• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 273
  • 40
  • 34
  • 12
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 438
  • 171
  • 119
  • 94
  • 65
  • 57
  • 56
  • 54
  • 54
  • 52
  • 50
  • 42
  • 42
  • 41
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Energy-efficient Memory System Design with Spintronics

Ashish Ranjan (5930180) 03 January 2019 (has links)
<p>Modern computing platforms, from servers to mobile devices, demand ever-increasing amounts of memory to keep up with the growing amounts of data they process, and to bridge the widening processor-memory gap. A large and growing fraction of chip area and energy is expended in memories, which face challenges with technology scaling due to increased leakage, process variations, and unreliability. On the other hand, data intensive workloads such as machine learning and data analytics pose increasing demands on memory systems. Consequently, improving the energy-efficiency and performance of memory systems is an important challenge for computing system designers.</p> <p>Spintronic memories, which offer several desirable characteristics - near-zero leakage, high density, non-volatility and high endurance - are of great interest for designing future memory systems. However, these memories are not drop-in replacements for current memory technologies, viz. Static Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM). They pose unique challenges such as variable access times, and require higher write latency and write energy. This dissertation explores new approaches to improving the energy efficiency of spintronic memory systems.</p> <p>The dissertation first explores the design of approximate memories, in which the need to store and access data precisely is foregone in return for improvements in energy efficiency. This is of particular interest, since many emerging workloads exhibit an inherent ability to tolerate approximations to their underlying computations and data while still producing outputs of acceptable quality. The dissertation proposes that approximate spintronic memories can be realized either by reducing the amount of data that is written to/read from them, or by reducing the energy consumed per access. To reduce memory traffic, the dissertation proposes approximate memory compression, wherein a quality-aware memory controller transparently compresses/decompresses data written to or read from memory. For broader applicability, the quality-aware memory controller can be programmed to specify memory regions that can tolerate approximations, and conforms to a specified error constraint for each such region. To reduce the per-access energy, various mechanisms are identified at the circuit and architecture levels that yield substantial energy benefits at the cost of small probabilities of read, write or retention failures. Based on these mechanisms, a quality-configurable Spin Transfer Torque Magnetic RAM (STT-MRAM) array is designed in which read/write operations can be performed at varying levels of accuracy and energy at runtime, depending on the needs of applications. To illustrate the utility of the proposed quality-configurable memory array, it is evaluated as an L2 cache in the context of a general-purpose processor, and as a scratchpad memory for a domain-specific vector processor.</p> <p>The dissertation also explores the design of caches with Domain Wall Memory (DWM), a more advanced spintronic memory technology that offers unparalleled density arising from a unique tape-like structure. However, this structure also leads to serialized access to the bits in each bit-cell, resulting in increased access latency, thereby degrading overall performance. To mitigate the performance overheads, the dissertation proposes a reconfigurable DWM-based cache architecture that modulates the active bits per tape with minimal overheads depending on the application's memory access characteristics. The proposed cache is evaluated in a general purpose processor and improvements in performance are demonstrated over both CMOS and previously proposed spintronic caches.</p> <p>In summary, the dissertation suggests directions to improve the energy efficiency of spintronic memories and re-affirms their potential for the design of future memory systems.</p>
172

Interlayer exchange coupling in Co/Pd-NiFe films studied by Vector Network Analyser Ferromagnetic Resonance

Johansson, August January 2018 (has links)
A greater understanding of precessional dynamics in magnetic systems is central to several emerging technologies. This thesis presents the design, construction and development of a Vector Network Analyser based Ferromagnetic Resonance measurement instrument (VNA-FMR), and its application in characterising dynamic material properties in hybrid anisotropy [CoPd]8-NiFe films, produced by remote plasma sputtering. Potential applications for hybrid films include Spin Torque Oscillators (STOs) or Vortex Oscillators (VO) for use as microwave emitters in, for example in Microwave Assisted Magnetic Recording (MAMR). The VNA-FMR system was first used to measure thin films of NiFe (permalloy) which allowed its capabilities to be quantified and compared to systems reported in the literature. The instrument demonstrated the capability of measuring permalloy films down to a thickness of 3 nm and was used to measure resonance and damping behaviour which agreed well with theory. The results obtained forMs were in agreement with measurement using Vibrating Sample Magnetometry. The effect of interlayer exchange on FMR was explored in hybrid films using a sample series with varying Pd spacer layer thickness, t, [Co/Pd]-Pd(t)-NiFe. As Pd spacer thickness increased, a transition was observed from near complete coupling with a single resonance mode to separate acoustic and optical branches of resonance. As spacing was further increased, the branches converged towards the resonances of the individual component layers of the hybrid films. The results suggest exchange coupling has a range of less than 2 nm, and is completely extinguished at 5 nm, in agreement with previous measurements. However, a change in damping behaviour was observed between 10 and 20 nm spacer thickness, independent of field orientation.
173

Magnetism in Carbon Nanostructures

Hagelberg, Frank 25 July 2017 (has links)
Magnetism in carbon nanostructures is a rapidly expanding field of current materials science. Its progress is driven by the wide range of applications for magnetic carbon nanosystems, including transmission elements in spintronics, building blocks of cutting-edge nanobiotechnology, and qubits in quantum computing. These systems also provide novel paradigms for basic phenomena of quantum physics, and are thus of great interest for fundamental research. This comprehensive survey emphasizes both the fundamental nature of the field, and its groundbreaking nanotechnological applications, providing a one-stop reference for both the principles and the practice of this emerging area. With equal relevance to physics, chemistry, engineering and materials science, senior undergraduate and graduate students in any of these subjects, as well as all those interested in novel nanomaterials, will gain an in-depth understanding of the field from this concise and self-contained volume. / https://dc.etsu.edu/etsu_books/1164/thumbnail.jpg
174

Transport de spin dans des Moirés unidimensionnels / Spin transport in one dimensional Moirés

Bonnet, Roméo 29 November 2017 (has links)
L’électronique de spin tient une place primordiale dans les technologies de l’information. Un exemple flagrant est le disque dur magnétique à haute densité de stockage intégré aujourd’hui dans la plupart des ordinateurs personnels. D’un point de vue fondamental, les opérations de base comme l’injection, la propagation et la détection de l’information de spin restent néanmoins complexes à réaliser. Des plateformes adaptées à la réalisation de ces tâches élémentaires sont très recherchées. Dans ce contexte, les nanomatériaux carbonés sont très prometteurs. Au cours de ma thèse, je me suis intéressé au transport de spin dans des nanotubes de carbone multi-parois présentant des effets de super-réseaux (Moiré 1D). J’ai également étudié la croissance de barrières moléculaires conformationnelles afin d’optimiser l’injection et la détection de l’information de spin. Je présenterai tout d’abord les caractérisations électriques des dispositifs mettant en évidence des effets de Moirés, identifiés grâce aux simulations effectuées par l’équipe de Jean-Christophe Charlier. Je montrerai ensuite comment la croissance de la couche moléculaire influence le transport en formant une barrière d’injection. Finalement, je présenterai les expériences de magnéto-transport dans ces dispositifs hybrides. La magnétorésistance observée semble indiquer un transport de spin efficace sur des distances au moins de l’ordre du micromètre. Je discuterai particulièrement de l’amplitude, du signe et de la dépendance en tension de la magnétorésistance dans le cadre de modèles standards de transport de spin / Spin electronics holds a key role in information technology. A glaring example is the high-density magnetic hard disk storage built into most personal computers. From a fundamental point of view, basic operations such as injection, propagation and detection of spin information remain nevertheless complex. Platforms adapted to the realization of these basic tasks are highly sought after. In this context, carbon nanomaterials are very promising. During my thesis, I was interested in the transport of spin in multi-wall carbon nanotubes presenting super-lattice effects (Moiré 1D). I have also studied the growth of conformational molecular barriers in order to optimize injection and detection of spin information. I will present first the electrical characterizations of the devices highlighting the effects of Moirés, identified thanks to the simulations carried out by the team of Jean-Christophe Charlier. I will then show how the growth of the molecular layer influences transport by forming an injection barrier. Finally, I will present the experiments of magneto-transport in these hybrid devices. The observed magnetoresistance seems to indicate efficient spin transport over distances of at least a micrometer. I will discuss in particular the amplitude, the sign and the voltage dependence of the magnetoresistance in the framework of standard models of spin transport
175

Spin dynamics of complex oxides, bismuth-antimony alloys, and bismuth chalcogenides

Sahin, Cuneyt 01 July 2015 (has links)
The emerging field of spintronics relies on the manipulation of electron spin in order to use it in spin-based electronics. Such a paradigm change has to tackle several challenges including finding materials with sufficiently long spin lifetimes and materials which are efficient in generating pure spin currents. This thesis predicts that two types of material families could be a solution to the aforementioned challenges: complex oxides and bismuth based materials. We derived a general approach for constructing an effective spin-orbit Hamiltonian which is applicable to all nonmagnetic materials. This formalism is useful for calculating spin-dependent properties near an arbitrary point in momentum space. We also verified this formalism through comparisons with other approaches for III-V semiconductors, and its general applicability is illustrated by deriving the spin-orbit interaction and predicting spin lifetimes for strained SrTiO3 and a two-dimensional electron gas in SrTiO3 (such as at the LaAIO3/SrTiO3 interface). Our results suggest robust spin coherence and spin transport properties in SrTiO3 related materials even at room temperature. In the second part of the study we calculated intrinsic spin Hall conductivities for bismuth-antimony Bi1-xSbx semimetals with strong spin-orbit couplings, from the Kubo formula and using Berry curvatures evaluated throughout the Brillouin zone from a tight-binding Hamiltonian. Nearly crossing bands with strong spin-orbit interaction generate giant spin Hall conductivities in these materials, ranging from 474 ((ћ/e)Ω-1cm-1) for bismuth to 96((ћ/e)Ω-1cm-1) for antimony; the value for bismuth is more than twice that of platinum. The large spin Hall conductivities persist for alloy compositions corresponding to a three-dimensional topological insulator state, such as Bi0.83Sb0.17. The spin Hall conductivity could be changed by a factor of 5 for doped Bi, or for Bi0.83Sb0.17, by changing the chemical potential by 0.5 eV, suggesting the potential for doping or voltage tuned spin Hall current. We have also calculated intrinsic spin Hall conductivities of Bi2Se3 and Bi2Te3 topological insulators from an effective tight-binding Hamiltonian including two nearest-neighbor interactions. We showed that both materials exhibit giant spin Hall conductivities calculated from the Kubo formula in linear response theory and the clean static limit. We conclude that bismuth-antimony alloys and bismuth chalcogenides are primary candidates for efficiently generating spin currents through the spin Hall effect.
176

Nano-Système Magnéto-Électro-Mécanique (NMEMS) ultra-basse consommation pour le traitement et le stockage de l'information / Ultra-low power Nano-Magneto-Electro-Mechanical-System (NMEMS) for data processing and data storage

Dusch, Yannick 29 November 2011 (has links)
Avec le développement des nouvelles technologies de l'information et de la communication (NTIC), la consommation énergétique des systèmes de traitement et de stockage de données est devenue un problème majeur. Les limites des systèmes actuels à cet égard impliquent le besoin de technologies de rupture ultra-basse consommation.Cette thèse propose une approche originale de cette problématique, basée sur l'utilisation d'un élément magnétoélectrique composite (piézoélectrique/magnétostrictif) bistable et commandable de façon univoque, baptisé MELRAM.L'étude énergétique statique montre que la combinaison d'une anisotropie uni-axiale et d'un champ de polarisation magnétique statique définit deux positions d'équilibre stables perpendiculaires pour l'aimantation dans la partie magnétostrictive. L'application de contraintes piézoélectriques sur celle-ci permet de contrôler électriquement la position de l'aimantation. L'étude énergétique du système permet également de montrer la stabilité du système à long terme (10 ans), dans une large gamme de températures autour de l'ambiante, avec une barrière énergétique de 60kBT. L'étude dynamique, utilisant le modèle du macrospin, permet quant à elle d'exhiber un temps de réponse inférieur à 1ns. L'énergie dissipée lors de l'écriture, d'origine électrique et magnétique, est évaluée à 261kBT (1,1aJ), soit quatre ordres de grandeur en dessous de l'état de l'art.Plusieurs stratégies de lecture par vanne de spin et jonction tunnel magnétique sont proposées et commentées. Les premières réalisations d'éléments nanométriques magnétostrictifs sont présentées ainsi qu'une solution de polarisation magnétique intégrée par aimant permanent / As new information and communication technologies boom, the energy consumption of data processing and storage systems has become a major issue. The limits of state of the art systems regarding this gives rise to the need for ground-breaking ultra-low power technologies.This PhD thesis suggests an original approach of this issue, based on a bistable composite magnetoelectric element (piezoelectric/magnetostrictive) which can be controlled unequivocally, named MELRAM.The static energetic study shows that the combination of an uniaxial anisotropy and a static magnetic bias field defines two stable and perpendicular equilibrium positions for magnetization in the magnetostrictive part. The application of piezoelectric stress allows the electric control of the magnetization position.The energetic study also shows the long term (10 years) stability of the system, in a large temperature range around room temperature, with an energy barrier of 60kBT. The dynamic study, using the macrospin model, gives a response time less than 1ns. The dissipated energy during writing, of electric and magnetic origin, is estimated at 261kBT (1.1aJ), that is to say four orders of magnitude below the state of the art.Several reading strategies using spin valves and magnetic tunnel junction are proposed and commented. First realization of nanometer-sized magnetostrictive elements are presented as well as an integrated polarization solution, using permanent magnets
177

Spin transport in strained non-magnetic zinc blende semiconductors

Moehlmann, Benjamin James 01 July 2012 (has links)
The problem of spin manipulation via the spin-orbit interaction in nonmagnetic semiconductors in the absence of magnetic fields is investigated in this work. We begin with a review of the literature on spin dynamics in semiconductors, then discuss the semi-empirical k ⋅ p method of calculating direct-gap semiconductor properties, which we use to estimate material parameters significant for manipulation of spin even in the absence of a magnetic field. The total effective magnetic fields and precession lengths are calculated for a variety of quantum well orientations, and a class of devices are proposed that will allow for all-electric arbitrary manipulation of spin orientations. The strain- and momentum-dependent spin splitting coefficient C3 has been calculated using a fourteen band Kane k⋅p model for a variety of III-V semiconductors as well as ZnSe and CdSe. It is observed that the spin-splitting parameters C3 and γ, corresponding to the strain-induced spin-orbit interaction and Dresselhaus coefficient, are sensitive to the value of the inter-band spin-orbit coupling Δ− between the p valence and p̄ second conduction band in all cases. The value of Δ− has therefore been recalculated in these materials using a tight-binding model and modern experimental values of the valence and second conduction band spin-orbit splittings. The total effective magnetic field and precession length of spins in strained quantum wells in the (001), (110), and (111) planes are derived with consideration for all known effective magnetic fields except those due to interface effects in non- common-atom heterostructures (native inversion asymmetry). The orientation of the k-linear Dresselhaus field and the strain-dependent fields vary strongly with the growth axis of the quantum well. The precession length in the (110) and (001) cases can achieve infinite anisotropy, while the precession length of (111) quantum wells is always isotropic. We find that the electronic spin rotation induced by drift transport around a closed path in a wide variety of nonmagnetic semiconductors at zero magnetic field depends solely on the physical path taken. Physical paths that produce any possible spin rotation due to transport around a closed path are constructed for electrons experiencing strain or electric fields in (001), (110), or (111)-grown zinc blende semiconductor quantum wells. Spin decoherence due to travel along the path is negligible compared to the background spin decoherence rate. The small size of the designed paths (< 100 nm scale in GaAs) may lead to applications in nanoscale spintronic circuits.
178

Design and construction of ultrahigh vacuum system to fabricateSpintronic devices, fabrication and characterization of OMAR (organic magnetoresistance) devices

Bodepudi, Srikrishna Chanakya January 2009 (has links)
<p><p>This thesis concerns design and construction of an ultra high vacuum chamber to fabricate and characterize spintronic devices.  The long term intention is to fabricate spin valve structures with V[TCNE]<sub>2</sub> (hybrid organic inorganic semiconductor room temperature magnet) sandwiched between two ferromagnetic electrodes, which requires better than 10<sup>-8</sup>mbar of vacuum. Due to an uncured leak in the chamber, the current vacuum is limited to 4*10<sup>-7</sup>mbar. The V[TCNE]<sub>2</sub> thin film prepared in this vacuum, oxidized completely  by  the presence of oxygen during the film growth. Organic magnetoresistance (OMAR) devices which are simple organic diode structures were fabricated and characterized, as they are compatible with high vacuum conditions. A magnetoresistance measurement set up was arranged and the possible problems in fabrication and characterization are analyzed.</p><p> </p><p>To fabricate OMAR devices-ITO/P3HT/Al, RR-P3HT (regio regular poly (3-hexylthiophene)) an effective hole transport polymer with higher hole mobilities was used as an active layer and Al (aluminum) as a cathode. A thermal evaporation setup was added to the vacuum chamber to evaporate Al electrodes. The devices were kept in argon and vacuum environments, while characterizing in dark to suppress the exitons generated by photo illumination. The Organic magnetoconductance of about 1% is observed for the less concentration P3HT (3mg/1ml), and significantly improved to -23% for the high concentration P3HT (10mg/ml) solution. The results support that the negative magnetoconductance is due to the formation of bipolaron under the influence of an external magnetic field.</p><p> </p><p>Finally, suggestions to improve the performance of the vacuum chamber to fabricate and characterize the spintronic devices and OMAR devices are presented.</p></p>
179

Radiation tolerance of magnetic tunnel junctions with MgO barriers

Ren, Fanghui 11 September 2014 (has links)
In the next decade, technology trends--smaller dimension, lower voltage, higher operating frequency--introduce new technical considerations and challenges for radiation effects in integrated circuits. Semiconductor based circuits and traditional dynamic random-access memories will malfunction when exposed to extreme environments, such as space and nuclear reactor. The mechanisms for radiation effect are mainly attributed to the radiation-induced charging of the oxide in a CMOS device. Spintronics is an emerging area of nanoscale electronics involving the detection and manipulation of electron spin. The magnetic tunnel junctions (MTJs), based on the intrinsic spin of the electron, can be used as the storage elements in non-volatile magnetoresistive random-access memories (MRAMs). In this effort, we study radiation tolerance of MTJs by exposing the devices in gamma and neutron radiation environment. Theoretical model for the radiation-induced defects is analyzed in this work. Experiments of the MgO-based MTJs under the conditions of pre- and post-radiation are concluded. MTJs were irradiated with gamma ray to a total dose of 10 Mrad. During the neutron irradiation, total epithermal neutron fluence up to 2.9��10�����/cm�� was obtained. The experimental results show that neither the electrical nor the magnetic properties of MTJs are affected by the radiation. / Graduation date: 2013 / Access restricted to OSU community at author's request from Sept. 11, 2012 - Sept. 11, 2014
180

Properties of Fe/ZnSe Heterostructures : A Step Towards Semiconductor Spintronics

Gustavsson, Fredrik January 2002 (has links)
In the present thesis, the properties at ferromagnet/semiconductor interfaces, relevant for semiconductor spintronics applications, are addressed. Semiconductor spintronics refers to the possibility of storing information using the electron spin, additional to the electron charge, for enhanced flexibility in nanoscale semiconductor devices. The system under focus is the Fe/ZnSe(001) heterostructure, where ZnSe is a wide gap semiconductor ideally compatible with GaAs. The heterostructures are grown on GaAs(001) substrates by molecular beam epitaxy. From various electron-beam based diffraction, spectroscopy and microscopy techniques, it is shown that Fe grows epitaxially and predominantly in a layer-by-layer mode on ZnSe(001) with no presence of chemically reacted phases or interdiffusion. An in-plane uniaxial magnetic anisotropy (UMA) is detected for thin Fe films on ZnSe(001) by magnetometry, thus opposing the cubic symmetry of bcc Fe. From first principles calculations, the unidirectional sp3-bonds from ZnSe are shown to induce this uniaxiality. Moreover, an in-plane anisotropic lattice relaxation of Fe is found experimentally, seemingly as a consequence of the sp3-bonds, giving an additional UMA contribution via magneto-elastic coupling. It is proposed that these two effects are responsible for the much-debated UMA observed in Fe/semiconductor structures in general. The interface magnetism is probed by x-ray magnetic circular dichroism and Mössbauer spectroscopy. It is found that the magnetic moment at the interface is comparable or even enhanced with respect to the bulk Fe. These two experiments are believed to provide the first unambiguous proof of a persistent bulk magnetic moment at a transition metal/semiconductor interface. Spin-polarised transport measurements are performed on Fe/ZnSe/FeCo magnetic tunnel junctions. A magnetoresistance of 16% is found at low temperature, which evidences both the existence of interface spin polarisation, as inferred from the bulk magnetic moment above, and that the spin polarisation can be transmitted across the semiconductor barrier layer.

Page generated in 0.0664 seconds