos e modulação das funções fisiológicas do sistema cardiovascular. Devido às ações benéficas do NO nas diversas disfunções vasculares, há um grande interesse no desenvolvimento em dispositivos que possam liberar NO de maneira controlada no sistema cardiovascular e tecido-específica. Por exemplo, 'stents¿ intracoronarianos recobertos por materiais com liberação de NO, podem reduzir a incidência da reestenose e inibir a formação da neoíntima após angioplastia percutânea coronariana. O objetivo deste estudo foi o de estabelecer protocolos para avaliação da citotoxicidade e do potencial anti-reestenótico e anti-trombogênico de formulações eluidoras de NO para aplicações em dispositivos intravasculares. As formulações eluidoras de NO foram avaliadas por meio de: A) citotoxicidade através dos ensaios da redução do MTT e da captação do vermelho neutro (NR) com as linhagens celulares: 3T3 e RASM, B) potencial anti-reestenótico utilizando-se o ensaio de inibição da proliferação celular com células de musculatura lisa de coelho (RASM) e C) potencial anti-trombogênico, utilizando-se plaquetas humanas em ensaios de agregação e adesão plaquetária. Foram testadas S-nitrosoglutationa (GSNO), solução polimérica contendo poli (vinil álcool) PVA e poli (vinil pirrolidona) (PVP), e formulação contendo PVA, PVP, GSNO. O ensaio da captação do vermelho neutro mostrou que a GSNO e GSNO/PVA/PVP não apresentaram citotoxicidade em concentrações até 30 mg/mL de GSNO, em ambas as linhagens celulares. Enquanto que o ensaio de redução do MTT mostrou que apenas a solução contendo GSNO apresentou citotoxicidade com EC50=2,75±0,05 mg/mL em células 3T3. A sensibilidade da linhagem 3T3 foi maior do que =2,3±0,4 µg/mL), e GSNO (EC= 2,5±0,3 µg/mL). O ensaio da adesão plaquetária mostrou que a inibição superior a 50% causada pela GSNO só foi obtida em concentração acima 6,72 mg/mL, mas nesta concentração não foram encontradas plaquetas viáveis. Os resultados mostraram que a metodologia adotada foi apropriada para a avaliação do potencial anti-reestenótico e anti-trombogênico e também para estabelecer a margem de segurança de novas formulações envolvendo S-nitrosoglutationa e soluções poliméricas. para células RASM, enquanto que células RASM foram mais sensíveis à alteração de permeabilidade de membrana. A GSNO per se promoveu inibição da proliferação celular no ensaio da proliferação celular e este efeito foi potencializado em presença dos polímeros PVA/PVP em concentrações superiores a 22,7 mg/mL. Foi verificada inibição da agregação plaquetária para ambas as soluções, GSNO/PVA/PVP (EC5050 =2,3±0,4 µg/mL), e GSNO (EC= 2,5±0,3 µg/mL). O ensaio da adesão plaquetária mostrou que a inibição superior a 50% causada pela GSNO só foi obtida em concentração acima 6,72 mg/mL, mas nesta concentração não foram encontradas plaquetas viáveis. Os resultados mostraram que a metodologia adotada foi apropriada para a avaliação do potencial anti-reestenótico e anti-trombogênico e também para estabelecer a margem de segurança de novas formulações envolvendo S-nitrosoglutationa e soluções poliméricas / Abstract: Nitric oxide (NO) is a multifunctional molecule which is involved in a wide variety of physiological functions, ranging ftom neurotransmission, macrophage cytotoxicity, and modulation of physiological functions of the cardiovascular system. Due to NO beneficial action in various vascular pathological conditions, there is a great interest on development in devices that can release NO by a controlled manner and tissue-specific. For example, intracoronary stents coated with NO releasing materials, may reduce the incidence of restenosis and inhibit neo-intima formation after following percutaneous angioplasty. The aim of this study was to establish protocols for evaluation of NO eluting formulations cytotoxicity and antirestenotic and antithrombotic activities which have potential for application in intravascular devices. NO releasing formulations were evaluated regarding to following aspects: A) cytotoxicity measured by MTT reduction and Neutral Red uptake assays with 3T3 and RASM celllines, B) antirestenotic potential by using cell proliferation assay, with rabbit smooth muscle cells ~M), and C) antithrombogenic potential, by using a human platelet aggregation and adhesion assays. S-nitrosoglutathione (GSNO), polymer solutions containing poly(vinyl alcohol) (pV A) and poly(vinyl pyrrolidone) (pVP), and formulation containing GSNO, PV A and PVP were tested. Neutra! Red uptake assays showed that .GSNO and GSNOIPV A/P)'P-solutions presented no cytotoxicity up to 30 mg /mL GSNO, in both celllines. While, MTT reduction assays showed that only the solution of GSNO alone presented cytotoxicity with ECso=2.75± 0,05 mg/rnL, in 3T3 cell line. The sensitivity of3T3 cells to cytotoxicity was higher than that ofRASM cells, while RASM cells were more sensitivity to membrane permeation alterations. GSNO per se presented inhibition in a cell proliferation assay and this effect was potentialized with PV AIPVP in concentrations up 'to 22.7 mglmL. Concentration-dependent inhibition of platelet aggregation was verified for both GSNO/PV AIPVP (ECso of 2.3±0.4 JlglmL), and GSNO alone (ECso of 2.5±0.3 JlglrnL) solutions. Platelet adhesion assay showed that the inhibition above 50% caused by GSNO only in concentration up to 6.72 mglmL was found, but in this concentration range, decrease of viable platelets was presented. The results showed that the methodology adopted was suitable to evaluate antirestenotic and antithrombotic potential, and to establish security margins for the development of new formulations involving GSNO and polymers in solution / Doutorado / Bioquimica / Doutor em Biologia Funcional e Molecular
50

Évaluation du rôle de nouvelles isoformes de PDE dans la compartimentation des nucléotides cycliques dans les cellules musculaires lisses vasculaires et les cardiomyocytes / Evaluation of the role of new PDE isoforms in cyclic nucleotide compartmentation in vascular smooth muscle cells and cardiomyocytes

Zhang, Liang 28 September 2017 (has links)
Les deux nucléotides cycliques, AMPc et GMPc, sont des seconds messagers importants qui régulent une grande variété de fonctions cellulaires, en particulier la fonction contractile cardiovasculaire, la croissance des cardiomyocytaires et la prolifération des cellules musculaires lisses vasculaires. Les phosphodiestérases (PDE) dégradent les nucléotides cycliques et exercent un contrôle local de leur concentration intracellulaire. Une altération de la voie de signalisation des nucléotides cycliques est impliquée dans plusieurs situations pathologiques telles que l’hypertension artérielle systémique ou pulmonaire, l’athérosclérose et l'hypertrophie cardiaque. Ainsi, les PDE constituent de puissantes cibles thérapeutiques pour restaurer un contrôle correct des nucléotides cycliques. Onze familles de PDEs sont actuellement décrites, les PDE1-6 étant les plus étudiées et les PDE 7-11 représentant de nouvelles familles.L'objectif de cette thèse était d'étudier le rôle respectif de 4 familles de PDEs, la PDE1, famille stimulée par le complexe Ca2+/calmoduline, les PDE5 et PDE9 spécifiques du GMPc, et la PDE8 spécifique de l'AMPc, dans le contrôle des concentrations intracellulaires d'AMPc ([AMPc]i) et de GMPc ([GMPc]i) dans les cellules musculaires lisses aortiques de rat (CMLARs) et les myocytes cardiaques de rat en utilisant une approche pharmacologique facilitée par le développement de nouveaux inhibiteurs sélectifs de PDEs. Les activités d'hydrolyse d’AMPc et de GMPc ont été mesurées par dosage enzymatique, tandis que les [AMPc]i et [GMPc]i ont été suivies sur cellules isolées, in situ, en temps réel, grâce à l'utilisation de l'imagerie FRET (Fluorescence Resonance Energy Transfer). Dans les CMLARs en culture, une activité d'hydrolyse des nucléotides cycliques via les PDE1, PDE5 et PDE9 a été observée. Nous avons montré un rôle fonctionnel de la PDE1 non stimulée dans le contrôle de l’augmentation de la [GMPc]i induite par le peptide natriurétique de type C (CNP). Il est intéressant de noter que, lors de l’élévation de la concentration intracellulaire en Ca2+, la PDE1 exerce également un contrôle de la réponse GMPci induite par le monoxyde d’azote (NO) et de la réponse AMPc médiée par la stimulation des récepteurs β-adrénergiques (β-AR). La PDE5 exerce un rôle majeur dans la réponse GMPc provoquée par l'activation de la guanylyl cyclase (GC) soluble par le NO ou des GC membranaires par les peptides natriurétiques, CNP et ANP. En revanche, la PDE9 ne régule que la réponse GMPc induite par le NO dans les RASMC cultivées. Aucune activité ou fonction hydrolytique de l'AMPc n'a été révélée avec l'inhibiteur de la PDE8 dans les CMLARs ou les cardiomyocytes de rat. Dans ces cellules cardiaques, l'activité d'hydrolyse médiée par la PDE1 n'a été détectée que sur la réponse GMPc et uniquement en présence de Ca2 +/Calmoduline. L'inhibiteur de la PDE1 n'a que légèrement affecté la réponse AMPc médiée par les récepteurs β-AR, par augmentation du pic du signal FRET.En conclusion, notre travail démontre que dans les cellules musculaires lisses vasculaires, les PDE1, PDE5 et PDE9 exercent une régulation spécifique et locale des [AMPc]i et [GMPc]i, renforçant le rôle clé des PDEs dans la compartimentation subcellulaire de la signalisation des nucléotides cycliques. / The two cyclic nucleotides cAMP and cGMP are important second messengers that regulate a large variety of cellular functions, in particular cardiovascular contractile function, cardiomyocyte cell growth and vascular smooth muscle cell proliferation. Phosphodiesterases (PDEs) degrade cyclic nucleotides, and exert a fine local control of their intracellular concentration. Alteration of cyclic nucleotides signaling pathway is involved in several pathological situations such as systemic and pulmonary arterial hypertensions, atherosclerotic lesions and cardiac hypertrophy. Thus, PDEs constitute potent therapeutic targets to restore a right cyclic nucleotide function. Eleven families of PDEs are now described, PDE1-6 being the most studied and PDE 7-11 representing the new families.The aim of the present thesis was to investigate the respective role of 4 PDE families, the Ca2+/calmodulin-stimulated PDE1, the cGMP-specific PDE5 and PDE9, and the cAMP-specific PDE8, in controlling intracellular cAMP ([cAMP]i) and intracellular cGMP ([cGMP]i) concentrations in both rat aortic smooth muscle cells (RASMCs) and cardiac myocytes by using a pharmacological approach taken advantage of the development of new selective PDE inhibitors. Cyclic AMP- and cGMP-hydrolyzing activities were measured by enzymatic assay on cell lysate, whereas real-time [cAMP]i and [cGMP]i were followed in situ in isolated cells using Fluorescence Resonance Energy Transfer (FRET) imaging. In cultured RASMCs, PDE1, PDE5 and PDE9 hydrolyzing activities were observed. We showed a functional role of basal PDE1 in controlling [cGMP]i increased by the C-type Natriuretic Peptide (CNP). Interestingly, upon high intracellular Ca2+ concentration, PDE1 also regulated the Nitric Oxide (NO)-mediated [cGMP]i response and the β-adrenoceptor (β-AR)-mediated [cAMP]i response. PDE5 exerted a major role in degrading [cGMP]i produced by the activation of either the soluble guanylyl cyclase (GC) elicited by NO or the particulate GCs by the natriuretic peptides, CNP and ANP. By contrast, PDE9 only regulated NO-induced [cGMP]i increase in cultured RASMCs. No cAMP-hydrolyzing activity or function was revealed with the PDE8 inhibitor in RASMCs or cardiac myocytes. In rat cardiomyocytes, PDE1-mediated hydrolyzing activity was only detected on cGMP in the presence of Ca2+/calmodulin. Unexpectedly, PDE1 inhibition slightly affected the β-AR-mediated [cAMP]i response by increasing the peak of FRET signal.In conclusion, our work underscores the distinct role of PDE1, PDE5, and PDE9 in locally regulating the [cAMP]i and [cGMP]i, in vascular smooth muscle cells, strengthening the concept of PDEs as key actors of cyclic nucleotide subcellular compartmentation.

Page generated in 0.0421 seconds