• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 41
  • 41
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Microbiome Diversity of Coastal Tidal Floodwater in Southeastern Florida

Wickes, Marissa 30 November 2018 (has links)
Over 3.7 million people are in high risk of coastal flooding and live within 1 mile of high tide in the US alone. The Atlantic coast is one of the most vulnerable areas due to its low elevation, large population, and economic importance (Bray, et. al, 2016). Coastal municipalities in the region of Southeast Florida, such as the cities of Miami, Miami Beach, Fort Lauderdale, etc., are at especial risk from coastal flooding related to sea level rise. The US National Climate Assessment has named Miami, Florida as the economically most vulnerable city impacted by this sea level rise in the world (Melillo et. al, 2014). Virtually all coastal communities in Southeast Florida are now experiencing increased incidents of coastal tidal flooding and coastal storm flooding related to sea level rise. This has led to a variety of responses by coastal communities in how to address this issue. In the case of the City of Miami Beach, the city has [CS1] come up with an ambitious but expensive plan to help combat the increased urban coastal flooding that is now occurring multiple times a year. They invested over 500 million dollars into replacing the increasingly less-effective gravity-based drainage system with a pump-based system (Bray, et. al, 2016). With these influences, we hypothesized that microbial communities would significantly differ between three years (2014-2016) and that the potential pathogens would increase over the past years . Genetic analyses of the 16S rRNA V4 region yielded a total of 77,346 unique bacterial OTUs from a total of 96 samples collected monthly for three years from 2014-2016. The most abundant OTU within the whole sample set was New.ReferenceOTU407 or Arcobacter in the Campylobacter family with an overall abundance of 0.008232535481%.The second most abundant organism in the sample set was Bacillus, or OTUNew.CleanUp.ReferenceOTU121132, with an overall abundance of .007797807097%. Bacillusmay cause many more foodborne illness than is known and one main reason that there is not more reported cases is because people do not seek medical attention (FDA 2012). The remaining pathogens except for Serratia, Pleisomonas, and Cronobacter were all with an abundance over .001%, with Salmonella, Yersinia,andListeria not being identified at all within the data set. By showing that genetic signatures for this bacterium, especially Arcobacter,was present in more than half of the samples stresses the importance of better understanding of the microbial population within South Florida waters and how to prevent or reduce future outbreaks by making sure the water is treated correctly before use, and to better identify potential exposure sources in water.
32

Sensitivity of Marine Cynobacteria and Green Microlage to Nano and Bulk Zinc Oxides

Gil-Acevedo, Jennifer, 3664585 27 September 2018 (has links)
Nanoparticles are particles with sizes between 1 and 100 nanometers (nm). Owing to their unique chemical, electrical, mechanical, optical, and piezoelectric properties, zinc oxide nanoparticles (ZnO-NPs) are finding widespread use in numerous applications with yearly production over 550 tons per year. Increasing use of ZnO NPs, and NPs in wastewater discharges from domestic and industrial sources will have significant potential for adverse impacts on aquatic phototrophic organisms. Comparative studies on microalgae species response to ZnO NPs and variation in tolerance among species is still mostly unexplored. The proposed research aims to evaluate interspecies’ variation in tolerance to ZnO NPs among marine and freshwater microalgae. Multi-well culture plate and flask culture screening methods were utilized for assessing microalgae species’ tolerance to various levels of ZnO NPs. Microalgae cell morphology changes in response to nano ZnO exposure were explored using both the Optical Coherence Microscope (OCM) and SEM. Availability of Nano ZnO tolerant microalgae species may provide an impetus for future studies to understand the mechanism of tolerance and potential applications in NPs bioremediation in aquatic systems.
33

Rip Current Generation, Flow Characteristics and Implications for Beach Safety in South Florida

Leatherman, Stephen B. 09 November 2018 (has links)
Rip currents are the most dangerous hazard at surf beaches. Rip currents in South Florida have previously not been studied. Beach profiles for three Florida beaches (Miami Beach, Lido Beach, Sarasota, and Pensacola Beach) and one Georgia beach (South Cumberland Island) were chosen for surveying because of their variable sand bar heights. Rip current hazard at each beach was assessed by lifeguard rip rescue and drowning statistics. A relationship was found between sand bar height, beach slope and rip current hazard. Rip current measurements in South Florida, which involved utilizing GPS drifters, laser rangefinder and drone-imaged fluorescent tracer dye, showed that the speed ranged from 0.1-0.5 m/s, which is fairly slow compared to such measurements undertaken in California and Australia. The effect of rip currents on swimmers was analyzed based on the drag force acting on swimmers and the power they generate to overcome the currents when swimming against them. The drag force and power increase quadratically and cubically, respectively, with the increase of rip current and swimming speeds. Hence, even rip currents of low velocity can be dangerous and swimming against the current should be avoided if possible. Strong rips in California have been shown to exhibit a circulatory pattern, which could bring a floater back to the safety of a shallow sand bar. Field measurements of rip currents in South Florida clearly defined the flow characteristics of a nearly straight-line current, sometimes deflected to the east-southeast. Therefore, the traditional approach of swimming left or right, parallel to the shore is the best escape strategy, but not against the longshore current if present. A logistic regression analysis was conducted to predict the occurrence of rip currents based on beach conditions. The logistic model showed that wave height, wave period and wind speed were statistically significant factors in rip generation. Rips were found to be most commonly generated by relatively small, non-threatening waves (e.g., 0.6 to 0.9m in height). These physical factors, along with social and safety considerations, pose a significant problem for coastal management.
34

Socio-ecological Vulnerability to Climate Change in South Florida

Eisenhauer, Emily 26 March 2014 (has links)
Awareness of extreme high tide flooding in coastal communities has been increasing in recent years, reflecting growing concern over accelerated sea level rise. As a low-lying, urban coastal community with high value real estate, Miami often tops the rankings of cities worldwide in terms of vulnerability to sea level rise. Understanding perceptions of these changes and how communities are dealing with the impacts reveals much about vulnerability to climate change and the challenges of adaptation. This empirical study uses an innovative mixed-methods approach that combines ethnographic observations of high tide flooding, qualitative interviews and analysis of tidal data to reveal coping strategies used by residents and businesses as well as perceptions of sea level rise and climate change, and to assess the relationship between measurable sea levels and perceptions of flooding. I conduct a case study of Miami Beach’s storm water master planning process which included sea level rise projections, one of the first in the nation to do so, that reveals the different and sometimes competing logics of planners, public officials, activists, residents and business interests with regards to climate change adaptation. By taking a deeply contextual account of hazards and adaptation efforts in a local area I demonstrate how this approach can be effective at shedding light on some of the challenges posed by anthropogenic climate change and accelerated rates of sea level rise. The findings highlight challenges for infrastructure planning in low-lying, urban coastal areas, and for individual risk assessment in the context of rapidly evolving discourse about the threat of sea level rise. Recognition of the trade-offs and limits of incremental adaptation strategies point to transformative approaches, at the same time highlighting equity concerns in adaptation governance and planning. This new impact assessment method contributes to the integration of social and physical science approaches to climate change, resulting in improved understanding of socio-ecological vulnerability to environmental change.
35

Fire, flooding, and felids: Deer and puma spatial ecology and predator-prey interactions in dynamic, subtropical wildlands

Abernathy, Heather N. 06 April 2021 (has links)
Cyclic and extreme ecological disturbances have the capacity to alter resources and thereby animal populations. Interactions between disturbance and resource availability can influence predator-prey interactions. Predator-prey responses to ecological disturbance may be more pronounced in herbivores and their predators as herbivores track food resources that are often augmented by ecological disturbance. My objective with this dissertation was to examine how various forms of ecological disturbance influence predator-prey interactions through the lens of a case study – white-tailed deer (Odocoileus virginianus) and Florida panther (Puma concolor coryi) in southwestern Florida public and conservation lands. I quantified species-specific behavior of deer to an extreme disturbance event (i.e., Hurricane Irma), examined behavior of females with different fate outcomes to varied ecological disturbances and predation, investigated how ecological disturbance mediates the influence of human disturbance on predator-prey interactions, and quantified deer spatial ecology in response to fire, hydrology, panther and human activity. I found that deer behaviorally mediated the negative fitness impacts of Hurricane Irma. Further, I found that female deer with different fate outcomes selected areas of different ecological disturbance and the ecological disturbance type conferred different fitness costs (through differences in predation risk). Finally, I found that South Florida deer utilize diurnal times when humans are the most active to temporally reduce predation risk as panthers were more nocturnal in response to humans. My work here suggests that ecological disturbance regimes have the capacity to influence predator-prey interactions through nuanced mechanisms. Outcomes of these nuanced species-specific and predator-prey responses should be examined further. More practically, if disturbance influences aspects of animal fitness, a deeper understanding of species-specific and predator-prey responses to disturbance will improve management and conservation efforts as some regimes can be manipulated (e.g., prescribed fire). More broadly, consideration of ecological disturbance when examining predator-prey interactions may yield novel insight that deviates from predictions based on inference suggested in systems without disturbance. Highlighting nuanced predator-prey interactions mediated by ecological disturbances will improve predictions regarding species and community responses to global changes such as climate change and ecological restoration. / Doctor of Philosophy / Events that cause temporary changes to ecosystem structure and function (ecological disturbances) have the capacity to influence resources (i.e., food and shelter) for wild animals. Changes in resources as a function of ecological disturbance has the capacity to influence prey and predator species interactions. Predator-prey responses to ecological disturbance may be more pronounced in plant-eating animals (herbivores) and their predators as herbivores utilize food resources that are often altered by ecological disturbance. My objective with this dissertation was to examine how various forms of ecological disturbance influence interactions between predators and prey by using the white-tailed deer (Odocoileus virginianus) and Florida panther (Puma concolor coryi) in southwestern Florida wildlands as a case study. I quantified species-specific behavior of deer to an extreme climate event (i.e., Hurricane Irma). Next, I quantified and compared behavioral differences in responses to ecological disturbance (flooding and fire) and panther predation risk between female deer that survived and those killed by panthers during the offspring rearing season. I also investigated how ecological disturbance and human use of wildlands influenced predator-prey interactions. Finally, I characterized deer behavior in response to fire, hydrology, and panther and human activity. I found that deer changed their behavior during Hurricane Irma, presumably to offset the negative impacts of the storm as all our monitored deer survived the event. Further, I found that different ecological conditions generated by fire and flooding, respectively, influenced female behavior during the offspring rearing season in response to predation risk, and those behavioral differences may explain differences in mortality outcomes. Finally, I found that South Florida deer utilize daylight hours when humans are the most active to minimize encounters with predators as panthers were shown to be more active at night in areas with greater human use. My findings suggest that ecological disturbances have the capacity to influence predator-prey interactions in novel ways not suggested elsewhere. Outcomes of novel predator and prey interactions in response to ecological disturbance should be investigated further. More practically, if disturbance influences aspects of animal livelihood, a deeper understanding of species-specific and predator-prey responses to disturbance will improve management and conservation efforts as some disturbances can be manipulated (e.g., prescribed fire). More broadly, consideration of ecological disturbance when examining predator-prey interactions may yield novel insight that deviates from predictions based on inference suggested in systems without disturbance. Highlighting novel predator-prey interactions that is changed as a result of ecological disturbances will improve predictions regarding species and community responses to global changes through climate change and ecological restoration.
36

Residential lawn water use and lawn irrigation practices: Wellington, Florida

Unknown Date (has links)
Water conservation initiatives seldom quantify the volume of water that is at stake in lawn watering. In many communities, including those in South Florida, outdoor water use, which includes lawn irrigation, is not metered separately from indoor water use and is indistinguishable from indoor water usage. A large number of residents use self supply non-potable wells for lawn irrigation that are not regulated by the South Florida Water Management District. The result is that residential lawn water use is difficult to account for and quantify. This thesis project addressed these difficulties by combining semistructured interviews, daily watering observations and irrigation system audits to ascertain how much public supply water and self supply (well) water was being used for residential lawn irrigation. The study also examined lawn watering practices and how factors such as: precipitation, the minimum plant needs of St. Augstinegrass, and how local watering restrictions influenced watering behavior. / by Felicia D. Survis. / Thesis (M.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
37

Land Use /Land Cover Driven Surface Energy Balance and Convective Rainfall Change in South Florida

Kandel, Hari P 01 July 2015 (has links)
Modification of land use/land cover in South Florida has posed a major challenge in the region’s eco-hydrology by shifting the surface-atmosphere water and energy balance. Although drainage and development in South Florida took place extensively between the mid- and late- 20th century, converting half of the original Everglades into agricultural and urban areas, urban expansion still accounts for a dominant mode of surface cover change in South Florida. Changes in surface cover directly affect the radiative, thermophysical and aerodynamic parameters which determine the absorption and partitioning of radiation into different components at the Earth surface. The alteration is responsible for changing the thermal structure of the surface and surface layer atmosphere, eventually modifying surface-induced convection. This dissertation is aimed at analyzing the extent and pattern of land cover change in South Florida and delineating the associated development of urban heat island (UHI), energy flux alteration, and convective rainfall modification using observed data, remotely sensed estimates, and modeled results. Urban land covers in South Florida are found to have increased by 10% from 1974 to 2011. Higher Landsat-derived land surface temperatures (LST) are observed in urban areas (LSTu-r =2.8°C) with satisfactory validation statistics for eastern stations (Nash-Sutcliffe coefficient =0.70 and R2 =0.79). Time series trends, significantly negative for diurnal temperature range (DTR= -1°C, p=0.005) and positive for lifting condensation level (LCL > 20m) reveal temporal and conspicuous urban-rural differences in nocturnal temperature (ΔTu-r = 4°C) shows spatial signatures of UHI. Spatially higher (urban: 3, forest: 0.14) and temporally increasing (urban: 1.67 to 3) Bowen’s ratios, and sensible heat fluxes exceeding net radiation in medium and high-intensity developed areas in 2010 reflect the effect of urbanization on surface energy balance. Radar reflectivity-derived surface-induced convective rainfall reveals significantly positive mean differences (thunderstorm cell density: 6/1000 km2and rain rate: 0.24 mm/hr/summer, p < 0.005) between urban and entire South Florida indicating convective enhancement by urban covers. The research fulfils its two-fold purposes: advancing the understanding of post-development hydrometeorology in South Florida and investigating the spatial and temporal impacts of land cover change on the microclimate of a subtropical city.
38

Models Describing the Sea Level Rise in Key West, Florida

Jean, Karm-Ervin 13 November 2015 (has links)
Lately, we have been noticing an unusual rise in the sea level near many Floridian cities. By 2060, scientists believe that the sea level in the city of Key West will reach between 22.86 to 60.96 centimeters (Strauss et al. 2012). The consequences of sea level rise are unpleasant by gradually tearing away our beaches and natural resources, destroying our homes and businesses, etc. Definitively, a continual increase of the sea level will affect everyone either directly or indirectly. In this study, the sea level measurements of four Floridian coastal cities (including Key West) are collected in order to describe their trend toward sea level rise over the past 100 years. After the comparisons, some models describing the sea level rise in the city of Key West, Florida, are developed. Any inferences for these above cities may well be extended to similar ones.
39

Computer Modeling the Incursion Patterns of Marine Invasive Species

Johnston, Matthew W. 26 February 2015 (has links)
Abstract Not Available.
40

Producing Collaborations Through Community-Level Processes of Climate Change and Water Management Planning

Mic, Dumitrita Suzana 02 July 2015 (has links)
While much attention has been given to the ways local communities may be impacted by climate change, this dissertation focuses ethnographically on the local agencies decision-making processes, a less-studied aspect of this topic. The primary purpose of this dissertation research is to understand how government agencies in southern Florida integrate climate change into their decision-making processes while dealing with political resistance. This research expands our understanding on the cultural politics of a new kind of environmental change, where national and international climate-change politics is brought into local water politics to illuminate how new and not so new visions about life in the contemporary metropolis collide and collude. Using multiple research methods including ethnographic fieldwork, participant observation, semi-structured interviews, and document research, I analyze the activities of the Miami-Dade County Climate Change Advisory Task Force Committee (MDC-CCATF) as well as the water management practices of the regional water management agency, the South Florida Water Management District (SFWMD). My findings include the following: (1) the Task Force activities have spearheaded Miami’s institutional adaptation to climate change; (2) historic legacies have expanded and complicated decision-making processes at the District; (3) a focus on the certainties of climate-change science allows climate change to persist in politically contentious planning contexts. My dissertation concluded that while planning for potential climate-change impacts can be difficult due to multiple institutional constraints that resource agencies like the District have, scientists and policy-makers have crafted an innovative culture that is particularly visible at sites where science and decision making intersect.

Page generated in 0.067 seconds