• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hybrid Solar Gas-Turbine Power Plants : A Thermoeconomic Analysis

Spelling, James January 2013 (has links)
The provision of a sustainable energy supply is one of the most importantissues facing humanity at the current time, and solar thermal power hasestablished itself as one of the more viable sources of renewable energy. Thedispatchable nature of this technology makes it ideally suited to forming thebackbone of a future low-carbon electricity system.However, the cost of electricity from contemporary solar thermal power plantsremains high, despite several decades of development, and a step-change intechnology is needed to drive down costs. Solar gas-turbine power plants are apromising new alternative, allowing increased conversion efficiencies and asignificant reduction in water consumption. Hybrid operation is a furtherattractive feature of solar gas-turbine technology, facilitating control andensuring the power plant is available to meet demand whenever it occurs.Construction of the first generation of commercial hybrid solar gas-turbinepower plants is complicated by the lack of an established, standardised, powerplant configuration, which presents the designer with a large number ofchoices. To assist decision making, thermoeconomic studies have beenperformed on a variety of different power plant configurations, includingsimple- and combined-cycles as well as the addition of thermal energy storage.Multi-objective optimisation has been used to identify Pareto-optimal designsand highlight trade-offs between costs and emissions.Analysis of the simple-cycle hybrid solar gas-turbines revealed that, whileelectricity costs were kept low, the achievable reduction in carbon dioxideemissions is relatively small. Furthermore, an inherent trade-off between thedesign of high efficiency and high solar share hybrid power plants wasidentified. Even with the use of new optimised designs, the degree of solarintegration into the gas-turbine did not exceed 63% on an annual basis.In order to overcome the limitations of the simple-cycle power plants, twoimprovements were suggested: the integration of thermal energy storage, andthe use of combined-cycle configurations. Thermal energy storage allowed thedegree of solar operation to be extended, significantly decreasing carbondioxide emissions, and the addition of a bottoming-cycle reduced the electricitycosts. A combination of these two improvements provided the bestperformance, allowing a reduction in carbon dioxide emissions of up to 34%and a reduction in electricity costs of up to 22% compared to a combination ofconventional power generation technologies. / Hållbar energiförsörjning är för närvarande en av de viktigaste frågorna förmänskligheten. Koncentrerad solenergi är nu etablerad som en tillförlitlig källaav förnybar energi. Den reglerbara karaktären hos tekniken gör den specielltintressant för uppbyggnaden av ett framtida koldioxidsnålt elsystem.Kostnaden för elektricitet från nuvarande termiska solkraftverk är hög trottsflera decennier av utveckling. Ett genombrått på tekniknivå krävs för att drivaned kostnaderna. Sol-gasturbiner är ett av de mest lovande alternativen, somger en ökad verkningsgrad samtidigt som vattenkonsumtionen reducerasdrastiskt. Sol-gasturbintekniken gör det möjligt att blandköra solenergi ochandra bränslen för att möta efterfrågan vid alla tidpunkter, en attraktiv aspekt iförhållande till alternativa lösningar.Uppbyggnaden av första generationens kommersiella hybrida solgasturbinkraftverkförsvåras dock av bristen på etablerade och standardiseradekraftverkskonfigurationer. Dessa ger planeraren ett stort antal valmöjlighetersom underlag för beslutsfattande. Termoekonomiska studier har genomförtsför ett flertal olika kraftverkskonfigurationer, däribland kraftverk med enkelcykel, kombikraftverk samt möjligheten att utnyttja termisk energilagring.Pareto-optimala konfigurationer har identifierats med hjälp av multiobjektsoptimeringför att belysa balansen mellan kostnader och utsläpp.Analysen av det enkla hybrida sol-gasturbinkraftverket visade attelektricitetskostnaden hållits på en låg nivå, men att den möjliga minskningen avkoldioxidutsläpp är relativt liten. Dessutom identifierades en inre balans mellanatt bibehålla en hög verkningsgrad hos konfigurationen och en hög andelsolenergi i produktionen. Andelen av solenergi i gasturbinen överskred aldrig63% på årlig bas, även med optimerade kraftverkskonfigurationer.Två förbättringar föreslås för att övervinna begränsningarna hos kraftverk medenkel cykel: integration av termisk energilagring samt nyttjande avkombikraftverkskonfigurationer. Termisk energilagring tillåter en ökad andelsolenergi i driften och reducerar koldioxidutsläppen drastiskt, medan denytterligare cykeln hos kombikraftverket reducerar elektricitetskostnaden.Kombinationen av dessa förbättringar ger den bästa prestandan, med enreduktion av koldioxidutsläppen på upp till 34% och reducerade elektricitetskostnaderpå upp till 22% i jämförelse med andra kombinationer avkonventionella kraftverkskonfigurationer. / <p>QC 20130503</p>
2

An overview of the development and potential of ceramic materials for use in micro gas turbines / Översikt av utveckling och potential av keramiska material för använding i mikro gas turbiner

Ahlqvist Fehr, Alexander January 2023 (has links)
This paper presents an analysis of the potential of Micro Gas Turbines (MGT) with regards to performance, economic and durability considerations. The performance potential was assessed by calculating the cycle efficiency based on the Brayton cycle and the mechanical efficiency of the expansion turbine. The economic potential was evaluated by calculating the specific fuel consumption and estimating the cost and manufacturability of the turbine components. The durability and reliability of the components were assessed by considering the effects of transient thermal stresses and unstable ignition. The results indicated that ceramic materials can achieve a 63% increase in efficiency over nickel-based alloys and a 39% reduction in specific fuel consumption. It was also found that the grinding process on the metal-ceramic shaft connection is the most expensive as it relies on diamond grinding, while ceramic turbines can have an initial procurement cost advantage whenproduced in higher volumes. Finally, it was found that ceramic materials are less reliable due to their higher hardness and sensitivity to pressure spikes, and therefore require careful consideration when designing the components. / I detta dokument presenteras en analys av potentialen hos mikrogasturbiner (MGT) med avseende på prestanda, ekonomi och hållbarhet. Prestandapotentialen bedömdes genom att beräkna cykelns effektivitet baserad på Braytoncykeln och expansionsturbinens mekaniska effektivitet. Den ekonomiska potentialen utvärderades genom att beräkna den specifika bränsleförbrukningen och uppskatta kostnaden och tillverkningsbarheten för turbinkomponenterna. Komponenternas hållbarhet och tillförlitlighet bedömdes genom att man beaktade effekterna av tillfälliga termiska påfrestningar och instabil tändning. Resultaten visade att keramiska material kan öka effektiviteten med 63% jämfört med nickelbaserade legeringar och minskaden specifika bränsleförbrukningen med 39%. Det konstaterades också att slipningen av axelförbindelsen mellan metall och keramik är den dyraste eftersom den bygger på diamantslipning, medan keramiska turbiner kan ha en kostnadsfördel vid den första anskaffningen när de tillverkas i större volymer. Slutligen konstaterades det att keramiska material är mindre tillförlitliga på grund av deras högre hårdhet och känslighet för tryckspikar, och att det därför krävs noggranna överväganden vid utformningen av komponenterna.
3

Investigation and Validation of Cooling Loss Models for Axial Gas Turbines

Händestam, Jacob, Jacobson, Eric January 2017 (has links)
Detta arbete behandlar undersökningen och valideringen av kylförlustmodellen i det nyligen framtagna programmet för endimensionell turbindesign, Mean Line Tool (MLT), skapat av Siemens Industrial Turbomachinery AB (SIT). Huvudsyftet är att undersöka med vilken noggrannhet MLT kan prediktera de extra aerodynamiska förluster som uppstår vid injektion av kylluft i en turbinpassage. För att validera kylförlustmodellen i MLT, har tidigare resultat från en testrigg på KTH används, där de extra förlusterna på grund av kylinjektion har mätts för ett flertal kylpositioner på en turbinledskena. Lokala flödes- och geometriska parametrar från testriggen ansattes i MLT för att möjliggöra en korrekt jämförelse. Ytterligare validering utfördes mot en testbaserad Siemens-korrelation, som är en sammanställning av ett flertal test från olika turbinkomponenter av SIT. I denna korrelation undersöktes kylning på en ledskenas bladprofil och plattform, samt på skovelns bladprofil, där en ökning av kylmassflöde relaterades till en förändring i stegverkningsgrad. Resultaten, från jämförelsen mellan data från testriggen på KTH samt beräkningar i MLT, visade att MLT predikterar extraförlusterna på grund av kylning på bladprofilen av en ledskena med bra noggrannhet. Däremot visar jämförelsen att MLT beräknar en lägre förlust för bakkantskylning. Således har en modifierad förlustkorrelation för bakkantskylning presenterats, som ger mer överensstämmande resultat mot testriggen. Jämförelsen mellan MLT beräkningar och den testbaserade Siemens-korrelationen visar att MLT inte predikterar förändringen i stegverkningsgrad, på grund av extra kylmassflöde, med bra noggrannhet. På grund av ett flertal osäkerheter har denna jämförelse endast användas för att kvalitativt belysa brister i kylförlustmodellen av MLT. Med detta i åtanke har det fastställts att plattformskylning vid främre delen av en turbinpassage skulle kunna vara mycket överpredikterad av MLT. Den övergripande slutsatsen är att MLT predikterar förändringen i gitterverkningsgrad på grund av kylning på en ledskenas bladprofil med bra noggrannhet, förutom bakkantskylning. Ytterligare jämförelser visar att MLT inte kan prediktera förändringen i stegverkningsgrad, på grund av extra kylmassflöde, med bra noggrannhet för olika kylda komponenter från gasturbinsportfolion av SIT. Således behövs vidare validering av MLT innan programmet kan implementeras i turbindesignsystemet av SIT. / This thesis concerns the investigation and validation of the cooling loss model in newly developed one-dimensional turbine design tool, Mean Line Tool (MLT), of Siemens Industrial Turbomachinery AB (SIT). The main objective is to investigate how accurately MLT can predict the additional aerodynamic losses due to cooling ejection in a turbine blade passage. To validate the cooling loss model of MLT, existing results from an annular sector cascade rig at KTH were used, where the additional losses due to cooling ejection were presented for several cooling locations on a stator vane profile. Local flow- and geometrical parameters from the cascade rig were set in MLT to enable a fair comparison. Moreover, a Siemens test based correlation was used, which is a data collection based on tests using various cooled components of SIT. Cooling ejection on a stator vane profile, stator vane platform and rotor blade profile was investigated, where an increase in coolant mass-flow was related to a change in stage efficiency. The results, when comparing data from the KTH cascade rig against calculations of MLT, show that MLT is able to accurately predict the additional loss due to cooling ejection on a stator vane profile. However, the comparison presents that the calculated loss for trailing edge cooling by MLT is lower than the results from the cascade rig. Therefore, a modified trailing edge cooling correlation is presented, which predicts the results from the cascade rig with better accuracy. Furthermore, comparisons between MLT calculations and the Siemens correlation present that MLT cannot predict the change in stage efficiency, due to added coolant mass-flow, accurately. However, due to several uncertainties, these results are qualitatively used to understand sources of prediction error in the cooling loss model of MLT. Having this in mind, it is established that hub platform cooling at the front part of a blade passage might be greatly overpredicted by MLT. The general conclusion is that MLT predicts the change in cascade efficiency due to coolant ejection with good accuracy for a stator vane profile, except for cooling at the trailing edge. However, MLT is not able to predict the change in stage efficiency, due to added coolant mass-flow, with good accuracy for various cooled components from the SIT gas turbine product portfolio. Thus, MLT needs further validation before it can be implemented into the SIT design system.

Page generated in 0.0363 seconds