• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 12
  • 2
  • Tagged with
  • 26
  • 21
  • 20
  • 10
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cortical microvessels and the tripartite synapse in chronic pain studied with synchrotron radiation / Microvaisseaux corticales et la synapse tripartite dans l'étude de la douleur chronique avec le rayonnement de synchrotron

Del Grosso, Veronica 30 October 2017 (has links)
La douleur chronique (DC) est un trouble sensoriel complexe caractérisé par des changements structurels, c'est-à-dire par des réarrangements anatomiques sévères du cortex somatosensoriel et des changements fonctionnels, à savoir des anomalies dans la connectivité fonctionnelle du réseau et la transmission de l'information au niveau du circuit thalamo-cortical. Structurellement, dans chaque module cortical, une unité morpho-fonctionnelle peut être reconnue, appelée unité neuro-gliale-vasculaire, où les cellules gliales représentent les structures de pontage permettant le transfert de métabolites et d'oxygène aux neurones. La dépendance fonctionnelle entre les éléments neuronaux et vasculaires, explorée en grande partie par microscopies confocale 3D et biphotonique a élargi le concept de l'espace synaptique en une forme plus complexe, appelé «synapse tripartite», où malgré la présence de neurones pré et post-synaptiques, un composant glial est ajouté face au contexte microvasculaire. Il semble donc correct d'analyser les effets microscopiques corticaux de l'image macroscopique. Des études récentes de notre groupe ont traité de l'origine et l'évolution de la DC dans des modèles expérimentaux de rat DC (Seltzer) grâce à des analyses microstructurales et fonctionnelles axées sur le substrat neuronal corticale et les propriétés micromorphologiques et vasculodynamiques du sang. La microarchitecture du réseau vasculaire cortical a été révélée via la microtomographie par rayonnement X synchrotron aux lignes ID17 et ID16A (ESRF, Grenoble) ainsi qu’à la ligne TOMCAT (SLS, Villigen). S’en est suivi une analyse morphométrique du réseau vasculaire 3D par squelettisation et transformation du graphe spatial. Ensuite, une étude comparative "Neuropathique vs Contrôle", basée sur les propriétés du réseau vasculaire (nombre de vaisseaux, points de branche, segments de squelette et diamètre du vaisseau) a montré des changements évidents dans les compartiments microvasculaires corticaux: une augmentation généralisée des micro-vaisseaux et des capillaires sanguins dans les régions étudiées (cortex somatosensoriel SS1) caractérisent tous les rats DC. Parallèlement, une réduction du diamètre moyen des vaisseaux des rats DC prouve que les capillaires et les microvaisseaux ont une affinité prédominante pour ces événements angiogénétiques. L'évolution de la néogénèse est très présente dès la première étape de la neuropathie (2 semaines), puis diminue mais persiste durant la dernière étape considérée (6 mois). En outre, un flux sanguin maximal accru a été trouvé dans l'état de DC, indiquant que les réseaux vasculaires DC sont compatibles avec un flux enrichi soutenu par l'angiogenèse. Ces résultats provenant de la micro et nanotomographie ont été confirmés via microscopie en immunofluorescence: les échantillons DC ont montré la positivité à trois marqueurs de néogénèse vasculaire (VEGFR1, VEGFR2 et VWF). En parallèle, pour analyser fonctionnellement la genèse et l'évolution des circuits thalamo-corticaux dans les conditions de DC, l'activité neurale a été enregistrée par une matrice de 32 microélectrodes implantée dans le cerveau, recevant simultanément des signaux du noyau thalamique VPL et du cortex SS1. Tous les rats DC montrent des troubles de connectivité révélés aussi par l'évolution de la topologie du réseau de «Modules et Hubs» à une organisation «aléatoire» où les connexions fonctionnelles intra et intercommunautaires diminuent. Ces résultats confirment comment la dynamique neuronale est liée à l'activité vasculaire: les événements néo-génétiques des microvaisseaux corticaux dans la DC sont fortement corrélés aux anomalies fonctionnelles de la dynamique des réseaux neuronaux. L'implication microvasculaire dans la DC ouvre une nouvelle façon de l’interpréter, non seulement reconnue comme pathologie sensorielle, mais aussi comme une maladie neurologique où les réseaux de connectivité neuronale et vasculaire sont largement impliqués dans le système. / Chronic pain (CP) is a complex sensory disorder characterized by structural changes, i.e. severe anatomical rearrangements of somatosensory cortex, and functional changes, i.e. anomalies in network functional connectivity and in information transmission at the level of thalamo-cortical circuit. From the structural point of view, within each cortical module, a morpho-functional unit can be recognized, also called neuro-glial-vascular unit, where the glial cells represent the bridging structures allowing for the transfer of metabolites and oxygen to neurons. Namely, the functional dependency between neuronal and vascular elements, largely explored by 3D confocal microscopy and two photon microscopy, has expanded the concept of synaptic space to a more complex form, indicated as “tripartite synapse”, where besides the presence of the pre- and post- synaptic neurons, a glial component is added facing on the microvascular context. Due to this dependency it appears, thus, correct to analyse the cortical microscopical effects of the macroscopical picture. Novel studies by our group have recently investigated CP origin and evolution in experimental CP rat models (Seltzer) through microstructural and functional analyses focused both on the cortical neuronal substrate and the blood micromorphological and vasculodynamic properties. The 3D microarchitecture of cortical vascular network has been revealed by means of synchrotron X-ray micro Computed Tomography (CT) at the ID17 and ID16A beamlines (ESRF, Grenoble) and the TOMCAT beamline (SLS, Villigen). A subsequent morphometric analysis of the 3D vascular network has been implemented by means of skeletonization and spatial graph transformation. Then, a comparative study “Neuropathic vs Control”, based on the estimated vascular network properties (number of vessels, branch points, skeleton segments and vessel diameter), showed evident changes in cortical microvascular compartments: a widespread increase of blood microvessels and capillaries in the investigated regions (the somatosensory [SSI] cortical area) has been found in all CP rats. In parallel, a reduced mean value of vessel diameter in all CP rats prove that capillaries and small microvessels are predominantly interested by these angiogenetic events. By investigating the time evolution of the neogenesis, it appears strongly present since the first stage of the neuropathy (2 weeks), fading away, but still present, during the last time stage considered (6 months). In addition, an increased maximum blood flow, sustained by the vascular network, has been found in CP condition, indicating that CP vascular networks are compatible with an enriched blood flow sustained by the promoted novel angiogenesis. These results from micro- and nano-tomography have been further confirmed also by immunofluorescence microscopy analysis: CP samples have shown the positivity to three markers of vascular neo-genesis (VEGFR1, VEGFR2 and VWF). In parallel, to functionally analyse the genesis and the evolution of the thalamo-cortical circuits in CP conditions, the neural activity has been recorded by means of 32-microelectrode matrices implanted in the brain, simultaneously receiving signals from the VPL thalamic nucleus and the SS1 cortex. All the CP groups show connectivity disorders exhibited also by the evolution of the network topology from “Modules and Hubs” to a “random” network organisation where the intra-community and inter-community functional connections decrease. These results clearly confirm how the neuronal dynamics is strictly linked to the vascular activity: the cortical microvessel neo-genetic events in CP are strongly correlated to the functional anomalies in neuronal network dynamic. The microvascular involvement in CP opens a new way of interpretation of CP disease, not only recognized as sensory pathology, but also as a neurological disease where neuronal and vascular connectivity networks are extensively involved in the whole system.
12

Rôles et caractérisation de la microglie dans le développement du néocortex somatosensoriel de la souris / Roles and caracterisation of microglia in the mouse developing somatosensory neocortex

Arnoux, Isabelle 24 April 2014 (has links)
Les cellules microgliales, qui sont les macrophages du système nerveux central, ont été principalement étudiées en conditions pathologiques. Néanmoins, l'étude de la microglie aux stades périnataux indique qu'elle influence le développement normal du système nerveux central. Des interactions directes et indirectes entre la microglie et les synapses existent mais les mécanismes par lesquels ces cellules immunitaires ciblent les synapses et modulent leur maturation fonctionnelle durant le développement postnatal sont peu connus. Au cours de mon travail de thèse, je me suis intéressée aux cellules microgliales et à leurs fonctions dans le développement postnatal du cortex somato-sensoriel de la souris. Dans une première étude, nous avons montré qu'au cours de la première semaine post-natale le recrutement des cellules microgliales aux sites synaptiques en maturation met en jeu une voie de signalisation impliquant la chimiokine neuronale fractalkine et de son récepteur microglial CX3CR1. En effet, un défaut d’expression de ce récepteur retarde le recrutement des cellules microgliales aux sites synaptiques et entraine un retard de maturation fonctionnelle des synapses thalamocorticales. Dans une seconde étude, nous avons caractérisé le phénotype des cellules microgliales lors de la maturation fonctionnelle des réseaux synaptiques corticaux. Nous avons montré que les cellules microgliales adoptent un phénotype particulier lorsqu’elles sont recrutées aux synapses en maturation. Ce phénotype diffère de celui exprimé par la microglie adulte en conditions physiologiques et pathologiques et pourrait permettre aux cellules microgliales d’accomplir des fonctions spécifiques nécessaires à la maturation synaptique. Dans une troisième étude, nous avons testé les effets de la minocycline sur le développement cortical. Cette tétracycline est connue pour bloquer l’activation microgliale chez l'adulte. De façon surprenante, nous avons observé que pendant une période critique se situant à la fin de la première semaine post-natale la minocycline induit une importante mort cellulaire qui s'accompagne d'une altération de la distribution des cellules microgliales et déclenche leur activation. L'ensemble de mes données montrent que les cellules microgliales sont très sensibles aux changements de leur environnement, que leur phénotype fonctionnel change en conditions physiologiques en fonction de cet environnement et que des interactions réciproques entre neurones et microglie influencent la maturation fonctionnelle des réseaux synaptiques corticaux lors du développement postnatal. / The microglial cells, which are the resident macrophages of the central nervous system, have been mainly studied in pathological conditions. But, the study of microglia at perinatal stages indicates that they influence the normal development of the central nervous system. Direct and indirect interactions between microglia and synapses exist but mechanisms by which these immune cells target synapses and modulate their functional maturation during post-natal development are still unknown. During my PhD thesis, I was interested in microglial cells and their functions during postnatal development of the mouse somatosensory cortex. In a first study, we showed that during the first postnatal week the recruitment of microglial cells at maturating synaptic sites requires a signaling pathway involving the neuronal chemokine fractalkine and its microglial receptor CX3CR1. Indeed, a deficit in the expression of this receptor delays the recruitment of microglial cells at synaptic sites and leads to a delayed functional maturation of thalamocortical synapses. In a second study, we characterized the phenotype of microglial cells during the functional maturation of cortical synaptic network. We showed that microglial cells adopt a particular phenotype when they are recruited at maturating synapses. This phenotype differs from that expressed by adult microglia in physiological and pathological conditions and may allow microglial cells to accomplish specific functions which are necessary to synaptic maturation. In a third study, we tested the effects of the minocycline on the cortical development. This tetracycline is known to block the microglial activation in adult. Surprisingly, we observed that during a critical period ending at the end of the first post-natal week, minocycline induces an important cellular death which is accompanied by an alteration of microglial cells distribution and which also triggers their activation. Taken together, my data show that microglial cells are highly sensitive to changes in their environment, their functional phenotype evolves in physiological conditions in function of this environment and reciprocal interactions between neurons and microglia influence the functional maturation of cortical synaptic network during the postnatal development.
13

Implication des circuits neuronaux du cortex somatosensoriel dans l’initiation de l’activité paroxystique de l’épilepsie absence / Implication of somatosensory cortex neuronal circuits in the initiation of paroxystic activity in absence epilepsy

Studer, Florian 26 April 2018 (has links)
Les neurones du cortex sont organisés en réseaux qui permettent de réaliser des fonctions complexes. Des anomalies des connexions neuronales qui forment ces réseaux peuvent altérer son fonctionnement et générer des activités pathologiques comme c’est le cas dans certaines formes d’épilepsie. L’épilepsie-absence est caractérisée par des crises généralisées non-convulsives présentant lors d’un enregistrement électroencéphalographique des décharges de pointes-ondes (DPO) bilatérales et synchrones qui s’accompagnent d’une altération de la conscience. Plusieurs équipes ont montré chez l’Homme et dans des modèles animaux que ces DPO sont initiées au niveau du cortex. Cependant, notre connaissance des altérations de connectivité neuronale qui sous-tendent ces activités reste encore très limitée. Nous avons émis l’hypothèse que les DPO sont favorisées par une connectivité neuronale exacerbée. Nous avons examiné cette hypothèse dans un modèle génétique d’épilepsie-absence, le rat GAERS. En étudiant la connectivité structurelle du cortex somatosensoriel primaire, aire d’initiation des DPO chez le GAERS, par traçage rétrograde monosynaptique ainsi que sa connectivité fonctionnelle par enregistrements électrophysiologiques extracellulaires multi-canaux in vivo, nous avons caractérisé le circuit de génération et de propagation des DPO entre les couches corticales. Ce circuit pathologique est différent du circuit canonique d’intégration de l’information sensorielle puisque les DPO sont initiées par les neurones des couches profondes. Ces neurones présentent une hyperconnectivité intralaminaire globale et translaminaire GABAergique et lorsque l’on altère ces connexions pathologiques par microtransection rayon-X synchrotron on réduit la puissance des DPO. Nous nous sommes ensuite intéressés à l’interférence que pouvait avoir le circuit pathologique sur l’intégration sensorielle. En utilisant un test de discrimination de texture nous avons monté que le traitement de l’information sensorielle liée aux vibrisses n’est pas altéré chez le GAERS. Grâce à des stimulations des vibrisses pendant des enregistrements électrophysiologiques extracellulaires multi-canaux in vivo, nous avons pu montrer que le circuit canonique est fonctionnel chez le GAERS. L’ensemble de nos données suggèrent que, chez le GAERS, les DPO sont sous-tendues par un réseau structurellement anormal au sein du cortex somatosensoriel mais que ce circuit pathologique n’empêche pas la fonction physiologique de cette région du cortex. / Cortical neurons are organized in networks which allow complex functions. Abnormalities of neuronal connections composing these networks can lead to functional alterations and pathological activities as in some forms of epilepsy. Absence-epilepsy is characterized by non-convulsive generalized seizures associated with synchronous and bilateral spike-and-wave discharges (SWD) on electroencephalographic recordings and impairment of consciousness. Many studies in patients and animal models have shown that SWD are initiated in the cortex but our understanding of underlying neuronal connection alterations remain limited. We hypothesized that SWD may result from an increased neuronal connectivity. To test this hypothesis, we used a genetic model of absence-epilepsy, the GAERS rat. By studying the structural connectivity of primary somatosensory cortex, the SWD-initiating area in GAERS, by retrograde monosynaptic tracers and the functional connectivity by in vivo multi-channel extracellular electrophysiology, we were able to describe the circuit of SWD generation and propagation across cortical layers. This pathological circuit is different from the canonical circuit of sensory information processing as SWD are initiated by deep layer neurons. These neurons present an intralaminar global and a translaminar GABAergic hyperconnectivity and by decreasing these connections by synchrotron-generated microtransections we were able to reduce the power of SWD. We next investigated if the pathological circuit would interfere with sensory integration. By using a texture discrimination task we showed that sensory information integration is unaltered in GAERS. By using vibrissae stimulations during in vivo multi-channel extracellular electrophysiology recordings we showed that the canonical circuit remain functional in GAERS. Altogether, our data suggest that SWD in GAERS are generated by an abnormal structural network in the somatosensory cortex but that this pathological circuit do not interfere with the physiological function of this brain area.
14

Etude de limplication de CaMKIα dans la régénération post-lésionnelle des neurones des ganglions rachidiens dorsaux. / CaMKI alpha, a traumatism induced gene potentially involved in peripheral axonal regrowth.

Elzière, Lucie 13 December 2010 (has links)
A la suite d'un traumatisme nerveux les neurones périphériques ont la capacité de régénérer. La repousse est possible grâce à l'environnement permissif et les aptitudes intrinsèques des neurones périphériques à entamer un processus régénératif. Cette capacité intrinsèque se traduit par des remaniements cellulaires et moléculaires induits notamment par la modification de l'expression de nombreux gènes. Ma thèse a porté sur l'étude de l'un d'entre eux : CaMKIα (Calcium-Calmodulin-dependent kinase Iα), dont nous avons montré l'induction de l'expression dans les neurones de ganglions rachidiens dorsaux par une lésion du nerf sciatique. Cette kinase, jamais encore décrite dans le système nerveux périphérique adulte, est impliquée dans le développement neuronal au niveau central. Nous avons établi que l'expression de CaMKIα est spécifiquement induite à la suite de différents types de traumatismes mécaniques du nerf sciatique (sections, compressions chroniques ou aiguës) dans une population restreinte de neurones lésés, majoritairement myélinisés. La localisation subcellulaire de CaMKIα, à la fois dans le corps cellulaire des neurones et dans les fibres du nerf sciatique, évoque un transport axonal de la kinase vers le site de lésion. L'inhibition de la voie de signalisation de CaMKIα par traitement pharmacologique ou l'utilisation de siRNA dirigés contre CaMKIα induit in vitro une chute significative de la vitesse de pousse des neurites des neurones lésés. L'ensemble de ces résultats suggère que l'induction de CaMKIα contribue à la régénération axonale post-lésionnelle des neurones périphériques. / Peripheral neurons have the capacity to regenerate after injury. This regeneration is allowed by thefavorable environment generated by the cellular components of the system and intrinsic aptitudes ofthe peripheral neurons to enter this process. These intrinsic abilities are manifested as cellular changes and molecular alterations including transcriptional and post-transcriptional modifications. Prior to my work, our laboratory carried out transcriptomic analysis on dorsal root ganglia after nerve injury. This allowed us to highlight a set of genes induced in response to peripheral nerve lesion. My thesis focused on one of them: CaMKIα (Calcium-Calmodulin-dependent kinase Iα). This kinase, not previously described in the adult peripheral nervous system, has been shown to be involved in central nervous system neuronal development. We have shown that CaMKIα is specifically induced following different kinds of mechanical lesions of the sciatic nerve (sections and acute or chronic crush) in a restricted, predominantly myelinated, population of injured neurons. The subcellular location of CaMKIα, both in the soma and nerve fibers suggest an axonal transit of the kinase to the injury site. The inhibition of the CaMKIα signaling pathway by a pharmacological compound or RNA silencing in vitro induced a significantly decreased velocity of neurite growth in injured neurons. Taken together, these results suggest that the induction of CaMKIα contributes to the post injury axonal regeneration of peripheral neurons.
15

Pathophysiologie du traitement de l’information dans les dendrites néocorticales dans le Syndrome de l’X Fragile / Pathophysiology of information processing in neocortical dendrites in Fragile X Syndrome

Bonnan, Audrey 20 December 2012 (has links)
Le Syndrome de l’X Fragile (SXF) est la forme héréditaire de retard mental la plus fréquente et la cause la mieux caractérisée de troubles du spectre autistique (TSA). Elle est causée par une mutation causant l’inactivation du gène Fmr1 (codant pour la protéine FMRP). La sensibilité accrue aux stimuli sensoriels est une caractéristique importante du SXF et des TSA, mais les mécanismes sous-jacents sont encore mal compris. Nous avons constaté que la suppression du gène Fmr1 entrainait une hyperexcitabilité sensorielle dans le modèle murin du SXF. Les souris Fmr1KO nécessitaient significativement moins d'informations tactiles pour l'exploration haptique, et les représentations évoquées par les informations tactiles provenant des vibrisses dans le cortex somatosensoriel primaire (S1) se propageaient à une vitesse plus élevée chez les souris Fmr1KO par rapport aux souris témoins sauvages.Au niveau cellulaire, il a été montré que les ARNm de plusieurs sous-unités de canaux ioniques (par exemple HCN1, KCNMA1) jouant un rôle clé dans le traitement de l'information dendritique / neuronale étaient des cibles de la protéine FMRP (Liao et al, 2008; Darnell et al, 2011). Sur la base de ces observations, nous avons étudié les canalopathies comme une caractéristique importante du SXF. Nous avons testé de possibles dysfonctionnement des canaux ioniques, et leurs conséquences sur le traitement de l'information dendritique dans les neurones pyramidaux du néocortex de la couche 5 chez les souris Fmr1KO, en utilisant une combinaison d’approches électrophysiologiques et d’imagerie calcique bi-photonique. Nos résultats ont montré que les dendrites des neurones pyramidaux du S1 étaient hyperexcitables, facilitant ainsi le couplage des entrées d’information synaptique à la génération de potentiel d'action en sortie dans les neurones. Cette altération était, au moins en partie, attribuable à un dysfonctionnement des canaux Ih et BKCa et a été partiellement restaurée par l'activation pharmacologique des canaux BKCa. Ces résultats plaident en faveur d'un rôle nouveau et crucial des canalopathies dans l'expression de l'hyperexcitabilité sensorielle dans le SXF. / Fragile X Syndrome (FXS) is the most common form of inherited mental retardation syndrome and most well characterized cause of Autism Spectrum Disorders (ASD), and it is caused by a silencing mutation of the gene Fmr1 (encoding the protein FMRP). Increased sensitivity to sensory stimuli is a prominent feature of FXS and ASD, but its underlying mechanisms are poorly understood. We found that deletion of the Fmr1 gene results in somatosensory hyper-excitability in a mouse model for FXS. Fmr1 knockout (Fmr1KO) mice required significantly less tactile information for haptic exploration, and touch-evoked whisker representations in the primary somatosensory cortex (S1) spread with increased velocity in Fmr1KO mice compared to wild-type control. At the cellular level, it has been shown that the mRNAs of several ion channel subunits (e.g. HCN1, KCNMA1) playing key roles in dendritic/neuronal information processing are regulated by FMRP (Liao et al., 2008; Darnell et al., 2011). Based on these observations, we investigated channelopathies as a prominent feature of FXS. We probed ion channel dysfunction, and its consequence for dendritic information processing in neocortical pyramidal neurons of layer 5 in Fmr1KO mice, using a combination of electrophysiological and 2-photon calcium imaging approaches. Our results showed that dendrites of S1 pyramidal neurons were hyper-excitable, facilitating the coupling of synaptic input to the generation of action potential output in these neurons. This defect was, at least in part, attributable to a dysfunction of Ih channels and BKCa channels and was partially rescued by pharmacological activation of BKCa channels. These findings argue for a novel and critical role for channelopathies in the expression of sensory hyper-excitability in FXS.
16

Des illusions tactiles à l’intégration spatiotemporelle dans le cortex somesthésique primaire : influence de la temporalité des stimuli cutanés sur leur représentation corticale / From tactile illusions to spatiotemporal integration in the primary somatosensory cortex : impact of the timing of cutaneous stimuli on their cortical representation

Corbo, Julien 12 December 2018 (has links)
Plusieurs illusions tactiles suggèrent que la temporalité des stimulations cutanées dans une séquence modifie leur perception spatiale. S’ils sont assez proches dans l’espace, plus l’intervalle temporel entre deux stimuli est court, plus la distance perçue entre eux est courte. Lorsque les deux stimuli sont présentés simultanément, on observe une perception fusionnée, unique et centrée entre les positions réelles. Ainsi, le système de perception tactile semble utiliser le temps entre les stimuli pour estimer l’espace qui les sépare. Dans l’optique de comprendre comment cette règle perceptive est implémentée dans le système nerveux, nous avons étudié la représentation corticale des stimulations qui induisent ces illusions. Nous avons recherché les distorsions spatiales de la représentation somatotopique dans le cortex somesthésique primaire, à la suite de l’application séquentielle ou simultanée d’une paire de stimuli cutanés sur l’extrémité des phalanges distales de la patte antérieure chez le rat anesthésié. Avec des enregistrements électrophysiologiques et d’imagerie optique extrinsèque, nous avons mis en évidence un phénomène de fusion corticale des entrées sensorielles simultanées, avec un patron spatial d’activation unimodal, centré entre les représentations individuelles des doigts adjacents costimulés. Dans le cas de stimuli successifs, nous avons observé des modifications des réponses au deuxième stimulus dépendantes de l’intervalle inter stimuli. Cette intégration spatiotemporelle ne semble pas contribuer directement au raccourcissement des distances perçues, mais pourrait favoriser les erreurs de localisation constatées lors de la perception des illusions. / Several tactile spatiotemporal illusions suggest that the timing of successive cutaneous stimulations modify the perception of their spatial location. If they are close enough in time and space, shorter inter-stimuli time intervals (ISI) lead to shorted perceived distances. To the extreme of this time-space relation, when the stimuli are simultaneous, subjects report the merged perception of a unique and centered point of stimulation. Therefore, the tactile perceptual system seems to use the time separating two stimuli to compute their spatial distance. To understand the implementation of this perceptual rule, one can investigate the neural representation of the stimuli that elicit the illusory percept, looking for spatial distortions and their underlying mechanisms. Studies based on the measure of the hemodynamic responses have shown such distortions of the somatotopic representations in the primary somatosensory cortex, for simultaneous and delayed stimulations. In order to enhance our understanding of the elementary phenomenon that underpins those spatial modifications of the sensory inputs, we investigated the cortical representation of pairs of simultaneous and delayed cutaneous stimuli in the S1 of anesthetized rats. Using electrophysiological recordings and extrinsic optical imaging, we revealed the cortical merging of inputs from simultaneous digits stimulation. When the stimuli were delayed, we observed ISI-dependent modulations of the responses to the second stimulus. This spatiotemporal integration, that didn’t seem to contribute directly to a distance contraction effect, could however favor the mislocalization observed in illusory perception.
17

Cellular and circuit mechanisms of neocortical dysfunction in Fragile X Syndrome / Mécanismes cellulaire et circuiterie des dysfonctions néocorticales dans le syndrome du X fragile

Azhikkattuparambil Bhaskaran, Arjun 22 November 2018 (has links)
Cette étude explore les réponses évoquées, l'activité intrinsèque et spontanée de deux populations neuronales différentes dans la région du cerveau correspondant à la patte arrière des souris. Dans cet article, nous nous sommes concentrés sur un modèle murin du syndrome de l'X fragile (SXF), qui est la forme la plus commune de syndrome de retard mental héréditaire et une cause fréquente de troubles du spectre autistique (TSA). SXF est un trouble à gène unique (Fmr1), qui peut être modélisé de manière fiable par un modèle murin transgénique : la souris Fmr1-/y déficiente pour le gène codant Fmr1. L'hyperexcitabilité des réseaux néocorticaux et l'hypersensibilité aux stimuli sensoriels sont des caractéristiques importantes du SXF et des TSA.Ceci est directement lié à un changement du nombre de synapses locales, de canaux ioniques, de l'excitabilité membranaire et de la connectivité des circuits de cellules individuelles. Précédemment, nous avons identifié un défaut dans les canaux ioniques, comme pouvant contribuer à ces phénotypes. Nous avons testé cette hypothèse comme un mécanisme contribuant aux défauts de traitement sensoriel chez les souris Fmr1-/y. Le cortex somatosensoriel primaire de la souris (S1) traite différentes informations sensorielles et constitue la plus grande zone du néocortex, soulignant l'importance de la modalité sensorielle pour le comportement des rongeurs. Nos connaissances concernant le traitement de l'information dans S1 proviennent d'études du cortex en tonneaux lié aux moustaches, mais le traitement des entrées sensorielles des pattes postérieures est mal compris. Par l’utilisation de la technique d’enregistrement de cellule entière par patch clamp in vivo, nous avons classes les cellules en répondeurs supraliminaires (cellules qui répondaient aux stimulations de la patte arrière avec un potentiel d'action), les répondeurs subliminaires (les cellules qui répondaient sans déclencher un potentiel d'action) et les cellules non répondeuses qui ne présentaient aucune réponse. Puis, nous avons comparé les réponses évoquées sub et supraliminaires, les propriétés intrinsèques et l’activité spontanée des neurones pyramidaux de la couche 2/3 (L2/3) de la region S1 de la patte arrière (S1-HP) d’animaux anesthésiés sauvage (WT) et Fmr1-/y. Nous avons identifié des altérations de réponse spontanée, intrinsèque et évoquée chez les souris Fmr1-/y. L’application d’un ouvreur de canaux ioniques BKCa a restauré certaines de ces propriétés altérées chez les souris Fmr1-/y / This study explores the evoked responses, intrinsic and spontaneous activity of two different neuronal populations in the hind paw region of the primary somatosensory cortex (S1) of mice. Initially, we explored information processing in these neurons under normal physiological conditions, and subsequently in a mouse model of Fragile X Syndrome (FXS). FXS is the most common form of inherited mental retardation syndrome and a frequent cause of autism spectrum disorders (ASD). FXS is a single gene (Fmr1) disorder, which can be reliably modeled by a mutant mouse model, the Fmr1 knockout (Fmr1-/y) mouse. Hyperexcitability of neocortical networks and hypersensibility to sensory stimuli are prominent features of FXS and ASD. We previously established a strong causal link between a channelopathy, hyperexcitability of neurons in the primary sensory region of the neocortex and sensory hypersensitivity in this mouse model. In the current study, we extended these findings, by conducting a detailed exploration of the processing of tactile sensory information (evoked by hind paw stimulation) in the neocortex of these mice.Most of our knowledge regarding information processing in S1 comes from studies of the whisker-related barrel cortex (which processes tactile-related sensory information derived from the whiskers), yet the processing of sensory inputs from the hind-paws is poorly understood. Using in vivo whole-cell patch-clamp recordings, we classified the cells into suprathreshold responders (the cells which responded to the hind-paw stimulations with an action potential), subthreshold responders (the cells responded without eliciting an action potential) and non-responder cells (neurons which did not show any response). We then compared the evoked sub- and supra-threshold responses, intrinsic properties, and spontaneous activity of layer (L) 2/3 pyramidal neurons of the S1 hind-paw (S1-HP) region of anaesthetized wild type (WT) and Fmr1-/y mice. We identified spontaneous, intrinsic and evoked response alterations in Fmr1-/y mice. We probed possible mechanisms contributing to this sensory impairment in Fmr1-/y mice. Finally, we tested the possibility of correcting pathophysiological alterations in these neurons using specific pharmacological agents targeting the ion channel defects described previously by our team.
18

Perception de la vitesse : les bases psychophysiques et neuronales

Dépeault, Alexandra 07 1900 (has links)
David Katz a fait l’observation que le mouvement entre la peau et l’objet est aussi important pour le sens du toucher que la lumière l’est pour la vision. Un stimulus tactile déplacé sur la peau active toutes les afférences cutanées. Les signaux résultants sont très complexes, covariant avec différents facteurs dont la vitesse, mais aussi la texture, la forme et la force. Cette thèse explore la capacité des humains à estimer la vitesse et la rugosité de surfaces en mouvements. Les bases neuronales de la vitesse tactile sont aussi étudiées en effectuant des enregistrements unitaires dans le cortex somatosensoriel primaire (S1) du singe éveillé. Dans la première expérience, nous avons montré que les sujets peuvent estimer la vitesse tactile (gamme de vitesses, 30 à 105 mm/s) de surfaces déplacées sous le doigt, et ceci sans indice de durée. Mais la structure des surfaces était essentielle (difficulté à estimer la vitesse d’une surface lisse). Les caractéristiques physiques des surfaces avaient une influence sur l’intensité subjective de la vitesse. La surface plus rugueuse (8 mm d’espacement entre les points en relief) semblait se déplacer 15% plus lentement que les surfaces moins rugueuses (de 2 et 3 mm d’espacement), pour les surfaces périodiques et non périodiques (rangées de points vs disposition aléatoire). L’effet de la texture sur la vitesse peut être réduit en un continuum monotonique quand les estimés sont normalisés avec l’espacement et présentés en fonction de la fréquence temporelle (vitesse/espacement). L'absence de changement des estimés de vitesse entre les surfaces périodiques et non périodiques suggère que les estimés de rugosité devraient aussi être indépendants de la disposition des points. Dans la deuxième expérience, et tel que prévu, une équivalence perceptuelle entre les deux séries de surfaces est obtenue quand les estimés de la rugosité sont exprimés en fonction de l'espacement moyen entre les points en relief, dans le sens de l'exploration. La troisième expérience consistait à rechercher des neurones du S1 qui pourraient expliquer l’intensité subjective de la vitesse tactile. L’hypothèse est que les neurones impliqués devraient être sensibles à la vitesse tactile (40 à 105 mm/s) et à l’espacement des points (2 à 8 mm) mais être indépendants de leur disposition (périodique vs non périodique). De plus, il est attendu que la fonction neurométrique (fréquence de décharge/espacement en fonction de la fréquence temporelle) montre une augmentation monotonique. Une grande proportion des cellules était sensible à la vitesse (76/119), et 82% d’entres elles étaient aussi sensibles à la texture. La sensibilité à la vitesse a été observée dans les trois aires du S1 (3b, 1 et 2). La grande majorité de cellules sensibles à la vitesse, 94%, avait une relation monotonique entre leur décharge et la fréquence temporelle, tel qu’attendu, et ce surtout dans les aires 1 et 2. Ces neurones pourraient donc expliquer la capacité des sujets à estimer la vitesse tactile de surfaces texturées. / David Katz showed that movement between the skin and an object is as important for touch as light is to vision. Moving tactile stimuli activate all of the cutaneous afferents involved in discriminative touch. The resultant signals are complex, varying with multiple factors including speed and also texture, local shape, and force. This thesis explored the human ability to estimate the speed and roughness of moving tactile stimuli. The neuronal basis underlying tactile speed perception was investigated using single unit recordings from primary somatosensory cortex (S1) in awake monkeys. In the first psychophysical experiment, we showed that subjects (n=26) can scale tactile speed (range, 30-105 mm/s), and this, contrary to previous studies, in a situation in which the duration of each trial was constant across all speeds tested. Surface structure was, in contrast, essential since subjects had difficulty scaling the speed of a smooth surface. Moreover, the physical characteristics of the surfaces influenced tactile speed perception. The roughest surface (8 mm raised-dot spacing) seemed to move 15% slower than the smoother surfaces (2 and 3 mm spacing), and this independently of dot disposition (periodic: rectangular array of raised dots vs non periodic: random dots). The effects of surface texture on speed were reduced to a single continuum when the estimates were normalized by dot spacing and plotted as a function of temporal frequency (speed/dot spacing). The absence of any difference in speed scaling as a function of dot disposition (periodic vs non periodic) suggested that tactile roughness should also be independent of dot disposition. A second psychophysical experiment (n=15) confirmed our hypothesis, showing perceptual equivalence for the periodic and non periodic surfaces when these were matched for dot spacing in the direction of the scan. The third experiment investigated the neuronal mechanisms that underlie subjective tactile speed perception, by recording the responses of cutaneous neurones in the hand representation of S1 cortex to the displacement of textured surfaces under the finger tips of two awake rhesus monkeys. The hypothesis was that neurones implicated in tactile speed perception should be sensitive to tactile speed (similar range to that used in the human experiments) and dot spacing, but be independent of dot disposition (periodic vs non periodic). Furthermore, we predicted that the neurometric function (discharge frequency/dot spacing as a function of temporal frequency) would show a monotonic relation. A large proportion of S1 neurones were sensitive to speed (76/119); 82% of these were also sensitive to texture. Speed sensitivity was widely distributed across the three areas that comprise the cutaneous hand representation, areas 3b, 1, and 2. Of 94 neurons fully tested (periodic and nonperiodic surfaces), the large majority of speed-sensitive cells (60/64) showed a significant monotonic relation with temporal frequency for both surfaces when discharge frequency was normalized by dot spacing. The neurones with the strongest relation to temporal frequency were concentrated in caudal S1, areas 1 and 2, and likely contribute to the human ability to scale tactile speed.
19

Les effets de la stimulation électrique transcrânienne à courant direct appliquée au cortex somatosensoriel primaire sur la perception vibrotactile

Labbé, Sara 04 1900 (has links)
La stimulation électrique transcrânienne à courant direct (tDCS) est une technique non invasive de neuromodulation qui modifie l’excitabilité corticale via deux grosses électrodes de surface. Les effets dépendent de la polarité du courant, anodique = augmentation de l’excitabilité corticale et cathodique = diminution. Chez l’humain, il n’existe pas de consensus sur des effets de la tDCS appliquée au cortex somatosensoriel primaire (S1) sur la perception somesthésique. Nous avons étudié la perception vibrotactile (20 Hz, amplitudes variées) sur le majeur avant, pendant et après la tDCS appliquée au S1 controlatéral (anodale, a; cathodale, c; sham, s). Notre hypothèse « shift-gain » a prédit une diminution des seuils de détection et de discrimination pour la tDCS-a (déplacement vers la gauche de la courbe stimulus-réponse et une augmentation de sa pente). On attendait les effets opposés avec la tDCS-c, soit une augmentation des seuils (déplacement à droite et diminution de la pente). Chez la majorité des participants, des diminutions des seuils ont été observées pendant et immédiatement suivant la tDCS-a (1 mA, 20 min) en comparaison à la stimulation sham. Les effets n’étaient plus présents 30 min plus tard. Une diminution du seuil de discrimination a également été observée pendant, mais non après la tDCS-c (aucun effet pour détection). Nos résultats supportent notre hypothèse, uniquement pour la tDCS-a. Une suite logique serait d’étudier si des séances répétées de tDCS-a mènent à des améliorations durables sur la perception tactile. Ceci serait bénéfique pour la réadaptation sensorielle (ex. suite à un accident vasculaire cérébral). / Transcranial direct-current stimulation (tDCS) is a non-invasive neuromodulation technique which aims to modify cortical excitability using large surface-area electrodes. tDCS is thought to increase (anodal, a-tDCS) or decrease (cathodal, c-tDCS) cortical excitability. At present, there is no consensus as to whether tDCS to primary somatosensory cortex (S1) modifies somatosensory perception. This study examined vibrotactile perception (frequency, 20 Hz, various amplitude) on the middle finger before, during and after contralateral S1 tDCS (a-, c- and sham, s-). The experiments tested our shift-gain hypothesis which predicted that a-tDCS would decrease vibrotactile detection and discrimination thresholds (leftward shift of the stimulus-response function with increased gain/slope), while c-tDCS would increase thresholds (shift to right; decreased gain). The results showed that weak, a-tDCS (1 mA, 20 min), compared to sham, led to a reduction in both thresholds during the application of the stimulation in a majority of subjects. These effects persisted after the end of a-tDCS, but were absent 30 min later. Cathodal tDCS, vs sham, had no effect on detection thresholds; in contrast, there was a decrease in discrimination threshold during but not after c-tDCS. The results thus supported our hypothesis, but only for anodal stimulation. Our observation that enhanced vibrotactile perception outlasts, albeit briefly, the period of a-tDCS is encouraging. Future experiments should determine whether repeated sessions of a-tDCS can produce longer lasting improvements. If yes, clinical applications could be envisaged, e.g. to apply a-tDCS to S1 in conjunction with retraining of sensory function post-stroke.
20

Plasticité corticale, champs neuronaux dynamiques et auto-organisation

Detorakis, Georgios 23 October 2013 (has links) (PDF)
L'objectif de ce travail est de modéliser la formation, la maintenance et la réorganisation des cartes corticales somesthésiques en utilisant la théorie des champs neuronaux dynamiques. Un champ de neurones dynamique est une équation intégro-différentiel qui peut être utilisée pour décrire l'activité d'une surface corticale. Un tel champ a été utilisé pour modéliser une partie des aires 3b de la région du cortex somatosensoriel primaire et un modèle de peau a été conçu afin de fournir les entrées au modèle cortical. D'un point de vue computationel, ce modèle s'inscrit dans une démarche de calculs distribués, numériques et adaptatifs. Ce modèle s'avère en particulier capable d'expliquer la formation initiale des cartes mais aussi de rendre compte de leurs réorganisations en présence de lésions corticales ou de privation sensorielle, l'équilibre entre excitation et inhibition jouant un rôle crucial. De plus, le modèle est en adéquation avec les données neurophysiologiques de la région 3b et se trouve être capable de rendre compte de nombreux résultats expérimentaux. Enfin, il semble que l'attention joue un rôle clé dans l'organisation des champs récepteurs du cortex somato-sensoriel. Nous proposons donc, au travers de ce travail, une définition de l'attention somato-sensorielle ainsi qu'une explication de son influence sur l'organisation des cartes au travers d'un certain nombre de résultats expérimentaux. En modifiant les gains des connexions latérales, il est possible de contrôler la forme de la solution du champ, conduisant à des modifications importantes de l'étendue des champs récepteurs. Celà conduit au final au développement de zones finement cartographiées conduisant à de meilleures performances haptiques.

Page generated in 0.082 seconds