Spelling suggestions: "subject:"snails"" "subject:"snaith""
1 |
VIP Induces Snail1, A Master EMT Regulator: Upregulation in A375 Cancer CellsAl-Badrani, Sejaa January 2021 (has links)
VIP is neurotransmitter with pleiotropic functions in mammals. It is expressed by a large number of tissues, including the CNS, PNS, innate and adaptive immune systems. VIP has two endogenous G-protein coupled receptors, termed VPAC 1 and VPAC2. VIP signaling through VPAC1 receptor has been documented to transactivate EGFR in healthy and cancerous cells leading to the activation of multiple downstream signaling pathways. EGFR signaling is a potent inducer of the master regulator EMT, called Snail1, which is a zinc-finger, transcription factor that is associated with downregulating epithelial markers like E-cadherin, while upregulating mesenchymal markers necessary for invasion and metastasis. We hypothesize that VIP upregulates Snail1expression in cancer cells. Our results showed that VIP treatment of epithelial cells increased Snail1 expression transiently at 1h and 4h then returned to basal levels at 24h. This research has implications in development of targeted therapies for cancer.
|
2 |
Tyrosine Phosphorylation of p68 RNA Helicase Promotes Metastasis in Colon Cancer ProgressionLiu, Chia Yi 18 June 2012 (has links)
The initiation of cancer metastasis usually requires Epithelial-Mesenchymal Transition (EMT), by which tumor cells lose cell-cell interactions and gain the ability of migration and invasion. Previous study demonstrated that p68 RNA helicase, a prototypical member of the DEAD-box RNA helicases, functions as a mediator to promote platelet-derived growth factor (PDGF)-induced EMT through facilitating nuclear translocation of β-catenin in colon cancer cells. In this context, p68 RNA helicase was found to be phosphorylated at the tyrosine 593 residue (referred as phosphor-p68) by c-Abl kinase, and this phosphorylation is required for the activation of β-catenin signaling and the consequent EMT. The phosphor-p68 RNA helicase-mediated EMT was characterized by the repression of an epithelial marker, E-cadherin, and the upregulation of a mesenchymal marker, Vimentin. E-cadherin, a major cell-cell adhesion molecule that is involved in the formation of adherens junctions, has been shown to sequester β-catenin at the cell membrane and thus inhibit its transcriptional activity. The functional loss of E-cadherin is the fundamental event of EMT. Despite the role of phosphor-p68 RNA helicase in regulating nuclear translocation of β-catenin, whether phosphor-p68 is involved in the regulation of E-cadherin remains unknown. Here, our data indicated that phosphor-p68 RNA helicase initiated EMT by transcriptional upregulation of Snail1, a master transcriptional repressor of E-cadherin. The data suggest that phosphor-p68 RNA helicase displaced HDAC1 from the chromatin remodeling MBD3:Mi-2/NuRD complex at the Snail1 promoter, thereby activating the transcription of Snail1. In the xenograft tumor model, abolishing the phosphorylation of p68 RNA helicase by the expression of Y593F mutant resulted in a significant reduction of metastatic potential in human colon cancer cells. Analyses in the colon cancer tissues also revealed that the tyrosine 593 phosphorylation level of p68 RNA helicase is substantially enhanced in the tumor tissues comparing to that in the corresponding normal counterparts, suggesting a correlation of phosphor-p68 and tumor progression. In conclusion, we showed that tyrosine phosphorylation of p68 RNA helicase positively correlated to the malignant status of colon cancer progression. The molecular basis behind this correlation could be partly through the transcriptional regulation of Snail1.
|
3 |
Transcriptional activation induced by snail 1 during epithelial-mesenchymal transitionPorta de la Riva, Montserrat 22 September 2009 (has links)
La transició epiteli-mesènquima (TEM) és un procés en què cèl lules epitelials, immòbils i amb polaritat apico-basal transiten cap un fenotip mesenquimal o fibroblàstic. L'expressió del factor de transcripció snail1 és suficient per induir TEM en cèl lules en cultiu i és necessari per la majoria de les TEM fisiològiques descrites. Snail1 és un membre de la família de proteïnes amb dits de Zinc que reprimeix gens epitelials (com l'E-cadherina) a través de la unió directa a seqüències especifiques dels promotors anomenades caixes E i posterior reclutament de corepressors. La TEM també es caracteritza per l'activació de gens mesenquimals, però el mecanisme pel qual snail1 indueix l'expressió d'aquests és poc conegut. En aquest treball demostrem que snail1 actua a nivell transcripcional per incrementar els nivells dels marcadors mesenquimals FN1 (fibronectina) i LEF1 (de l'anglès, lymphoid enhancer-binding factor 1) a través d'un mecanisme nou per aquesta proteïna de dits de Zn que no requereix ni caixes E ni unió directa a l'ADN. A més a més, mostrem que, per a dur a terme l'activació, snail1 coopera amb dos factors de transcripció ja descrits en relació a la TEM: beta-catenina i NF-kappa-B. Els nostres resultats també proven que l'expressió forçada de la E-cadherina evita aquesta cooperació i conseqüent activació gènica. A banda d'aquest mecanisme, també hem descrit que el factor de transcripció TFCP2c, que no havia estat prèviament relacionat amb TEM, és necessari per l'activació del gen FN1 induïda per snail1. / Epithelial-mesenchymal transition (EMT) is a cellular process by which no motile epithelial, apico-basal-polarized cells transit towards a motile mesenchymal front-backpolarized phenotype. Expression of the transcription factor snail1 is sufficient to induce EMT in cultured cells and it is required for most of the physiological EMTs described. Snail1 is a member of the Zn finger protein family that represses epithelial genes (such as E-cadherin) by directly binding to specific promoter sequences called E-boxes and subsequent recruitment of corepressors. EMT is also accompanied by activation of mesenchymal genes, however, little is known of how snail1 induces their expression.In this work we provide evidence that snail1 acts at the transcriptional level to increase the levels of the mesenchymal FN1 (fibronectin) and LEF1 (lymphoid enhancer-binding factor 1) genes through a novel mechanism for this Zn finger protein that does not require neither E-boxes nor direct binding to DNA. Furthermore, we describe a cooperative action in such mechanism between snail1 and two transcription factors previously related to EMT: beta-catenin and NF-kappaB. Our results also show that restoration of E-cadherin levels prevents such cooperation and subsequent activation. In addition, we also demonstrate that TFCP2c, which had not been previously linked to EMT, is also required for snail1-induced transcriptional activation of the FN1 gene.
|
4 |
Snail controls TGFB responsiveness and diferentiation of MS cellsBatlle Gómez, Raquel 19 December 2011 (has links)
The Snail1 transcriptional repressor is a key factor responsible in triggering epithelial to mesenchymal transition. Although Snail1 is widely expressed in early development, it is limited in adult animals to a subset of mesenchymal cells where it has a largely unknown function. In this project we have demonstrated that Snail1 is required to maintain mesenchymal stem cells (MSCs). This effect is associated to the responsiveness to TGF-[beta]1 which showed a strong Snail1 dependence. Snail1-depletion in conditional knock-out adult animals caused a significant decrease in the number of bone marrow-derived MSCs. In culture, Snail1-deficient MSCs prematurely differentiated to osteoblasts or adipocytes and, in contrast to controls, were resistant to the TGF-[beta]1-induced differentiation block. TGF-[beta]1 was unable to up-regulate most of its targets in Snail1 KO MSCs, an effect that was related, but not limited, to defective PTEN repression and Akt activation. Correspondingly, an analysis of human sarcomas also showed enhanced expression of Snail1 in undifferentiated tumors, which was strongly associated with high expression of TGF-[beta] and poor outcome. These results not only demonstrate a new role for Snail1 in TGF-[beta] response and MSC maintenance but also suggest the involvement of MSCs in sarcoma generation. / El repressor transcripcional Snail1 ha estat descrit principalment com el responsable de la inducció de la transició epiteli mesènquima. Encara que Snail1 s’expressa durant les etapes més primerenques del desenvolupament embrionari, la seva expressió en adults es veu limitada en un conjunt de cèl•lules mesenquimals sense saber-se la seva funció. En aquest projecte hem demostrat que Snail1 es requereix per mantenir el fenotip més indiferenciat de les cèl•lules mare del mesènquima. Aquesta funció la fa en part, per la capacitat de resposta de la citoquina TGF-[beta] la qual mostra una força dependència amb Snail1. Quan s’elimina Snail1 en ratolins adults provoca una clara disminució en el nombre de cèl•lules mare de la medul•la òssia. Aquestes cèl•lules en cultiu presenten una clara diferenciació prematura a osteoblasts i adipòcits. Pel contrari, tractaments amb TGF-[beta]1 aturen la diferenciació. El TGF-[beta]1 es incapaç de incrementar moltes dianes en cèl•lules mare del mesènquima aïllades del ratolí deficient per snail1, aquest efecte en part es degut a la repressió de PTEN i l’activació de AKT. L’anàlisi de sarcomes humans ens ha mostrat una alta expressió de Snail1, el qual també es troba associada amb una alta expressió de TGF-[beta] i baixa supervivència. Aquests resultats no només demostren una nova funció per Snail1 en resposta a TGF-[beta] i el manteniment de les MSC, sinó que també suggereix que Snail1 podria participar en la generació del sarcoma.
|
5 |
Characterization of snail1 and pten transcriptional regulation by snail1: New insights into epithelial-to-mesenchymal transition and cell resistance to apoptosisEscrivà Izquierdo, María 20 June 2008 (has links)
The product of the snail1 gene (SNAIL1) is a transcriptional repressor required for triggering the epithelial-to-mesenchymal transition (EMT). SNAIL1 transcription is induced when epithelial cells are forced to acquire a mesenchymal phenotype. Furthermore, ectopic expression of snail1 in epithelial cells promotes resistance to apoptosis. In this study, we demonstrate that this resistance to ã radiation-induced apoptosis caused by Snail1 is associated with the transcriptional inhibition of PTEN phosphatase. The binding of Snail1 to PTEN promoter increases after ã radiation, correlating with the stabilization of snail1 protein that prevents the association of p53 to PTEN promoter. These results stress the critical role of Snail1 in the control of apoptosis and demonstrate the regulation of PTEN phosphatase by this transcriptional repressor.In this work we also demonstrate that snail1 protein modulates its own expression in tumor cells in a bimodal fashion. Snail1 binds to an E-box present in its promoter and represses its activity. However, in tumor cell lines with low levels of E-cadherin, snail1 stimulates its own promoter. This positive effect prevails on the inhibitory effect, does not require the E-box, and is independent on the SNAG box in snail1 protein. Transcriptional stimulation of SNAIL1 promoter by snail1 is dependent on the activation of NFêB and is negatively modulated by E-cadherin transfection. These results indicate that the expression of snail1 gene can be regulated by its product and by the levels of E-cadherin, and evidence the existence of a fine-tuning feed-back mechanism of regulation for snail1 transcription. / El producte del gen snail1 (SNAIL1) és un repressor transcripcional requerit per a la transició epiteli-mesénquima (TEM). La seva transcripció s'indueix quan les cèl·lules epitelials són forçades a adquirir un fenotip mesenquimal. A més, l'expressió ectòpica d'snail1 en cèl·lules epitelials promou resistència a apoptosi. En aquest estudi varem demostrar que la resistència a apoptosi, induïda per radiació gamma, en aquestes cèl·lules és causada per snail1 i està associada a la inhibició transcripcional de la fosfatasa PTEN. La unió de snail1 al promotor de PTEN augmenta després de la radiació gamma, es correlaciona amb l'estabilització de la proteïna snail1 i impedeix l'associació de p53 al promotor de PTEN. Aquests resultats expliquen el paper crític de snail1 en el control de la apoptosi i demostren la regulació de la fosfatasa PTEN per aquest repressor transcripcional. En aquest treball també varem demostrar que la proteïna snail1 modula la seva pròpia expressió en cèl·lules tumorals d'una manera bimodal. Snail1 s'uneix a una caixa E present en el seu promotor i reprimeix la seva activitat. No obstant això, en cèl·lules tumorals amb nivells baixos d'E-cadherina, snail1 estimula el seu propi promotor. Aquest efecte activador preval sobre l'efecte inhibitori, no requereix de la caixa E i és independent del domini SNAG en la proteïna snail1. L'estimulació transcripcional del promotor SNAIL1 per snail1 és depenent de l'activació de NFκB i és modulada negativament per la transfecció d'E-cadherina. Aquests resultats indiquen que l'expressió del gen snail1 es pot regular pel seu propi producte i pels nivells d'E-cadherina, i evidencien l'existència d'un fi mecanisme de control en la regulació transcripcional de snail1. / El producto del gen snail1 (SNAIL1) es un represor transcripcional requerido para la transición epitelio-mesénquima (TEM). Su transcripción se induce cuando las células epiteliales son forzadas a adquirir un fenotipo mesenquimal. Además, la expresión ectópica de snail1 en células epiteliales promueve resistencia a apoptosis. En este estudio demostramos que la resistencia a apoptosis, inducida por radiación gamma, en estas células es causada por snail1 y está asociada a la inhibición transcripcional de la fosfatasa PTEN. La unión de snail1 al promotor de PTEN aumenta después de la radiación gamma, se correlaciona con la estabilización de la proteína snail1 y previene la asociación de p53 al promotor de PTEN. Estos resultados explican el papel crítico de snail1 en el control de la apoptosis y demuestran la regulación de la fosfatasa PTEN por este represor transcripcional. En este trabajo también demostramos que la proteína snail1 modula su propia expresión en células tumorales de una manera bimodal. Snail1 se une a una caja E presente en su promotor y reprime su actividad. Sin embargo, en células tumorales con niveles bajos de E-cadherina, snail1 estimula su propio promotor. Este efecto activador prevalece sobre el efecto inhibitorio, no requiere de la caja E y es independiente del dominio SNAG en la proteína snail1. La estimulación transcripcional del promotor SNAIL1 por snail1 es dependiente de la activación de NFκB y es modulada negativamente por la transfección de E-cadherina. Estos resultados indican que la expresión del gen snail1 se puede regular por su propio producto y por los niveles de E-cadherina, y evidencian la existencia de un fino mecanismo de control en la regulación transcripcional de snail1.
|
6 |
Gene regulation by different proteins of TGFβ superfamilyMaturi, Varun January 2018 (has links)
The present thesis discusses how gene regulation by transforming growth factor β (TGFβ) family cytokines is affected by post-translational modifications of different transcription factors. The thesis also focuses on gene regulation by transcription factors involved in TGFβ signaling. The importance of the poly ADP-ribose polymerase (PARP) family in controlling gene expression in response to TGFβ and bone morphogenetic protein (BMP) is analyzed first. PARP2, along with PARP1, ADP-ribosylates Smad2 and Smad3, the signaling mediators of TGFβ. On the other hand, poly ADP-ribose glycohydrolase (PARG) removes the ADP-ribose from Smad2/3 and antagonizes PARP1 and PARP2. ADP-ribosylation of Smads in turn affects their DNA binding capacity. We then illustrate how PARP1 and PARG can regulate gene expression in response to BMP that signals via Smad1, 5. Over-expression of PARP1 suppressed the transcriptional activity of Smad1/5. Knockdown of PARP1 or over-expression of PARG enhanced the transcriptional activity of BMP-Smads on target genes. Hence our data suggest that ADP-ribosylation of Smad proteins controls both TGFβ and BMP signaling. I then focus on elucidating novel genes that are regulated by ZEB1 and Snail1, two key transcriptional factors in TGFβ signaling, known for their ability to induce EMT and cancer metastasis. Chromatin immunoprecipitation-sequencing (ChIP-seq) and targeted whole genome transcriptomics in triple negative breast cancer cells were used, to find binding regions and the functional impact of ZEB1 and Snail1 throughout the genome. ZEB1 binds to the regulatory sequences of a wide range of genes, not only related to cell invasion, pointing to new functions of ZEB1. On the other hand, Snail1 regulated only a few genes, especially related to signal transduction and cellular movement. Further functional analysis revealed that ZEB1 could regulate the anchorage-independent growth of the triple negative breast cancer cells, whereas Snail1 could regulate the expression of BMP6 in these cells. We have therefore elucidated novel functional roles of the two transcription factors, Snail1 and ZEB1 in triple negative breast cancer cells.
|
7 |
Mecanisme d'activació de fibronectina i LEF1 per Snail1 durant la transició epili-mesènquimaAgustí Benito, Cristina 28 May 2007 (has links)
La transició Epiteli-Mesènquima es dóna durant el desenvolupament embrionari i en els estadis tardans de la progressió tumoral permetent que es produeixi la metàstasi. Aquestes transicions necessiten una repressió de l'E-Cadherina i es pot reproduir en cèl·lules en cultiu amb l'expressió ectòpica de Snail1, un repressor de l'E-Cadherina. Durant la transició produïda per Snail es produeix la ràpida activació de gens mesenquimals com Fibronectina i LEF1. L'expressió forçada d'E-Cadherina fa disminuir els nivells de RNA de Fibronectina i LEF1, indicant que en l'activació d'aquests dos gens està implicat un cofactor sensible a l'E-Cadherina. En concordança, la transcripció de Fibronectina i LEF1 és depenent de -Catenina i NFB. La sobreexpressió d'E-Cadherina inhibeix l'activitat transcripcional d'aquests dos factors i disminueix la seva interacció amb el promotor de Fibronectina. De manera similar a la -Catenina, NFB es detecta associat a l'E-Cadherina i altres components dels contactes intercel·lulars. Quan es trenquen les unions adherents, com quan es sobreexpressa Snail, la interacció E-Cadherina-NFB disminueix i augmenta l'activitat transcripcional de NFB i-Catenina. / Epithelial to mesenchymal transitions takes place during embryo development and in the late stages of tumorigenesis allowing metastasis formation. These transitions require E-Cadherin downregulation and can be reproduced in cell culture by ectopic expression of Snail1, an E-Cadherin gene repressor. During Snail-induced transition a rapid upregulation of mesenchymal genes such as Fibronectin and LEF1 has been characterized. Forced expression of E-Cadherin strongly down-regulates Fibronectin and LEF1 RNA levels, indicating that an E-Cadherin sensitive cofactor is involved in the activation of these genes. Accordingly, transcription of Fibronectin and LEF1 was dependent on -Catenin and NFB. E-Cadherin over-expression downregulated the transcriptional activity of both factors and decreased their interaction to Fibronectin promoter. Similarly to -Catenin, NFB was detected associated to E-Cadherin and other cell adhesion components. Association of NFB to E-Cadherin required the integrity of this complex; conditions that disrupts adherens junctions, such as Snail over-expression, decreased E-Cadherin-NFB interaction and up-regulates NFB and -Catenin transcriptional activity. Therefore, -Catenin and NFB transcriptional activities are required for expression of the studied mesenchymal genes and these activities are inactivated by immobilizing -Catenin and NFB to functional E-Cadherin structures.
|
8 |
TRAF6, a key regulator of TGFβ-induced oncogenesis in prostate cancerSundar, Reshma January 2015 (has links)
Prostate cancer is the most common cancer in men, with the incidence rapidly increasing in Europe over the past two decades. Reliable biomarkers for prostate cancer are currently unavailable. Thus, there is an urgent need for improved biomarkers to diagnose prostate cancer at an early stage and to determine the best treatment options. Higher expression of transforming growth factor-β (TGFβ) has been reported in patients with aggressive cancer. TGFβ is a multifunctional cytokine that acts as a tumor suppressor during early tumor development, and as a tumor promoter at later stages of cancer. TGFβ signals through the canonical Smad or non-Smad cascade via TGFβ type II and type I receptors. The TGFβ signaling cascade is regulated by various post-translational modifications of its key components. The present investigation aimed to identify a potential function of TRAF6 in TGFβ-induced responses in prostate cancer. The first two articles of this thesis unveil the proteolytic cleavage of TGFβ type I receptor (TβRI), and the biological importance of the liberated TβRI intracellular domain (TβRI-ICD) in the nucleus. We found that tumor necrosis factor receptor-associated factor 6 (TRAF6) polyubiquitinates TβRI, which leads to cleavage of TβRI by tumor necrosis factor alpha converting enzyme (TACE) in a protein kinase C zeta (PKCζ)-dependent manner. Following ectodomain shedding, TβRI undergoes a second cleavage by presenilin 1 (PS1), which liberates TβRI-ICD. TβRI-ICD translocates to the nucleus, where it regulates its own expression as well as expression of the pro-invasive gene Snail1, thereby promoting invasion. We further found that TβRI-ICD associates with Notch intracellular domain (NICD) to drive expression of the pro-invasive gene Snail1, as well as Notch1 ligand Jag1. The third article provides evidence that TRAF6 promotes Lys63-linked polyubiquitination of TβRI at Lys178 in a TGFβ-dependent manner. TβRI polyubiquitination was found to be a prerequisite for TβRI nuclear translocation, and thus for regulation of the genes involved in cell cycle, differentiation, and invasion of prostate cancer cells. In the fourth article we investigated the role of the pro-invasive gene Snail1 in TGFβ-induced epithelial-to-mesenchymal transition (EMT) in prostate cancer cells.
|
9 |
TRAF6 stimulates TGFβ-induced oncogenic signal transduction in cancer cells / TRAF6 stimulerar TGFβ-inducerad onkogen signal transduction i cancerceller.Gudey, Shyam Kumar January 2014 (has links)
Prostate cancer is one of the leading causes of cancer-related deaths in men worldwide, with 10,000 new cases/year diagnosed in Sweden. In this context, there is an urgent need to identify new biomarkers to detect prostate cancer at an initial stage for earlier treatment intervention. Although how prostate cancer develops has not been fully established, the male sex hormone testosterone is a known prerequisite for prostate cancer development. High levels of transforming growth factor-β (TGFβ) are prognostically unfavorable in prostate cancer patients. TGFβ is a multifunctional cytokine that regulates a broad range of cellular responses. TGFβ signals through either the canonical Smad or the non-Smad signaling cascade. Cancerous cells develop different strategies to evade defense mechanisms and metastasize to different parts of the body. This thesis unveils one such novel mechanism related to TGFβ signaling. The first two articles provide evidence that TGFβ receptor type I (TβRI) is ubiquitinated by tumor necrosis factor receptor-associated factor 6 (TRAF6) and is cleaved at the ectodomain region by tumor necrosis factor alpha converting enzyme (TACE) in a protein kinase C zeta type-dependent manner. After TβRI is shed from the ectodomain, it undergoes a second cleavage by presenilin 1 (PS1), a γ-secretase catalytic subunit, which liberates the TβRI intracellular domain (TβRI-ICD) from the cell membrane. TRAF6 promotes TGFβ-dependent Lys63-linked polyubiquitination and recruitment of PS1 to the TβRI complex, and facilitates the cleavage of TβRI by PS1 to generate a TβRI-ICD. The TβRI-ICD then translocates to the nucleus, where it binds with the transcriptional co-activator p300 and regulates the transcription of pro-invasive target genes such as Snail1. Moreover, the nuclear translocated TβRI-ICD cooperates with the Notch intracellular domain (NICD), a core component in the Notch signaling pathway, to drive the expression of invasive genes. Interestingly, treatment with g-secretase inhibitors was able to inhibit cleavage of TβRI and inhibit the TGFβ-induced oncogenic pathway in an in vivo prostate cancer xenograft model. In the third article, we identified that Lysine 178 is the acceptor lysine in TβRI that is ubiquitinated by TRAF6. The TβRI K178R mutant was neither ubiquitinated nor translocated to the nucleus, and prevented transcriptional regulation of invasive genes in a dominant negative manner. In the fourth article, we show that TGFβ utilizes the E3-ligase TRAF6 and the p38 mitogen-activated protein kinase to phosphorylate c-Jun. In turn, the phosphorylated c-Jun activates p21 and Snail1 in a non-canonical Smad-independent pathway, and thereby promotes invasion in cancerous cells. In summary, we elucidate a new mechanism of TGFβ-induced oncogenic signal transduction in cancer cells in which TRAF6 plays a fundamental role. This opens a new avenue in the field of TGFβ signaling.
|
Page generated in 0.0266 seconds