• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 71
  • 37
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • 6
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 291
  • 291
  • 86
  • 72
  • 71
  • 44
  • 36
  • 36
  • 32
  • 27
  • 27
  • 26
  • 24
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

The status of soil organic carbon under indigenous forests, grasslands, wetlands and pine plantations in Woodbush, Limpopo Province, South Africa

Mongwe, Hlamalani Godfrey 12 1900 (has links)
Thesis (MScAgric)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: Storing soil organic carbon (SOC) is a possible way of reducing atmospheric CO2 and potentially mitigating the effects of global warming. This study looks at soil carbon stocks, the sampling methodology and modelling of soil organic carbon in indigenous forests, wetlands, grasslands and pine plantations in Woodbush in the North-Eastern escarpment of Limpopo Province, South Africa. Dominant Pine species planted in Woodbush are Pinus patula, Pinus elliotti and Pinus taeda. Woodbush plantation was selected as study area because it provided easy access to all the ecosystems that were to be studied. All ecosystems in Woodbush are located in such a way that it was easy to compare them, as they existed under similar environmental and climatic conditions. The climatic conditions of Woodbush promote accumulation of SOC due to relatively higher precipitation and cooler temperatures than most parts of Limpopo Province. Five transects were made: two in indigenous forests and three in plantations. Only the surface (0-7 cm) layer was sampled with a distance of 20 m between sampling points. Transects were not made in grasslands and wetlands because of the patchy occurrence of these ecosystems. In addition to transects, eight 1ha plots, two in each ecosystem, were sampled. Surface (0- 7 cm depth) samples were collected on a grid of 20 x 20 m in each sampling plot. Two soil profile pits were sampled in each sampling plot, with samples being taken at 5, 10, 15, 20 30, 40, 50 60, 75 and 100 cm depth. The average carbon stocks per hectare of land to a soil depth of 100 cm were as follows: 71 t.ha-1 in wetlands, 28 t.ha-1 in grasslands, 64 t.ha-1in indigenous forests, and 46 t.ha-1 in pine plantations. Although wetlands sequestered large amounts of SOC per hectare, their relative contribution to carbon sequestration was low because of the relatively small area (87.2 ha) they occupy in the study area (and in South Africa). Prediction models for vertical distribution of SOC were developed using STATISTICA 6.0 for each ecosystem in order to estimate the carbon stocks to a depth of 100 cm based on SOC content and soil bulk density of the surface samples. These models were developed from observed values in soil profiles for each ecosystem. SOC content and carbon stocks were analyzed using GIS (ARCVIEW). The GIS analysis was aimed at assessing the effect of topography, elevation, soil type, and vegetation on accumulation and distribution of SOC stocks. Most shallow Inanda soils were distributed at elevations between 1545 m and 1777 m, and on a gentle slope in the Northern aspect of the mountain. Deep Inanda soils were found mostly in the lower elevation range of 967 m and 1545 m on moderate slopes. Deep and shallow Inanda soils were found on the southern aspect. Deep Kranskop soils are evenly distributed and mostly found at an elevation range of between 1080 and 1430 m on gentle slopes, while at an elevation range of between 1430 and 1780 m, they were found on moderate slopes. Deep soils had higher SOC stocks than shallow soils and soils in the southern aspects had higher SOC stocks than in the northern aspects. / AFRIKAANSE OPSOMMING: Die berging van grond organiese koolstof is ‘n moontlike manier om atmosferiese koolsuurgas (CO2) te verminder en dus om die invloed van globale verwarming te versag. In hierdie studie was die grond-koolstof voorraad bestudeer, asook die metodologie van die monsterneming en modellering van organiese grond-koolstof van inheemse woude, vleie, grasvelde en denneplantasies. Die studie was uitgevoer op Woodbush plantasie gele op die Noord-Oosterlike platorand van die Limpopo Provinsie, Suid-Afrika. Die algemeenste dennespesies in Woodbush is Pinus patula, Pinus elliotti en Pinus taeda. Die Woodbush plantasie was gekies as studiegebied omdat dit oor al die ekosisteme wat bestudeer moet word, beskik. Die ekosisteme in Woodbush is naby mekaar en dus maklik vergelykbaar want die omgewings- en klimaatstoestande is eenders. Die klimaatstoestande van Woodbush bevorder die akkumulasie van grond organiese koolstof omdat die reënval hoër en die temperature laer is as in die meeste ander dele van die Limpopo Provinsie. Vyf dwarssnitte was gemaak, twee in inheemse woude en drie in plantasies. Monsters was net uit die grondoppervlak laag geneem (7 cm) met 20 m tussen monsterpunte. Dwarssnitte was nie in grasvelde en vleie gemaak nie want hierdie sisteme is te gelokaliseerd. Monsters was ook geneem in agt 1 ha persele, twee in elke ekosisteem. Oppervlakmonsters (tot ‘n diepte van 7 cm) is op ‘n ruitnet van 20 x 20 m uit elke perseel versamel. Monsters was verder ook geneem uit twee profielgate per perseel, op dieptes 5, 10, 15, 20, 30, 40, 50, 60, 75 en 100 cm. Die gemiddelde koolstof voorraad per hektaar, op ‘n gronddiepte van 100 cm, was as volg: 71 t.ha –1 in vleie, 28 t.ha-1 in grasvelde, 64 t.ha-1 in inheemse woude en 46 t.ha-1 in denneplantasies. Alhoewel vleie groot hoeveelhede grond organiese koolstof akkumuleer, is hulle bydrae tot koolstof akkumulasie laag want hulle beslaan ‘n klein oppervlak binne die studiegebied (87.2 ha) asook klein oppervlaktes binne Suid-Afrika. Voorspellingsmodelle vir die vertikale verspreiding van grondkoolstof was met die gebruik van STATISTICA 6.0 ontwikkel ten einde te skat wat die koolstofvoorrraad op ‘n diepte van 100 cm was. Die skattings was gebaseer op organiese grondkoolstofinhoud en die gronddigtheid van oppervlakmonsters. Hierdie modelle was ontwikkel vanaf die waargenome waardes van grondprofiele vir elke ekosisteem. Die organiese koolstofinhoud van die grond en die koolstofvoorraad is ontleed met behulp van GIS (ARCVIEW). Die GIS ontleding was daarop gemik om die effek van topografie, hoogte bo seespiëel, grondtipe en plantegroei, op die akkumulasie en verspreiding van organiese grondkoolstof, te beraam. Die meeste vlak Inanda grondvorms kom voor tussen 1545 m en 1777 m bo seespiëel, asook op effens steil hellings op die Noordelike berghang. Die diep Inanda grondvorms is geleë op laer hoogtes bo seespiëel, gewoonlik tussen 967 en 1545 m, op effens steil hellings. Beide diep en vlak Inanda gronde word gevind op die suidelike berghang. Diep Kranskop gronde is eweredig versprei en word gewoonlik tussen 1080 en 1430 m bo seespiëel, op effens steil hellings, gevind. Dit kom ook voor op matig steil hellings, tussen 1430 en 1780 m bo seespiëel. Daar is meer organiese koolstof in diep grond as in vlak grond en meer in gronde teen die suidelike hang as op die noordelike hang.
262

Grotuttaget igår, idag och dess potentiella framtid : Med utgångspunkt från Energimyndighetens syntesrapport från 2012

Skär, Martin January 2019 (has links)
År 2012 publicerades en sammanfattande syntesrapport från Energimyndigheten (2012). Rapporten fann bevis på att grotuttaget låg på ca 14 TWh/år. Rapporten visar också att Sveriges skogar kan hantera upp till 24 TWh/ år utan att orsaka allvarliga konsekvenser på omgivningen eller nästkommande generationer av träd. Studien beräknade grotens potentiella uttag utifrån insamlade analyser av markkemi, tekniska verktyg och uppskattningar. Dagens rapporter angående ämnet estimerar potentialen till ungefär densamma med en liten höjning till ca 27-30 TWh/år. Detta har satts i relation till hur olika hyggeslagrings tekniker påverkar det möjliga uttaget av grot tillsammans med hur kemin i marken påverkar trädens tillväxt och omgivningen. Grotuttaget gick ner till ca 8-9 TWh/år från år 2012 till 2019, från 14 TWh/år. Eftersom skogsägarna i Sydsverige är privatbrukare och behöver gå runt ekonomiskt för att kunna fortsätta sina verksamheter leder detta till att grotuttaget följer kostnadseffektiviteten av grot i sverige. I framtiden uppskattas det att grotuttaget kan öka drastiskt. Beroende på hur utvecklingen sker kan det verkliga uttaget skilja stort med många påverkande faktorer som t.ex. kostnadseffektivitet och utveckling av andra energikällor. / In 2012 a synthesis report was published by ”Energimyndigheten (2012)”. The report states that forest residues used as bioenergy represents around 14 TWh/year. The report also shows that Swedish forests can manage an outtake of up to 24 TWh/year without suffering from serious consequences, -on the plantation grounds or for, the next coming generation of trees. The study calculated the potential residue of forest outtake from collected analysis of soil chemistry, technical tools and estimations. Recent reports on forest residue outlet estimates a potential of about the same as 2012 with a slight rise to approximately 27-30 TWh/year. This has been put into relation of how different logging storage techniques affect the trees growth, the plantation grounds and the surroundings. The forest residue outlet went down to between 8-9 TWh/year from 2012-2019. This is because the main part of the forests in southern Sweden belongs to private owners and who experienced a decreasing economy to sell their residue. That leads to a problem, where the actual forest residue outlet is heavily dependent on the cost efficiency of forest residues. In the future it is estimated that the forest residue outlet can increase drastically. Depending on how the development proceed, the future outlet of forest residues may differ greatly depending on the future cost efficiency and how other energy sources develop and progress.
263

Influência da cobertura vegetal na ciclagem de nutrientes via solução do solo na região de Manaus - AM. / Influence of vegetation cover on nutrient cycling in soil solution at the area of Manaus – AM.

Neu, Vania 25 February 2005 (has links)
A pesquisa teve como objetivo contribuir para a sustentabilidade das formas de uso dos solos na Amazônia central, avaliando a influência da cobertura vegetal nos teores de nutrientes na solução do solo, ou seja, nos teores de cátions, ânions e carbono orgânico dissolvido (COD). Tomou-se como referência uma floresta primária, para comparação com áreas degradada, de reflorestamento, e de floresta secundária. O estudo foi realizado nos municípios de Manaus e Presidente Figueiredo, AM. Em cada área foram instalados extratores de tensão, nas profundidades de 10, 20, 50, 100 e 150 cm, para as coletas de solução de solo para análise da fase inorgânica, e nas profundidades 20 e 100 cm, para a fase orgânica. A coleta de solo para análise química foi realizada nas mesmas profundidades utilizadas para as coletas de solução do solo da fase inorgânica. As coletas de solução do solo e a quantificação da água da chuva foram realizadas ao longo de um ano hidrológico, seguindo a sazonalidade do clima regional, durante os anos de 2002 e 2003. Após a coleta, filtragem e preservação, as amostras foram encaminhadas ao laboratório para a determinação das concentrações de cátions e ânions por cromatografia líquida (Equipamento Dionex, modelo DX500). As concentrações de COD foram determinadas por combustão, com detecção do CO2 gerado nesta por infra vermelho não-dispersivo (Equipamento Shimadzu, modelo TOC 5000A). A maioria dos solos foi classificada como latossolos, muito ácidos, intemperizados e com baixa disponibilidade de nutrientes. Dos cátions presentes na solução do solo observou-se a predominância sódica-potássica, com grande influência dos aportes atmosféricos. Em relação aos ânions, a predominância foi de bicarbonato e cloreto, com grande contribuição da atividade biológica nas concentrações de bicarbonato em áreas cobertas por vegetação, e do aporte atmosférico nas concentrações de cloreto nas áreas sem cobertura vegetal. A vegetação apresentou forte influência na dinâmica dos íons, principalmente para nitrogênio, fósforo, potássio e magnésio, que apresentam como principal fontes a reciclagem da matéria orgânica e a transprecipitação. Na área degradada ocorreu predominância de cloreto e sódio, elementos que apresentam como principal fonte de entrada a precipitação. Na floresta secundária e no reflorestamento observou-se sinais de recuperação, com níveis mais elevados de nutrientes do que observado na área degradada, com destaque para aumentos significativos de COD e nitrato. Não somente a vegetação afetou a dinâmica dos íons avaliados, mas também a textura do solo, acidez, profundidade e precipitação. Para o carbono orgânico dissolvido observou-se enriquecimento à 100 cm de profundidade, provavelmente em função dos menores teores de ferro e alumínio em profundidade no solo. Este aumento em profundidade pode estar indicando uma ligação entre os sistemas terrestre e aquático, na qual o primeiro funciona como possível exportador de carbono para o segundo. / The main objective of this study was to contribute for the sustainability of land use in the central Amazon, evaluating the influence of vegetation cover on nutrient concentrations in soil solution that is, on the amounts of cations, anions and dissolved organic carbon (DOC). Using a primary forest as reference, we compared these concentrations with those in a degraded area, in a reforestation and also in a secondary forest. The study was conducted in the counties of Manaus and Presidente Figueiredo. In each site we collected soil solution using tension lysimeters installed at the depths of 10, 20, 50, 100 and 150 cm for the inorganic phase and at 20 and 100 cm for the analysis of the organic phase. The soil itself was also collected at the same depths used for the study of the inorganic phase of soil solution, to determine its structure and chemical composition. Soil solution and precipitation were collected during a hydrological year, following the regional climate seasonality in the years of 2002 and 2003. After sampling, filtering and preserving in the field, soil solution samples were sent to the laboratory for the determination of cation and anion concentrations by liquid chromatography (Dionex, DX500) and DOC concentrations in a total organic carbon analyzer (Shimadzu, TOC5000A). Most of the soils were classified as Oxisols, very acid, highly weathered and with low nutrient availability. Sodium and potassium were the most predominant cations in soil solution, due to the influence of the atmospheric inputs. For anions, bicarbonate and chloride were showed the highest concentrations. At the sites covered with vegetation, biological activity played an important role in bicarbonate concentrations, as opposed to the site without vegetation, in which chloride was predominant, due to atmospheric inputs. There was a good correlation between vegetation cover and the dynamics of nitrogen, phosphorus, potassium and magnesium, all of which have as the main source recycling of organic matter recycling and throughfall. At the degraded area, chloride and sodium predominated, due to their main source, which is the precipitation. At the secondary forest and the reforestation there are indicators of the recovery of pristine conditions, whit higher levels of nutrients than those of the degraded area, specially significant increases in DOC and nitrate concentrations. Not only the vegetation influenced the dynamics of these nutrients in soil solution, but also soil texture, acidity, soil depth and precipitation. DOC, for example, showed significant increases in concentrations at 1m depths, probably due to the lowest iron and aluminum concentrations at these soil depths. This increase of DOC with depth may indicate an important connection between terrestrial and aquatic ecosystem, with the acting as an exporter of C to the rivers of the region.
264

Wirkungen von Biokohlen im System Boden-Pflanze

Reibe, Katharina 06 July 2015 (has links)
Die Anwendung von Biokohlen in der Landwirtschaft gewinnt durch die positiven Aspekte der Kohlenstoffsequestrierung, Bodenverbesserung und eines erhöhten Pflanzenwachstums in den letzten Jahren an Bedeutung. Deshalb geht die vorliegende Arbeit den Fragen nach, welche Wirkungen unterschiedliche Biokohlen in Kombination mit oder ohne Gärrest und / oder Stickstoffdünger auf die Bodenchemie, Bodenbiologie und Wachstum, Entwicklung, Ertrag, Ertragsstruktur, Nährstoffe sowie Qualität von Nutzpflanzen haben. Außerdem wurden die Effekte unterschiedlicher Biokohlen auf die Wurzelmorphologie von Sommerweizen quantifiziert. Eine weitere Frage war, inwiefern Biokohlen Stickstoffquellen sorbieren. Es wurden ein Feldversuch und mehrere Gefäßversuche durchgeführt, um die Änderungen der Bodenchemie, den Einfluss auf die Bodenbiologie am Beispiel von Collembolen und die Pflanzenparameter zu bestimmen. Für die Wurzeluntersuchungen wurden Rhizoboxversuche durchgeführt und zur Quantifizierung der Stickstoffsorption ein in vitro Versuch angelegt. Die Ergebnisse der Feld- und Gefäßuntersuchungen zeigten, dass die Biokohlen die Bodeneigenschaften positiv beeinflussten. Die Biokohlen nahmen keinen konsistenten Einfluss auf die Erträge von Kulturpflanzen. Die Nährstoffgehalte der Kulturpflanzen konnten zum Teil positiv beeinflusst werden. Die Collembolenabundanzen zeigten sowohl in der Feldstudie als auch im Gefäßversuch keine signifikanten Unterschiede zwischen den getesteten Biokohlen. Hohe Mengen der fermentierten HTC-Biokohle führten zu negativen Wirkungen auf die Collembolenabundanz im Gefäßversuch. Die Rhizoboxversuche zeigten einen positiven Einfluss der Pyro-Biokohle auf die oberirdische und unterirdische Trockenmasse sowie die Wurzelmorphologie von Sommerweizen. Unterschiedliche Stickstoffquellen wurden von der HTC-Biokohle stärker sorbiert als von der Pyro-Biokohle. Generell lässt sich aus den differenzierten Wirkungen der Biokohlen weitere Forschung mit dem Fokus Boden ableiten. / Over the past few years the use of biochars in agriculture has gained more importance due to positive effects on carbon sequestration, soil improvement and increased plant growth. Therefore, the present work pursues the question which effects different biochars have in combination with or without digestate and / or nitrogen fertilizer on soil chemistry, soil biology and growth, development, yield, yield components, nutrients and quality of crops. In addition, the effects of different biochars on root morphology of spring wheat were quantified. Further to elucidate potential mechanisms underlying biochar effects on crops it was studied how biochars sorb various nitrogen sources. A field test and several pot experiments were conducted to determine the changes in soil chemistry, the impact on soil-dwelling Collembola and plant parameters. For the root studies rhizobox experiments were performed. To quantify the nitrogen sorption of biochars an in vitro experiment was conducted. The results of the field test and pot experiments showed that biochars positively affected soil chemical characteristics. However, yields of crops were not consistently affected by biochars. The nutrient content of crops were positively influenced to some extent. The abundance of Collembola was not significantly influenced by the biochars tested in the field study and in the pot experiment. High amounts of fermented HTC-biochar had negative effects on the abundance of Collembola in the pot experiment. Rhizobox experiments showed a positive influence of Pyro-biochar on the aboveground dry matter, belowground dry matter and root morphology (e.g. root length) of spring wheat. Amount and reversibility of nitrogen sorption was dependent on the type of biochar with HTC-biochar sorbing more nitrogen than Pyro- biochar. Generally it can be concluded that because of the different effects of biochars further research with a focus on soil is needed.
265

Efeito da irrigação com efluente de esgoto tratado em propriedades químicas de um latossolo cultivado com cana-de-açúcar / Effects of treated sewage effluent irrigation on chemical properties of an Oxisol cultivated with sugarcane

Leal, Rafael Marques Pereira 01 June 2007 (has links)
Já há muito tempo, a irrigação de cultivos agrícolas é praticada e considerada uma alternativa interessante e útil à disposição dos efluentes gerados pelas estações de tratamento de esgoto doméstico. Como qualquer outro resíduo, o uso agrícola implica em algumas vantagens, tais como o fornecimento contínuo de umidade e de determinados nutrientes, mas também desvantagens, ocasionando a adição de sais e de possíveis patógenos e contaminantes orgânicos. Apesar da utilização de efluente de esgoto tratado ser parte integrante da gestão hídrica em muitos países, até o presente momento não se conhece nenhum outro estudo onde se utilizou e avaliou os efeitos do mesmo na irrigação da cultura da cana-de-açúcar em condições tropicais. Para este fim, amostras de solo foram coletadas e analisadas em 3 diferentes épocas. A irrigação se estendeu por aproximadamente 16 meses. O arranjo experimental foi o de blocos com parcelas subdivididas no tempo, com 5 tratamentos e 4 repetições. Os tratamentos empregados foram: (i) Controle sem aplicação de nitrogênio (N) mineral e sem irrigação; (ii) T100 a T200, 50% da dose de N recomendada via fertilização mineral e irrigação com, respectivamente, 100, 125, 150 e 200% da demanda hídrica da cultura. A produtividade foi, por ocasião do primeiro corte, positivamente influenciada pela irrigação com efluente secundário de esgoto tratado (ESET). Alterações na nutrição da cultura da cana foram pouco evidentes (teores foliares, colmo e caldo). O ESET ocasionou ligeira amenização tanto da acidez ativa (pH) quanto potencial (H+Al) Os efeitos mais pronunciados da irrigação ocorreram para os parâmetros indicadores da sodicidade/salinidade do solo, com incrementos significativos nas concentrações de sódio (Na) trocável, Na solúvel, percentual de sódio trocável (PST) e condutividade elétrica da solução do solo (CE). Estes aumentos, por sua vez, estão relacionados aos elevados teores de Na do efluente em associação com as baixas concentrações de cálcio (Ca) e magnésio (Mg), relação expressa pelos valores de razão de adsorção de sódio (RAS) do efluente. Alterações nas concentrações dos demais cátions também ocorreram, entretanto, foram menos características. As perspectivas quanto à utilização do ESET na irrigação da cana-de-açúcar são bastante promissoras, haja vista a crescente importância da cultura e a predominância do cultivo em condições de sequeiro. Entretanto, a manutenção da produtividade da cultura em patamares elevados implicará, necessariamente, a adoção de práticas específicas de manejo a fim de superar as limitações impostas pelos incrementos dos indicadores de salinidade e sodicidade do sistema solo-planta. / Since long ago agricultural irrigation has been practiced and considered as an interesting and beneficial alternative to the disposal of domestic sewage effluent. As all other residues, agricultural use implies both advantages, supplying crops continuously with water and some needed nutrients, and also disadvantages, through addition of salts and possible pathogens and organic contaminants. Although domestic sewage effluent is part of an integrated water management on many countries, none similar research is known involving sugarcane irrigation in tropical conditions. Three soil sampling campaigns were conducted. Soil samples were analyzed for quantifying acidity and exchangeable cations. Irrigation was applied for approximately 16 months. The experimental design was composed of a complete block, with five treatments and four replicates. Applied treatments where: (i) Control-no irrigation and no mineral-N applied; (ii)T100-T200, addition of 50% of the recommended mineral-N fertilization and irrigation with 100%, 125%, 150% and 200% of the crop water demand, respectively. Plant yield was positively affected by secondary-treated sewage effluent (STSE) irrigation. A small amelioration of the actual and potential soil acidity was observed for the highest dose of irrigation. The dominant effect of irrigation corresponded to increased concentrations of salinity-sodicity indicators, such as exchangeable sodium (Na), soluble Na, sodium saturation (ESP) and electrical conductivity of soil solution (EC). These increments are related to high Na concentrations for the applied effluent together with low calcium (Ca) and magnesium (Mg), relation expressed and defined by sodium adsorption ratio (SAR). Changes for other exchangeable cations also occurred, although not as clear and defined as for Na. Perspectives for STSE irrigation for sugarcane are promising, considering the growing importance of sugarcane crop and the very low cultivated area that is actually irrigated in the São Paulo State. However, the maintenance of crop productivity at high levels will necessarily imply the adoption of specific management practices suitable for ameliorating the limitations imposed by increasing salinity-sodicity parameters of the soil-plant system.
266

Fate of urine nitrogen applied to peat and mineral soils from grazed pastures

Clough, Tim J. January 1994 (has links)
This study has provided fundamental information on the fate of urine nitrogen (N) when applied to pasture soils. In this work the three pasture soils used were a Bruntwood silt loam (BW), an old well-developed (lime and fertilizer incorporated and farmed for more than 20 years) peat soil (OP) and a young peat (YP) which was less developed (farmed for about 10 years). Initial soil chemical and physical measurements revealed that the peat soils were acidic, had higher cation exchange capacities, had greater carbon:nitrogen ratios and were better buffered against changes in soil pH than the BW soil. However, the BW soil was more fertile with a higher pH. The peat soils had lower bulk densities and higher porosities. Four experiments were performed. In the first experiment ¹⁵N-labelled urine was applied at 500 kg N ha⁻¹ to intact soil cores of the three soils. Treatments imposed were the presence and absence of a water table at two temperatures, 8°C or 23° C, over 11-14 weeks. ¹⁵N budgets were determined. This first experiment showed that the nitrification rate was faster in the BW soil and was retarded with a water table present. Significant leaching of nitrate occurred at 8°C in the BW soil without a water table. This was reduced when a water table was present. Leaching losses of urine-N were lower in the peat soils than in the BW soil. Apparent denitrification losses (i.e. calculated on a total-N recovery basis) ranged from 18 to 48 % of the ¹⁵N-applied with the greatest losses occurring in the peat soils. The second experiment examined denitrification losses, over 30 days, following the application of synthetic urine-N at 420 kg N ha⁻¹ to small soil cores situated in growth cabinets. The effects of temperature (8°C or 18°C) and synthetic urine (presence or absence) were measured on the BW and OP soils. Nitrous oxide (N₂0) measurements were taken from all soil cores and a sub-set of soil cores, at 18°C, had ¹⁵N-labelled synthetic urine-N applied so that ¹⁵N-labelled nitrogen gases could be monitored. This experiment showed that the application of synthetic urine and increased soil temperature enhanced denitrification losses from both soils. Denitrification losses, at 18°C, as ¹⁵N-labelled nitrogen gases accounted for 24 to 39 % of the nitrogen applied. Nitrous oxide comprised less than half of this denitrification loss. Losses of N₂0 in leachate samples from the soil cores accounted for less than 0.1 % of the nitrogen applied. A third experiment, using Iysimeters, was performed over a 150 day period in the field. The six treatments consisted of the 3 soils with applied synthetic urine, with or without a simulated water table; each replicated three times. Lysimeters were installed in the field at ground level and ¹⁵N-labelled synthetic urine-N was applied (500 kg N ha⁻¹) on June 4 1992 (day 1). Nitrification rates differed between the soils following the trend noticed in the first experiment. As in the first experiment, nitrate was only detected in the leachate from the BW soil and the inclusion of a water table reduced the concentration of nitrate. In the BW soil, the leachate nitrate concentrations exceeded the World Health Organisation's recommended limit (< 10 mg N L-1) regardless of water table treatment. No nitrate was detected in the leachates from the peat soils but there was some leaching of organic-N (< 5 % of N added) in all the peat soil treatments. Denitrification losses were monitored for the first 100 days of the experiment. In the BW soil without a water table, N₂0 production peaked at approximately day 20 and accounted for 3 % of the nitrogen applied. In the peat soils the measured denitrification losses accounted for less than 1 % of the nitrogen applied. Apparent denitrification losses in the peats were, however, calculated to be approximately 50 % of the ¹⁵N-labelled synthetic urine-N applied. It is postulated that the difference between apparent denitrification losses and those measured could have been due to; loss of dinitrogen in leachate, protracted production of dinitrogen below detectable limits, production of denitrification gases after measurements ceased (i.e. days 100 to 150) and entrapment of dinitrogen in soil cores. Due to the apparent denitrification losses being so high, further research into this nitrogen loss pathway was performed. The fourth and final experiment measured denitrification directly using highly enriched (50 atom %) ¹⁵N-labelled synthetic urine-N. It was performed in a growth cabinet held initially at 8°C. The ¹⁵N-labelled synthetic urine was applied at 500 kg N ha⁻¹ to small soil cores of each soil type. Fluxes of N₂0 and ¹⁵N-labelled gases were measured daily for 59 days. On day 42 the temperature of the growth cabinet was increased to 12°C in an attempt to simulate the mean soil temperature at the end of the field experiment. Up to this time, production of nitrogenous gases from the YP soil had been very low. Interpretation of gaseous nitrogen loss in the YP soil was difficult due to the possibility of chemodenitrification occurring. However, in the OP and BW soils, gaseous losses of nitrogen (determined as ¹⁵N-labelled gas) represented 16 and 7 % of the nitrogen applied respectively. Nitrous oxide comprised approximately half of this gaseous nitrogen loss, in both the OP and BW soils. This work implies that urine-N applied to the mineral soil (BW) could potentially threaten the quality of ground water due to nitrate contamination through leaching. In contrast, denitrification appears to be the major loss mechanism from the peat soils, with the production of nitrous oxide being the primary focus for any environmental concern. Future work should examine the fate of the nitrate leached from the BW soil and the potential for dilution, plant uptake or denitrification below a 30 cm soil depth. A better understanding of the denitrification mechanisms could help reduce denitrification and thereby improve the efficiency of nitrogen use and reduce the output of nitrous oxide.
267

Effectiveness of Sealing Southeastern Arizona Stock Ponds with Soda Ash

Osborn, H. B., Simanton, J. R., Koehler, R. B. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Pond seepage losses are a particularly serious problem in the semiarid southwest where runoff-carried calcium normally causes well-dispersed clay particles to aggregate and increase the porosity of stock pond sediments. Reported are the results of laboratory and field tests carried out by the USDA Water Conservation Laboratory in Phoenix, Arizona to determine the success of sodium carbonate (soda ash) as a soil sealant and to establish criteria for its use. Following tests two leaky ponds on Walnut Gulch, Arizona were treated with soda ash broadcast over the dry pond surfaces to the spillway elevation at a rate of 3365 Kg/ha and mixed with the pond sediment to a depth of 10 cm with a disc. Seepage losses were compared following the summer rainy season, and generally represent 20 day periods in September or October when the summer monsoon rains have ended. The late season seepage loss for the after treatment period each year from 1968 through 1974 was reduced about 50% and the treatment on one pond seems to have lasted much longer than anticipated, thus increasing the value of the treatment. A pretreatment laboratory seepage test is suggested to better determine the likelihood of treatment success.
268

The impact of canopy composition on the nutritional statusof an admixed spruce and beech forest at Solling,central Germany / Der Einfluss der Zusammensetzung des Kronenraums auf den Nährstoffstatus eines Fichten-Buchen Mischwalds im Solling

Hojjati, Seyed Mohammad 14 February 2008 (has links)
No description available.
269

The effects of self-filtration on saturated hydraulic conductivity in sodic sandy soils

Dikinya, Oagile January 2007 (has links)
[Truncated abstract] Self-filtration is here defined as particle detachment and re-deposition causing re-arrangement of the particles and therefore pore space which affects water flow in soil by decreasing hydraulic conductivity. This is of particular important in soils which are susceptible to structural breakdown. The objective of this thesis was to examine the dynamics of the self-filtration process in sodic sandy soils as affected by ionic strength and soil solution composition. The temporal changes of hydraulic conductivity and the elution of fine particles from soil columns were used as the main criteria to assess selffiltration. Two porous media exhibiting significantly different structural cohesion were examined, one a loamy sand (Balkuling soil) from agricultural land use and the second a mining residue from mineral sands operations . . . The effects of the composition of mixed calcium (Ca) and sodium (Na) ions in solution (sodium adsorption ratio (SAR)) on the exchange behaviour and saturated hydraulic conductivity were examined by carrying out batch binary exchange and saturated column transport experiments. A strong preference for Ca2+ ions in the exchange complex was observed for both soils. Generally K/Ko was found to decrease with increasing sodium adsorption ratio with the more structured Balkuling soil maintaining K/Ko for SARs 3 and 5 at an electrolyte concentration of 100 mmol/L. However measurements at the critical threshold and turbidity concentrations at a SAR of 15 revealed structural breakdown of the pore matrix system attributed to various extents of slaking, swelling, dispersion and decreases of pore radii as a result of selffiltration during leaching. These experiments illustrate the wide range of complex interactions involving clay mineralogy, solution composition and structural factors which can influence the extent of mobilization, transport and re-deposition of colloidal particles during the leaching process in soil profiles.
270

Efeito da irrigação com efluente de esgoto tratado em propriedades químicas de um latossolo cultivado com cana-de-açúcar / Effects of treated sewage effluent irrigation on chemical properties of an Oxisol cultivated with sugarcane

Rafael Marques Pereira Leal 01 June 2007 (has links)
Já há muito tempo, a irrigação de cultivos agrícolas é praticada e considerada uma alternativa interessante e útil à disposição dos efluentes gerados pelas estações de tratamento de esgoto doméstico. Como qualquer outro resíduo, o uso agrícola implica em algumas vantagens, tais como o fornecimento contínuo de umidade e de determinados nutrientes, mas também desvantagens, ocasionando a adição de sais e de possíveis patógenos e contaminantes orgânicos. Apesar da utilização de efluente de esgoto tratado ser parte integrante da gestão hídrica em muitos países, até o presente momento não se conhece nenhum outro estudo onde se utilizou e avaliou os efeitos do mesmo na irrigação da cultura da cana-de-açúcar em condições tropicais. Para este fim, amostras de solo foram coletadas e analisadas em 3 diferentes épocas. A irrigação se estendeu por aproximadamente 16 meses. O arranjo experimental foi o de blocos com parcelas subdivididas no tempo, com 5 tratamentos e 4 repetições. Os tratamentos empregados foram: (i) Controle sem aplicação de nitrogênio (N) mineral e sem irrigação; (ii) T100 a T200, 50% da dose de N recomendada via fertilização mineral e irrigação com, respectivamente, 100, 125, 150 e 200% da demanda hídrica da cultura. A produtividade foi, por ocasião do primeiro corte, positivamente influenciada pela irrigação com efluente secundário de esgoto tratado (ESET). Alterações na nutrição da cultura da cana foram pouco evidentes (teores foliares, colmo e caldo). O ESET ocasionou ligeira amenização tanto da acidez ativa (pH) quanto potencial (H+Al) Os efeitos mais pronunciados da irrigação ocorreram para os parâmetros indicadores da sodicidade/salinidade do solo, com incrementos significativos nas concentrações de sódio (Na) trocável, Na solúvel, percentual de sódio trocável (PST) e condutividade elétrica da solução do solo (CE). Estes aumentos, por sua vez, estão relacionados aos elevados teores de Na do efluente em associação com as baixas concentrações de cálcio (Ca) e magnésio (Mg), relação expressa pelos valores de razão de adsorção de sódio (RAS) do efluente. Alterações nas concentrações dos demais cátions também ocorreram, entretanto, foram menos características. As perspectivas quanto à utilização do ESET na irrigação da cana-de-açúcar são bastante promissoras, haja vista a crescente importância da cultura e a predominância do cultivo em condições de sequeiro. Entretanto, a manutenção da produtividade da cultura em patamares elevados implicará, necessariamente, a adoção de práticas específicas de manejo a fim de superar as limitações impostas pelos incrementos dos indicadores de salinidade e sodicidade do sistema solo-planta. / Since long ago agricultural irrigation has been practiced and considered as an interesting and beneficial alternative to the disposal of domestic sewage effluent. As all other residues, agricultural use implies both advantages, supplying crops continuously with water and some needed nutrients, and also disadvantages, through addition of salts and possible pathogens and organic contaminants. Although domestic sewage effluent is part of an integrated water management on many countries, none similar research is known involving sugarcane irrigation in tropical conditions. Three soil sampling campaigns were conducted. Soil samples were analyzed for quantifying acidity and exchangeable cations. Irrigation was applied for approximately 16 months. The experimental design was composed of a complete block, with five treatments and four replicates. Applied treatments where: (i) Control-no irrigation and no mineral-N applied; (ii)T100-T200, addition of 50% of the recommended mineral-N fertilization and irrigation with 100%, 125%, 150% and 200% of the crop water demand, respectively. Plant yield was positively affected by secondary-treated sewage effluent (STSE) irrigation. A small amelioration of the actual and potential soil acidity was observed for the highest dose of irrigation. The dominant effect of irrigation corresponded to increased concentrations of salinity-sodicity indicators, such as exchangeable sodium (Na), soluble Na, sodium saturation (ESP) and electrical conductivity of soil solution (EC). These increments are related to high Na concentrations for the applied effluent together with low calcium (Ca) and magnesium (Mg), relation expressed and defined by sodium adsorption ratio (SAR). Changes for other exchangeable cations also occurred, although not as clear and defined as for Na. Perspectives for STSE irrigation for sugarcane are promising, considering the growing importance of sugarcane crop and the very low cultivated area that is actually irrigated in the São Paulo State. However, the maintenance of crop productivity at high levels will necessarily imply the adoption of specific management practices suitable for ameliorating the limitations imposed by increasing salinity-sodicity parameters of the soil-plant system.

Page generated in 0.0855 seconds