• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectroscopie transitoire et photo-commutation des propriétés optiques non linéaires de second ordre de cristaux photochromes d'anils, corrélation structure-propriétés

Sliwa, Michel 09 December 2005 (has links) (PDF)
Une série d'anils originaux, de groupe d'espace non centrosymétrique actifs en génération de second harmonique (GSH) et photochromes à l'état cristallin, a été obtenue. Un des composés présente une GSH de 11 (vs urée), un deuxième une photo conversion de 16% sous irradiation UV et un troisième une quasi bistabilité (durée de vie de 460 j pour la forme métastable). La photo commutation réversible de la GSH peut aller jusqu'à 50%. Des études sur monocristaux orientés sous microscope confocal ont permis de corréler anisotropie de GSH et structure déterminée par diffraction de rayons X, via des calculs ZINDO. Elles ont aussi montré que la réaction photo induite créait un désordre dans le cristal, entraînant la commutation de GSH, mais que l'ordre initial était recréé après réaction retour. La spectroscopie a mis en évidence le mécanisme du photochromisme et un temps de commutation de 250 ps à l'état solide, montrant ainsi le potentiel de ces matériaux comme interrupteurs optiques rapides.
2

Propriétés électriques du ZnO monocristallin

Brochen, Stéphane 13 December 2012 (has links) (PDF)
L'oxyde de zinc ZnO, est un semiconducteur II-VI très prometteur pour les applications en opto-électronique dans le domaine UV, notamment pour la réalisation de dispositifs électroluminescents (LED). Les potentialités majeures du ZnO pour ces applications résident notamment dans sa forte liaison excitonique (60 meV), sa large bande interdite directe (3.4 eV), la disponibilité de substrats massifs de grand diamètre ainsi que la possibilité de réaliser des croissances épitaxiales de très bonne qualité en couches minces ou nano structurées (nanofils). Néanmoins, le développement de ces applications est entravé par la difficulté de doper le matériau de type p. L'impureté permettant d'obtenir une conductivité électrique associée à des porteurs de charges positifs (trous), et donc la réalisation de jonctions pn à base de ZnO, n'a pas encore été réellement identifiée. C'est pourquoi une des étapes préliminaires et nécessaires à l'obtention d'un dopage de type p fiable et efficace, réside dans la compréhension du dopage résiduel de type n, ainsi que des phénomènes de compensation et de passivation qui sont mis en jeu au sein du matériau. La maîtrise de la nature des contacts (ohmique ou Schottky) sur différentes surfaces d'échantillons de ZnO nous a permis dans ce but de mettre en œuvre à la fois des mesures de transport (résistivité et effet Hall) et des mesures capacitives (capacité-tension C(V), Deep Level Transient Spectroscopy (DLTS) et Spectroscopie d'admittance).Dans un premier temps, nous avons donc cherché à comprendre de manière approfondie les propriétés électriques du ZnO massif. Nous avons ainsi étudié le rôle des défauts profonds et peu profonds sur la conductivité des échantillons, aux travers de différents échantillons massifs obtenus par synthèse hydrothermale ou par croissance chimique en phase vapeur. Nous avons également étudié l'impact de la température de recuits post-croissance, sur les propriétés de transport des échantillons. A la lumière des résultats obtenus sur le dopage résiduel de type n des échantillons de ZnO massifs, nous avons ensuite procédé à différents essais de dopage de type p du ZnO par implantation ionique d'azote et par diffusion en ampoule scellée d'arsenic. L'impureté azote a été choisie dans le cadre d'une substitution simple de l'oxygène qui devrait permettre de créer des niveaux accepteurs dans la bande interdite du ZnO. Nous avons également étudié l'impureté arsenic, qui selon un modèle théorique peut former un complexe qui permet d'obtenir un niveau accepteur plus proche de la bande de valence que le niveau. Outres les études réalisées sur les échantillons de ZnO massif et les essais de dopage de type p, nous avons également étudié les propriétés électriques d'échantillons de ZnO monocristallins sous forme de couches minces obtenues par croissance en phase vapeur d'organométalliques, dopées intentionnellement ou non. Les corrélations entres les mesures SIMS et C(V) nous ont permis notamment de mettre en évidence une diffusion et un rôle très importante de l'aluminium sur les propriétés électriques des couches minces de ZnO épitaxiées sur substrat saphir.Dans le cadre de cette thèse nous avons réussi à clarifier les mécanismes du dopage de type n, intentionnel ou non intentionnel, dans le ZnO monocristallin. Nous avons également identifié les impuretés et les paramètres de croissance importants permettant d'obtenir un dopage résiduel de type n le plus faible possible dans les couches épitaxiées. Cette maitrise du dopage résiduel de type n est une étape préliminaire indispensable aux études de dopage de type p car elle permet de minimiser la compensation des accepteurs introduits intentionnellement. Cette approche du dopage sur des couches minces de ZnO dont le dopage résiduel de type n est très faible apparait comme une voie très prometteuse pour surmonter les problèmes d'obtention du dopage de type p.
3

Optimisation et analyse des propriétés de transport électroniques dans les structures à base des matériaux AlInN/GaN / Optimization and analysis of electronic transport properties in structures based on InAlN/GaN materials

Latrach, Soumaya 19 December 2018 (has links)
Les matériaux III-N ont apporté un gain considérable au niveau des performances des composants pour les applications en électronique de puissance. Les potentialités majeures du GaN pour ces applications résident dans son grand champ de claquage qui résulte de sa large bande interdite, son champ de polarisation élevé et sa vitesse de saturation importante. Les hétérostructures AlGaN/GaN ont été jusqu’à maintenant le système de choix pour l’électronique de puissance. Les limites sont connues et des alternatives sont étudiées pour les surmonter. Ainsi, les hétérostructures InAlN/GaN en accord de maille ont suscité beaucoup d’intérêts, notamment pour des applications en électronique de puissance à haute fréquence. L’enjeu de ce travail de thèse consiste à élaborer et caractériser des hétérostructures HEMTs (High Electron Mobility Transistors) afin d’établir des corrélations entre défauts structuraux, électriques et procédés de fabrication. Une étude sera donc menée sur la caractérisation de composants AlGaN/GaN afin de cerner les paramètres de croissance susceptibles d’avoir un impact notable sur la qualité structurale et électrique de la structure, notamment sur l’isolation électrique des couches tampons et le transport des porteurs dans le canal. En ce qui concerne les HEMTs InAlN/GaN, l’objectif est d’évaluer la qualité de la couche barrière. Pour cela, une étude de l’influence des épaisseurs ainsi que la composition de la barrière sera menée. La combinaison de ces études permettra d’identifier la structure optimale. Ensuite, l’analyse des contacts Schottky par des mesures de courant et de capacité à différentes températures nous permettra d’identifier les différents modes de conduction à travers la barrière. Enfin, les effets de pièges qui constituent l’une des limites fondamentales inhérentes aux matériaux étudiés seront caractérisés par différentes méthodes de spectroscopie de défauts. / III-N materials have made a significant gain in component performance for power electronics applications. The major potential of GaN for these applications lies in its large breakdown field resulting from its wide bandgap, high polarization field and high electronic saturation velocity. AlGaN/GaN heterostructures have been, until recently, the system of choice for power electronics. The limits are known and alternatives are studied to overcome them. Thus, lattice matched InAlN/GaN heterostructures have attracted a great deal of research interest, especially for high frequency power electronic applications. The aim in this work of thesis consists in developing and in characterizing High Electron Mobility Transistors (HEMTs) to establish correlations between structural, electrical defects and technologic processes. A study will therefore be conducted on the characterization of AlGaN/GaN components to enhance the parameters of growth susceptible to have a notable impact on the structural and electrical quality of the structure, in particular on the electrical isolation of the buffer layers and the transport properties. For InAlN/GaN HEMTs, the objective is to evaluate the quality of the barrier layer. For this, a study of the influence of the thickness as well as the composition of the barrier will be conducted. The combination of these studies will allow identifying the optimum structure. Then, the analysis of Schottky contacts by measurements of current and capacity at different temperatures will allow us to identify the several conduction modes through the barrier. Finally, the effects of traps which constitute one of the fundamental limits inherent to the studied materials will be characterized by various defects spectroscopy methods.
4

Propriétés électriques du ZnO monocristallin / Electrical properties of ZnO single crystal

Brochen, Stéphane 13 December 2012 (has links)
L’oxyde de zinc ZnO, est un semiconducteur II-VI très prometteur pour les applications en opto-électronique dans le domaine UV, notamment pour la réalisation de dispositifs électroluminescents (LED). Les potentialités majeures du ZnO pour ces applications résident notamment dans sa forte liaison excitonique (60 meV), sa large bande interdite directe (3.4 eV), la disponibilité de substrats massifs de grand diamètre ainsi que la possibilité de réaliser des croissances épitaxiales de très bonne qualité en couches minces ou nano structurées (nanofils). Néanmoins, le développement de ces applications est entravé par la difficulté de doper le matériau de type p. L'impureté permettant d'obtenir une conductivité électrique associée à des porteurs de charges positifs (trous), et donc la réalisation de jonctions pn à base de ZnO, n'a pas encore été réellement identifiée. C'est pourquoi une des étapes préliminaires et nécessaires à l'obtention d'un dopage de type p fiable et efficace, réside dans la compréhension du dopage résiduel de type n, ainsi que des phénomènes de compensation et de passivation qui sont mis en jeu au sein du matériau. La maîtrise de la nature des contacts (ohmique ou Schottky) sur différentes surfaces d'échantillons de ZnO nous a permis dans ce but de mettre en œuvre à la fois des mesures de transport (résistivité et effet Hall) et des mesures capacitives (capacité-tension C(V), Deep Level Transient Spectroscopy (DLTS) et Spectroscopie d'admittance).Dans un premier temps, nous avons donc cherché à comprendre de manière approfondie les propriétés électriques du ZnO massif. Nous avons ainsi étudié le rôle des défauts profonds et peu profonds sur la conductivité des échantillons, aux travers de différents échantillons massifs obtenus par synthèse hydrothermale ou par croissance chimique en phase vapeur. Nous avons également étudié l'impact de la température de recuits post-croissance, sur les propriétés de transport des échantillons. A la lumière des résultats obtenus sur le dopage résiduel de type n des échantillons de ZnO massifs, nous avons ensuite procédé à différents essais de dopage de type p du ZnO par implantation ionique d'azote et par diffusion en ampoule scellée d’arsenic. L'impureté azote a été choisie dans le cadre d'une substitution simple de l'oxygène qui devrait permettre de créer des niveaux accepteurs dans la bande interdite du ZnO. Nous avons également étudié l'impureté arsenic, qui selon un modèle théorique peut former un complexe qui permet d'obtenir un niveau accepteur plus proche de la bande de valence que le niveau. Outres les études réalisées sur les échantillons de ZnO massif et les essais de dopage de type p, nous avons également étudié les propriétés électriques d'échantillons de ZnO monocristallins sous forme de couches minces obtenues par croissance en phase vapeur d’organométalliques, dopées intentionnellement ou non. Les corrélations entres les mesures SIMS et C(V) nous ont permis notamment de mettre en évidence une diffusion et un rôle très importante de l'aluminium sur les propriétés électriques des couches minces de ZnO épitaxiées sur substrat saphir.Dans le cadre de cette thèse nous avons réussi à clarifier les mécanismes du dopage de type n, intentionnel ou non intentionnel, dans le ZnO monocristallin. Nous avons également identifié les impuretés et les paramètres de croissance importants permettant d'obtenir un dopage résiduel de type n le plus faible possible dans les couches épitaxiées. Cette maitrise du dopage résiduel de type n est une étape préliminaire indispensable aux études de dopage de type p car elle permet de minimiser la compensation des accepteurs introduits intentionnellement. Cette approche du dopage sur des couches minces de ZnO dont le dopage résiduel de type n est très faible apparait comme une voie très prometteuse pour surmonter les problèmes d'obtention du dopage de type p. / Zinc oxide (ZnO) is a II-VI semiconductor which appears as a very promising material for UV opto-electronic applications, in particular for the production of light emitting devices (LED). For these applications, ZnO presents strong advantages as a high exciton binding energy (60 meV ), a wide direct band gap (3.4 eV), the availability of large diameter bulk substrates for homoepitaxial growth of high quality thin films or nanostructures. However, the development of these applications is hampered by the difficulty to dope ZnO p-type. The impurity leading to an electrical conductivity associated with positive charge carriers (holes), and therefore the production of ZnO pn junctions have not yet been really identified.In this thesis we have studied the physical mechanisms that govern the electrical properties of ZnO single crystal and epilayers. The control of contacts (ohmic or Schottky) on different ZnO surfaces allowed us to carry out both transport measurements (resistivity and Hall effect) and capacitance measurements (C(V), Deep Level Transient Spectroscopy (DLTS) and admittance spectroscopy).At first, we have studied the role of deep and shallow defects on the n-type conductivity of bulk ZnO samples obtained by Hydrothermal synthesis (HT) or by Chemical Vapor Transport (CVT). We also investigated the impact of post-growth annealing at high temperature under oxygen atmospheres on the transport properties of samples. Thanks to the previous results on the residual n-type doping, we have reported on several attempts to obtain p-type ZnO. We have discussed the potential of different candidates for the achievement of p-type doping and present our tentative experiments to try and demonstrate the reality, the ability and the stability of p-type doping by nitrogen implantation and arsenic diffusion. The nitrogen impurity has been chosen for oxygen substitution, which should allow the creation of acceptor levels in the ZnO band gap. We also studied arsenic as a potential p-type dopant, according to a model whereby arsenic substitutes for oxygen and, if associated with two zinc vacancies, forms a complex with a shallower ionization energy than in the case of direct oxygen substitution.In addition to the studies on bulk ZnO samples and attempts on p-type doping, we have also studied the electrical properties of thin film ZnO samples obtained by Metal Organic Vapor Phase Epitaxy, either intentionally or unintentionally doped. Correlations between SIMS and C(V) measurements allowed us to highlight especially the importance of aluminum as a residual impurity in epitaxial layers grown on sapphire substrates.In this thesis we have clarified intentional or unintentional n-type doping mechanisms in ZnO single crystal samples. We have also identified impurities and growth parameters responsible for the residual n-type doping. This understanding is a crucial and preliminary step for understanding the doping mechanisms at stake in this material and is also necessary to achieve stable p-type conductivity, which is still the main challenge for the realization of optoelectronic devices based on ZnO.

Page generated in 0.1151 seconds