• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 10
  • 10
  • 10
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermodynamic Analysis And Simulation Of A Solar Thermal Power System

Harith, Akila 01 1900 (has links) (PDF)
Solar energy is a virtually inexhaustible energy resource, and thus, has great potential in helping meet many of our future energy requirements. Current technology used for solar energy conversion, however, is not cost effective. In addition, solar thermal power systems are also generally less efficient as compared to fossil fuel based thermal power plants. There is a large variety of systems for solar thermal power generation, each with certain advantages and disadvantages. A distinct advantage of solar thermal power generation systems is that they can be easily integrated with a storage system and/or with an auxiliary heating system (as in hybrid power systems) to provide stable and reliable power. Also, as the power block of a solar thermal plant resembles that of a conventional thermal power plant, most of the equipment and technology used is already well defined, and hence does not require major break through research for effective utilisation. Manufacturing of components, too, can be easily indigenized. A solar collector field is generally used for solar thermal energy conversion. The field converts high grade radiation energy to low grade heat energy, which will inevitably involve energy losses as per the laws of thermodynamics. The 2nd law of thermodynamics requires that a certain amount of heat energy cannot be utilised and has to be rejected as waste heat. This limits the efficiency of solar thermal energy technology. However, in many situations, the waste heat can be effectively utilized to perform refrigeration and desalination using absorption or solid sorption systems, with technologies popularly known as “polygeneration”. There is extensive research done in the area of solar collectors, including but not limiting to thermal analysis, testing of solar collectors, and economic analysis of solar collectors. Exergy and optimization analyses have also been done for certain solar collector configurations. Research on solar thermal power plants includes energy analysis at system level with certain configurations. Research containing analysis with insolation varying throughout the day is limited. Hence, there is scope for analysis incorporating diurnal variation of insolation for a solar thermal power system. This thesis centres on the thermodynamic analysis at system level of a solar thermal power system using a concentrating solar collector field and a simple Rankine cycle power generation (with steam as the working fluid) for Indian conditions. The aim is to develop a tool for thermodynamic analysis of solar thermal power systems, with a generalised approach that can also be used with different solar collector types, different heat transfer fluids in the primary loop, and also different working fluids in the secondary loop. This analysis emphasises the solar collector field and a basic sensible heat storage system, and investigates the various energy and exergy losses present. Comparisons have been made with and without a storage unit and resulting performance issues of solar thermal power plants have been studied. Differences between the system under consideration and commercially used thermal power plants have also been discussed, which brought out certain limitations of the technology currently in use. A solution from an optimization analysis has been utilized and modified for maximization of exergy generated at collector field. The analysis has been done with models incorporating equations using the laws of thermodynamics. MATLAB has been used to program and simulate the models. Solar radiation data used is from NREL’s Indian Solar Resource Data, which is obtained using their SUNY model by interpreting satellite imagery. The performance of the system has been analysed for Bangalore for four different days with different daylight durations, each day having certain differences in the incident solar radiation or insolation received. A particular solution of an optimization analysis has been modified using the simulation model developed and analysed with the objective of maximization of exergy generated at collector field. It has been found that the performance of the solar thermal power system was largely dependent on the variation of incident solar radiation. The storage system provided a stableperformance for short duration interruptions of solar radiation occurred on Autumn Equinox (23-09-2002).The duration of the interruption was within the limits of storage unit capacity. The major disruption in insolation transpired on Summer Solstice (21-06-2002) caused a significantly large drop in the solar thermal system performance; practically the system ceased to function due to lack of energy resource. Hence, the use of an auxiliary heating system hasbeen considered desirable. The absence of a storage unit has been shown to cause a significant loss in gross performance of the power system. The Rankine cycle turbine had many issues coping with a highly fluctuating energy input, and thus caused efficiency losses and even ceased power generation. A storage unit has been found to be ideal for steady power generation purposes. Some commercial configurations may lack a storage system, but they have been compensated by the auxiliary heating system to ensure stable power generation. The optimization of the solar collector determines that optimal collector temperatures vary in accordance to the incident solar radiation. Hence, the collector fluid outlet temperature must not be fixed so as to handle varying insolation for optimal exergy extraction. The optimal temperatures determined for Bangalore are around 576 K which is close to the values obtained by the simulation of the solar thermal power system. The tools for analysis and simulation of solar thermal power plants developed in this thesis is fairly generalised, as it can be adapted for various types of solar collectors and for different working fluids (other than steam), such as for Organic Rankine Cycle (ORC). The model can also be easily extended to other types of power cycles such as Brayton and Stirling cycles.
2

Hybrid Solar Gas-Turbine Power Plants : A Thermoeconomic Analysis

Spelling, James January 2013 (has links)
The provision of a sustainable energy supply is one of the most importantissues facing humanity at the current time, and solar thermal power hasestablished itself as one of the more viable sources of renewable energy. Thedispatchable nature of this technology makes it ideally suited to forming thebackbone of a future low-carbon electricity system.However, the cost of electricity from contemporary solar thermal power plantsremains high, despite several decades of development, and a step-change intechnology is needed to drive down costs. Solar gas-turbine power plants are apromising new alternative, allowing increased conversion efficiencies and asignificant reduction in water consumption. Hybrid operation is a furtherattractive feature of solar gas-turbine technology, facilitating control andensuring the power plant is available to meet demand whenever it occurs.Construction of the first generation of commercial hybrid solar gas-turbinepower plants is complicated by the lack of an established, standardised, powerplant configuration, which presents the designer with a large number ofchoices. To assist decision making, thermoeconomic studies have beenperformed on a variety of different power plant configurations, includingsimple- and combined-cycles as well as the addition of thermal energy storage.Multi-objective optimisation has been used to identify Pareto-optimal designsand highlight trade-offs between costs and emissions.Analysis of the simple-cycle hybrid solar gas-turbines revealed that, whileelectricity costs were kept low, the achievable reduction in carbon dioxideemissions is relatively small. Furthermore, an inherent trade-off between thedesign of high efficiency and high solar share hybrid power plants wasidentified. Even with the use of new optimised designs, the degree of solarintegration into the gas-turbine did not exceed 63% on an annual basis.In order to overcome the limitations of the simple-cycle power plants, twoimprovements were suggested: the integration of thermal energy storage, andthe use of combined-cycle configurations. Thermal energy storage allowed thedegree of solar operation to be extended, significantly decreasing carbondioxide emissions, and the addition of a bottoming-cycle reduced the electricitycosts. A combination of these two improvements provided the bestperformance, allowing a reduction in carbon dioxide emissions of up to 34%and a reduction in electricity costs of up to 22% compared to a combination ofconventional power generation technologies. / Hållbar energiförsörjning är för närvarande en av de viktigaste frågorna förmänskligheten. Koncentrerad solenergi är nu etablerad som en tillförlitlig källaav förnybar energi. Den reglerbara karaktären hos tekniken gör den specielltintressant för uppbyggnaden av ett framtida koldioxidsnålt elsystem.Kostnaden för elektricitet från nuvarande termiska solkraftverk är hög trottsflera decennier av utveckling. Ett genombrått på tekniknivå krävs för att drivaned kostnaderna. Sol-gasturbiner är ett av de mest lovande alternativen, somger en ökad verkningsgrad samtidigt som vattenkonsumtionen reducerasdrastiskt. Sol-gasturbintekniken gör det möjligt att blandköra solenergi ochandra bränslen för att möta efterfrågan vid alla tidpunkter, en attraktiv aspekt iförhållande till alternativa lösningar.Uppbyggnaden av första generationens kommersiella hybrida solgasturbinkraftverkförsvåras dock av bristen på etablerade och standardiseradekraftverkskonfigurationer. Dessa ger planeraren ett stort antal valmöjlighetersom underlag för beslutsfattande. Termoekonomiska studier har genomförtsför ett flertal olika kraftverkskonfigurationer, däribland kraftverk med enkelcykel, kombikraftverk samt möjligheten att utnyttja termisk energilagring.Pareto-optimala konfigurationer har identifierats med hjälp av multiobjektsoptimeringför att belysa balansen mellan kostnader och utsläpp.Analysen av det enkla hybrida sol-gasturbinkraftverket visade attelektricitetskostnaden hållits på en låg nivå, men att den möjliga minskningen avkoldioxidutsläpp är relativt liten. Dessutom identifierades en inre balans mellanatt bibehålla en hög verkningsgrad hos konfigurationen och en hög andelsolenergi i produktionen. Andelen av solenergi i gasturbinen överskred aldrig63% på årlig bas, även med optimerade kraftverkskonfigurationer.Två förbättringar föreslås för att övervinna begränsningarna hos kraftverk medenkel cykel: integration av termisk energilagring samt nyttjande avkombikraftverkskonfigurationer. Termisk energilagring tillåter en ökad andelsolenergi i driften och reducerar koldioxidutsläppen drastiskt, medan denytterligare cykeln hos kombikraftverket reducerar elektricitetskostnaden.Kombinationen av dessa förbättringar ger den bästa prestandan, med enreduktion av koldioxidutsläppen på upp till 34% och reducerade elektricitetskostnaderpå upp till 22% i jämförelse med andra kombinationer avkonventionella kraftverkskonfigurationer. / <p>QC 20130503</p>
3

Simulations Of A Large Scale Solar Thermal Power Plant In Turkey Using Concentrating Parabolic Trough Collectors

Usta, Yasemin 01 December 2010 (has links) (PDF)
In this study, the theoretical performance of a concentrating solar thermal electric system (CSTES) using a field of parabolic trough collectors (PTC) is investigated. The commercial software TRNSYS and the Solar Thermal Electric Components (STEC) library are used to model the overall system design and for simulations. The model was constructed using data from the literature for an existing 30-MW solar electric generating system (SEGS VI) using PTC&rsquo / s in Kramer Junction, California. The CSTES consists of a PTC loop that drives a Rankine cycle with superheat and reheat, 2-stage high and 5-stage low pressure turbines, 5-feedwater heaters and a dearator. As a first approximation, the model did not include significant storage or back-up heating. The model&rsquo / s predictions were benchmarked against published data for the system in California for a summer day. Good agreement between the model&rsquo / s predictions and published data were found, with errors usually less than 10%. Annual simulations were run using weather data for both California and Antalya, Turkey. The monthly outputs for the system in California and Antalya are compared both in terms of absolute monthly outputs and in terms of ratios of minimum to maximum monthly outputs. The system in Antalya is found to produce30 % less energy annually than the system in California. The ratio of the minimum (December) to maximum (July) monthly energy produced in Antalya is 0.04.
4

A consideration of cycle selection for meso-scale distributed solar-thermal power

Price, Suzanne 08 July 2009 (has links)
Thermodynamic and thermoeconomic aspects of 12.5 kW residential solar-thermal power generating systems suitable for distributed, decentralized power generation paradigm are presented in this thesis. The design of a meso-scale power system greatly differs from centralized power generation. As a result, this thesis provides guidance in the selection of the power cycle and operating parameters suitable for meso-scale power generation. Development of standard thermodynamic power cycle computer simulations provides means for evaluation of the feasibility of meso-scale solar-thermal power generation. The thermodynamic power cycles considered in this study are the Rankine cycle, the organic Rankine cycle with toluene, R123, and ethylbenzene as working fluids, the Kalina cycle, and the Maloney-Robertson cycle. From a strictly thermodynamic perspective, the cycles are evaluated based on first- and second-law efficiencies. Additionally, the study includes economic feasibility through thermoeconomic characterization that encompasses a meso-scale cost model for solar-thermal power generation systems. Key results from this study indicate that a R123 organic Rankine cycle is the most cost-effective cycle implementation for operating conditions in which the maximum temperature is limited below 240C. For temperatures greater than 240C and less than 375C, the toluene and ethylbenzne organic Rankine cycles outperform the other cycles. The highest first law efficiency of 28% of the Kalina cycle exceeds all other cycles at temperatures between 375C and 500C. However, when considering cycle cost and overall feasibility, including thermodynamic and thermoeconomic performance, the Maloney-Robertson and Kalina cycles have poor performance on a cost-to-efficiency basis.
5

Elaboration et caractérisation d'absorbeurs sélectifs platine-alumine pour le solaire thermique à concentration à haute température / Elaboration and characterization of platinum-alumina selective absorber coatings for thermal solar applications at high temperature

Gremion, Carine 10 December 2015 (has links)
Le développement de nouveaux matériaux pour les absorbeurs sélectifs pour le solaire thermique à concentration est une étape importante dans le déploiement des énergies renouvelables. La température actuelle de fonctionnement de ces absorbeurs (autour de 450°C) doit être augmentée jusqu’à 650°C ou plus, pour rendre cette technologie rentable. Dans ce but, de nouveaux matériaux pour les absorbeurs solaires doivent être développés, pour résister à ces températures sur le long terme, sans dégradation de leurs propriétés d’absorption. Les matériaux composites en couches minces sont des alternatives prometteuses aux matériaux existants, particulièrement les multicouches platine-alumine qui présentent une grande résistance en température et à l’oxydation. Le sujet de cette thèse a pour but de développer un matériau présentant une bonne absorption de l’énergie solaire et d’étudier les mécanismes de vieillissement qui interviennent dans ce matériau à haute température (650°C) sous air. Pour cela, nous nous sommes donc intéressés aux composites de platine et d’alumine. L’utilisation de simulations numériques a permis de développer une structure dont les propriétés optiques ont été optimisées. Ces structures ont ensuite été réalisées par pulvérisation cathodique magnétron et leurs propriétés optiques mesurées pour vérifier la sélectivité des absorbeurs obtenus. Des valeurs d’absorption de α=0.95 et d’émissivité de ε=0.18 ont été obtenues. Par la suite, notre étude a porté sur les différents mécanismes qui interviennent lors du vieillissement, notamment l’impact du substrat, et les parades pouvant être mises en place pour ralentir ce vieillissement. / Developing new absorber material for solar thermal power is a key step in the enhancement of renewable energies. The current working temperature of the absorber in power plant is too low (450°C) and must be raised to at least 650°C to enhance the yield of the plant. New absorber materials must be developed, to resist such high temperatures for many years, without losing their optical selectivity. Multilayer composite materials show promising results, especially platinum-alumina multilayer because of their good thermal stability. The aim of this PhD was to develop an absorber presenting a good solar absorption and to study the degradation mechanisms taking place during the aging at 650°C in air. Therefore, we studied the platinum-alumina multilayer. We used optical simulation to optimize the structure of our absorber. Then we realized these structures by magnetron sputtering and we performed optical characterizations to verify the optical selectivity. Values of absorption and emissivity of α=0.95 and ε=0.18 were obtained. At that point, we performed aging tests on our absorbers to study the degradation mechanisms taking place during aging at 650°C and to find ways to avoid those degradations in future applications.
6

Steam Turbine Optimisation for Solar Thermal Power Plant Operation

Spelling, James January 2011 (has links)
The provision of a sustainable energy supply is one of the most important issues facing humanity at the current time, given the strong dependence of social and economic prosperity on the availability of affordable energy and the growing environmental concerns about its production. Solar thermal power has established itself as a viable source of renewable power, capable of generating electricity at some of the most economically attractive rates. Solar thermal power plants are based largely on conventional Rankine-cycle power generation equipment, reducing the technological risk involved in the initial investment. Nevertheless, due to the variable nature of the solar supply, this equipment is subjected to a greater range of operating conditions than would be the case in conventional systems. The necessity of maintaining the operational life of the steam-turbines places limits on the speed at which they can be started once the solar supply becomes available. However, in order to harvest as much as possible of the Sun’s energy, the turbines should be started as quickly as is possible. The limiting factor in start-up speed being the temperature of the metal within the turbines before start-up, methods have been studied to keep the turbines as warm as possible during idle-periods. A detailed model of the steam-turbines in a solar thermal power plant has been elaborated and validated against experimental data from an existing power plant. A dynamic system model of the remainder of the plant has also been developed in order to provide input to the steam-turbine model. Three modifications that could potentially maintain the internal temperature of the steam-turbines have been analysed: installation of additional insulation, increasing the temperature of the gland steam and use of external heating blankets. A combination of heat blankets and gland steam temperature increase was shown to be the most effective, with increases in electricity production of up to 3% predicted on an annual basis through increased availability of the solar power plant. / Hållbar energiförsörjning är för närvarande en av de viktigaste frågorna för mänskligheten. Socialt och ekonomiskt välstånd är starkt kopplat till rimliga energipriser och hållbar energiproduktion. Koncentrerad solenergi är nu etablerad som en tillförlitlig källa av förnybar energi och är också ett ekonomiskt attraktivt alternativ. Koncentrerade solenergikraftverk bygger till stor del på konventionella Rankine-cykel elgeneratorer, vilka minskar de tekniskt relaterade riskerna i den initiala investeringen. På grund av solstrålningens skiftande karaktär utsätts denna utrustning för mer varierade driftsförhållanden, jämfört med konventionella system. Behovet av att bibehålla den operativa livslängden på ångturbiner sätter gränser för uppstartshastigheten. För att utnyttja så mycket som möjligt av solens energi bör ångturbinen startas så snabbt som möjligt när solstrålningen blir tillgänglig. Eftersom temperaturen i metalldelar hos turbinerna är den begränsande faktorn, har metoder studerats för att hålla turbinerna så varma som möjligt under tomgångsperioder. En detaljerad modell av ångturbiner i ett solenergikraftverk har utvecklats och validerats mot experimentella data från ett befintligt kraftverk. En dynamisk systemmodell av de övriga delarna av anläggningen har också utvecklats för att ge input till ångturbinsmodellen. Tre modifieringar som potentiellt kan bidra till att upprätthålla den inre temperaturen i ångturbiner har analyserats: montering av ytterligare isolering, ökning av temperaturen hos glänsångan och användning av elvärmefiltar. En kombination av elvärmefiltar och en temperaturökning av glänsångan visade sig vara det mest effektiva alternativet. Åtgärderna resulterade i en ökad elproduktion på upp till 3%, beräknat på årsbasis genom ökad tillgänglighet hos kraftverket. / QC 20110629 / TURBOKRAFT
7

Thermodynamics of Distributed Solar Thermal Power Systems with Storage

Garg, Pardeep January 2015 (has links) (PDF)
Distributed power generation through renewable sources of energy has the potential of meeting the challenge of providing electricity access to the off-grid population, estimated to be around 1.2 billion residing across the globe with 300 million in India, in a sustainable way. Technological solutions developed around these energy challenges often involve thermal systems that convert heat available from sources like solar, biomass, geothermal or unused industrial processes into electricity. Conventional steam based thermodynamic cycle at distributed scale (< 1 MWe) suffers from low efficiency driving scientific research to develop new, scalable, efficient and economically viable power cycles. This PhD work conducts one such study which provides a database of thermal power blocks optimized for the lowest initial investment cost to developers of distributed power plants. The work is divided in two steps; a) feasibility study of various thermodynamic cycles for distributed power generation covering different operating temperature regimes and b) perform their detailed thermo-economic modelling for the heat sources mentioned above. Thermodynamic cycles are classified into three temperature domains namely, low (< 450 K), medium (< 600 K) and high (< 1000 K) T cycles. Any fluid whose triple point temperature is below the typical ambient temperatures is a potential working fluid in the power cycle. Most of the organic and the inorganic fluids satisfy this criterion and can be perceived as potential power cycle fluids. The general notion is that organic fluids are more suited for low or medium temperature cycles whereas inorganic fluids for high temperature ones. Organic fluids can further be classified into hydrofluorocarbon and hydrocarbon. While the former has high global warming potential (GWP), the latter is flammable in nature. Their mixture in certain compositions is found to obviate both the demerits and perform equally well on thermodynamic scales for low T cycles. On the similar lines, mixture of HCs and inorganic fluids, such as propane+CO2 and isopentane+CO2 are found to be more appropriate for medium T applications if the issues like pinch temperature in the regenerator arising due to temperature glide are taken care of. In the high temperature domain, high efficiency Brayton cycle (supercritical CO2) and transcritical condensing cycles are studied with the latter being 2 % more efficient than the former. However, application of the condensing cycle is limited to low temperature ambient locations owing to low critical temperature of CO2 (304 K). In the same cycle configuration, mixture of CO2 and propane (52 and 48%) with a critical temperature of ~ 320 K is observed to retain the thermodynamic performance with the increased heat rejection temperature matched to the tropical ambient conditions. However, these cycles are plagued by the high operating pressures (~300 bar) calling for high temperature steel making the power block uneconomical. In this regard, the advanced CO2 cycles are developed wherein the optimum operating pressures are limited to 150 bar with an increased cycle efficiency of 6 % over the S-CO2 cycle. Feasibility study carried out on these cycles in the Indian context indicates the low and medium T cycles to be better suited for distributed power generation over the high T cycles. In the second part of work, a comprehensive study is performed to optimize the low and the medium T cycles on a thermo-economic basis for the minimum specific investment cost ($/We). Such a study involves development of component level models which are then integrated to form the system of interest, thus, following a bottom-up approach. A major emphasis is given on the development of scroll expander and low cost pebble bed thermal energy storage system that are the reported in the literature as the areas with high uncertainties while connecting them to the system. Subsequently, the key design parameters influencing the specific cost of power from an air-cooled ORC are identified and used to formulate a 7-dimensional space to search for the minimum costs for applications with a) geothermal/waste or biogas heat sources and b) solar ORCs. Corresponding maps of operating parameters are generated to facilitate distributed power engineers in the design of economic systems within constraints such as available heat source temperatures, maximum expander inlet pressures imposed, etc. Further, the effect of power scaling on these specific costs is evaluated for ORC capacities between 5 and 500 kWe.
8

Conception d'un système de cogénération solaire applique à l'habitat, associant un concentrateur miniature et une turbine de telsa / Design of a solar cogeneration system applied to the habitat, involving a miniature concentrator and a Tesla turbine

Jourdan, Arnaud 08 November 2013 (has links)
La responsabilité de notre activité dans les récentes et parfois brutales modifications climatiques est avérée. Maîtrise de la demande en énergie et énergies renouvelables apparaissent comme les deux solutions pour remédier à cette catastrophe. Dans ce travail, nous nous intéressons à la cogénération appliquée aux bâtiments résidentiels. Deux zones géographiques sont concernées, l'Afrique de l'Ouest et la France. Il n'existe pas de système de cogénération solaire de très faible puissance (< 10 kWe). La solution envisagée dans ce travail consiste à produire de la chaleur à environ 150 °C et un rendement supérieur à 50 %, de l'utiliser ensuite dans un ORC pour produire électricité et chaleur à basse température. Le système complet doit être résistant et à bas coût. Or pour atteindre ces performances, la concentration solaire est obligatoire. Une partie de ce travail consiste donc au développement d'un panneau à concentration solaire qui répond à ces deux contraintes thermiques, mais aussi au fait d'être robuste, fiable et facilement intégrable à l'enveloppe d'un bâtiment. Dans ce cadre, la technologie cylindro-parabolique a été retenue, adaptée et miniaturisée. En ce qui concerne la partie thermodynamique, le verrou technologique se trouve principalement dans le groupe turboalternateur. L'objet de la seconde partie de cette thèse consiste ainsi à la conception d'un organe de détente également robuste, nécessitant qu'une maintenance simplifiée et réalisable par les équipes de SIREA. La turbine Tesla, brevetée en 1913 par Nikola Tesla, devrait satisfaire à ce cahier des charges. Sa particularité est qu'à l'opposée des autres turbines, son rotor ne possède pas d'aubage, mais seulement des disques parallèles. Son fonctionnement est basé sur l'adhésion du fluide aux surfaces des disques. / The responsibility of our activity in the recent and sometimes brutal climate changes is recognized. Energy demand management and renewable energies appear as two solutions to overcome this disaster. In this work, we focus on combined heat and power applied to residential buildings. Two geographical areas are concerned, West Africa and France. For the moment, no system of very low power (< 10 kWe) solar cogeneration exists. In this work, considered solution consists to produce heat at 150 °C and with an efficiency greater than 50 %, then to use it in an ORC for producing electricity and low temperature heat. The whole system has to be resistant and low-cost. But to reach those performances with solar radiation, concentration is necessary. The first part of this thesis is to elaborate a solar concentrating panel which answer to these two thermal constraints. The new solar panel must be robust, reliable and easily integrable on the building envelope. In this context, parabolic trough is adopted, adapted and miniaturised. Regarding the thermodynamic part, technological lock is found mainly in the turbogenerator. The purpose of the second part of this thesis consists of the design of a an expansion equipement, requiring simplified maintenance and achievable by the team of Sirea. The Tesla turbine, patented in 1913 by Nikola Tesla, should satisfy this specification. Its characteristic is that the opposite other conventional turbines, the rotor is not bladed or vaned, only parallel disks. Fluid exerts shear stress on the disk surfaces resulting in a torque at the shaft.
9

Životní cyklus solární elektrárny, efektivita a návratnost / The Life Cycle of Solar Power, Efficiency and Return

Kubín, David January 2013 (has links)
This master’s thesis named “The Life Cycle of Solar Power, Efficiency and Return” is divided into seven chapters and focuses on the utilization of solar radiation in photovoltaic power stations and solar thermal power stations. The first chapter of this thesis familiarizes the reader with issues concerning renewable resources of energy and presents an overview of the focus of each chapter. The following second chapter is occupied with a topical research of renewable resources of energy utilization in Europe. Further the author presents a brief glance back at the past of solar energy utilization and also a prediction of future solar energy utilization in the Czech Republic. The chapter named “Specification and parameterization of individual technologies” contains an overview of today’s most utilized photovoltaic cells and panels together with an overview of utilized solar collectors and solar thermal power stations. In the following chapter named “Concretization of typical applications and realizations of photovoltaic and solar thermal power stations and determination of all related parameters” the author describes further components of photovoltaic and solar thermal systems. The economical aspect of photovoltaic component production together with an overview of utilized photovoltaic technologies is presented in this chapter. The problem of recycling photovoltaic applications and the current legislative situation regarding this issue in the Czech Republic is also outlined within this chapter. In the fifth chapter of this master’s thesis the author presents mathematical models of a photovoltaic and a solar thermal power station with the focus on economic aspects of investment efficiency assessment. Within this master’s thesis a simulation program in the computational software program Mathematica was created by the author. This program allows a calculation of economic efficiency and return of photovoltaic power station investments. The results of executed simulations are presented in the sixth chapter of this thesis. The last chapter contains an appraisal and summary of results achieved by the author of this thesis.
10

Distribuční soustava Kypru - realizovatelnost obnovitelných zdrojů a přenos energie / Distribution system of Cyprus - feasibility of renewable energy sources and transfer of energy

Šimonová, Lucie January 2011 (has links)
Until a few decades ago few people could imagine that the photovoltaic, solar thermal and other power based on renewable resources, will become a reality. Today people from all over the world on the contrary try at full blast derive benefit from of all possible available source. Using sunlight as a source of energy is first enforced only for small devices such as calculators for charging the battery, but now we are able to produced energy from the sun to supply people around the world. Of course it is not possible supply consumer sector plus firm only from performances renewable power supply. Therefore endeavour is derive benefit from classical energy production at the same time with others power supply. The basic components of photovoltaic and solar thermal power are panels. The panels are made of different materials in different shapes and sizes. During production, the resulting effect looks in addition to costs associated with production. For photovoltaic and solar thermal power plant requires sufficient sunlight. The sunshine has biggest intensity on south of ours planets. Therefore endeavour is build lump these power station just in stand with bigger intensity sunshine. One of them is just Cyprus, too.

Page generated in 0.4197 seconds