• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 13
  • Tagged with
  • 56
  • 50
  • 50
  • 48
  • 48
  • 43
  • 41
  • 39
  • 37
  • 35
  • 30
  • 17
  • 16
  • 14
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Data Augmentation in Solving Data Imbalance Problems

Gao, Jie January 2020 (has links)
This project mainly focuses on the various methods of solving data imbalance problems in the Natural Language Processing (NLP) field. Unbalanced text data is a common problem in many tasks especially the classification task, which leads to the model not being able to predict the minority class well. Sometimes, even we change to some more excellent and complicated model could not improve the performance, while some simple data strategies that focus on solving data imbalanced problems such as over-sampling or down-sampling produce positive effects on the result. The common data strategies include some re-sampling methods that duplicate new data from the original data or remove some original data to have the balance. Except for that, some other methods such as word replacement, word swap, and word deletion are used in previous work as well. At the same time, some deep learning models like BERT, GPT and fastText model, which have a strong ability for a general understanding of natural language, so we choose some of them to solve the data imbalance problem. However, there is no systematic comparison in practicing these methods. For example, over-sampling and down-sampling are fast and easy to use in previous small scales of datasets. With the increase of the dataset, the newly generated data by some deep network models is more compatible with the original data. Therefore, our work focus on how is the performance of various data augmentation techniques when they are used to solve data imbalance problems, given the dataset and task? After the experiment, Both qualitative and quantitative experimental results demonstrate that different methods have their advantages for various datasets. In general, data augmentation could improve the performance of classification models. For specific, BERT especially our fine-tuned BERT has an excellent ability in most using scenarios(different scales and types of the dataset). Still, other techniques such as Back-translation has a better performance in long text data, even it costs more time and has a complicated model. In conclusion, suitable choices for data augmentation methods could help to solve data imbalance problems. / Detta projekt fokuserar huvudsakligen på de olika metoderna för att lösa dataobalansproblem i fältet Natural Language Processing (NLP). Obalanserad textdata är ett vanligt problem i många uppgifter, särskilt klassificeringsuppgiften, vilket leder till att modellen inte kan förutsäga minoriteten Ibland kan vi till och med byta till en mer utmärkt och komplicerad modell inte förbättra prestandan, medan några enkla datastrategier som fokuserar på att lösa data obalanserade problem som överprov eller nedprovning ger positiva effekter på resultatet. vanliga datastrategier inkluderar några omprovningsmetoder som duplicerar nya data från originaldata eller tar bort originaldata för att få balans. Förutom det används vissa andra metoder som ordbyte, ordbyte och radering av ord i tidigare arbete Samtidigt har vissa djupinlärningsmodeller som BERT, GPT och fastText-modellen, som har en stark förmåga till en allmän förståelse av naturliga språk, så vi väljer några av dem för att lösa problemet med obalans i data. Det finns dock ingen systematisk jämförelse när man praktiserar dessa metoder. Exempelvis är överprovtagning och nedprovtagning snabba och enkla att använda i tidigare små skalor av datamängder. Med ökningen av datauppsättningen är de nya genererade data från vissa djupa nätverksmodeller mer kompatibla med originaldata. Därför fokuserar vårt arbete på hur prestandan för olika dataförstärkningstekniker används när de används för att lösa dataobalansproblem, givet datamängden och uppgiften? Efter experimentet visar både kvalitativa och kvantitativa experimentella resultat att olika metoder har sina fördelar för olika datamängder. I allmänhet kan dataförstärkning förbättra prestandan hos klassificeringsmodeller. För specifika, BERT speciellt vår finjusterade BERT har en utmärkt förmåga i de flesta med hjälp av scenarier (olika skalor och typer av datamängden). Ändå har andra tekniker som Back-translation bättre prestanda i lång textdata, till och med det kostar mer tid och har en komplicerad modell. Sammanfattningsvis lämpliga val för metoder för dataökning kan hjälpa till att lösa problem med obalans i data.
22

Improving Dialogue Context and Repeatability in Human-Robot Interaction / Förbättra dialogkontext och repeterbarhet vid människa-robotinteraktion

Wilczek, Andrej January 2021 (has links)
Natural Language Generation and generating believable verbal communication are critical components in the development of social robots. The work presented in this paper is based on the sequence-to-sequence model and is focused on improving context and repeatability through the inclusion of task- specific information. The data set on which this study was conducted was collected through a Wizard of Oz framework using a social robot. The generated dialogue was evaluated through a survey designed to measure the adherence to the game context and perceived human qualities. The human qualities were measured using attributes from two well-known attribute scales intended for evaluating Human-Robot Interaction. The evaluation results indicate that the quality of the generated dialogue is on par with examples of actual dialogue spoken during the experiments. This paper also highlights interesting aspects regarding the usefulness of transfer learning in narrow contextual applications. The results presented in this paper show that it is possible to improve the contextual nature of generated dialogue by including additional task-specific information. / Generering av naturligt språk och uppgiften att skapa trovärdig verbal kommunikation är kritiska komponenter i utvecklingen av sociala robotar. Arbetet som presenteras i denna uppsats är baserat på sekvens-till-sekvens-modellen och fokuserar på att förbättra sammanhang och repeterbarhet genom att inkludera uppgiftspecifik information. Datauppsättningen som denna studie genomförde samlades in via ett Wizard of Oz-ramverk med hjälp av en social robot. Den genererade dialogen utvärderades genom en onlineundersökning utformad för att mäta efterlevnaden av spelskontexten och upplevda mänskliga egenskaper. Dessa mänskliga egenskaper mättes med attribut från två välkända attributskalor avsedda för utvärdering av människa-robot-interaktion. Utvärderingsresultaten visar att kvaliteten på den genererade dialogen är i nivå med exempel på faktisk dialog som talats under experimenten. Denna uppsats belyser också intressanta aspekter beträffande nyttan av överföringsinlärning i smala kontextuella applikationer. Resultaten som presenteras i denna uppsats visar att det är möjligt att förbättra den kontextuella karaktären hos genererad dialog genom att inkludera ytterligare uppgiftspecifik information.
23

Smart Compose for Live Chat Agent / Kundtjänstens automatiska kompletteringssystem

Zhang, Tonghua January 2021 (has links)
In the digital business environment, customer service communication has grown up to become a labor- intensive task. In consideration of high labor costs, automatic customer service could be such a good alternative for many companies. However, communication with customers can not be easily automated. Staffs of customer service always need task-specific knowledge and information, which is incapable for automated systems to reply. Therefore, industries with frequent communication to consumers need a semiauto completion system, to cut manpower cost. In this thesis project, I utilized the GPT2 model, which was pre-trained by OpenAI, and finetuned it on MultiWOZ dataset in unsupervised way to train a full-fledged and task-oriented language model. On the basis of this auto-regressive language model, I designed and deployed an auto-completion system that timely predicts words or sentences which users may input in the next moment and provides quick completing suggestions for subsequent dialogue. After that, I evaluated the performance of the language model and practicability of the auto-completion system, and furthermore proposed a possible optimization framework to balance the system’s endogenous contradictions. / I den digitala affärsmiljön har kundservicekommunikation vuxit upp till att bli en arbetsintensiv uppgift. Med tanke på höga arbetskraftskostnader kan automatisk kundservice vara ett bra alternativ för många företag. Kundtjänstpersonal behöver alltid uppgiftspecifik kunskap och information, vilket inte är möjligt för automatiska system att leverera. Därför behöver industrier med frekvent kommunikation till konsumenterna ett semiautomatiskt kompletteringssystem, för att sänka arbetskraftskostnaderna. I detta avhandlingsprojekt använde jag GPT-2-modellen, som förtränats av OpenAI, och finjusterade den på MultiWOZ-datamängden på ett oövervakat sätt för att träna en fullfjädrad och uppgiftsorienterad språkmodell. På grundval av denna autoregressiva språkmodell designade och implementerade jag ett system för automatisk komplettering som i rätt tid förutsäger ord eller meningar som användarna kan mata in i nästa ögonblick och ger snabba kompletteringsförslag för efterföljande dialog. Därefter utvärderade jag prestandan för språkmodellen och genomförbarheten för det automatiska kompletteringssystemet och föreslog dessutom en möjlig optimeringsram för att balansera systemets endogena motsägelser.
24

Semi-supervised adverse drug reaction detection / Halvvägledd upptäckt av läkemedelsreleterade biverkningar

Ohl, Louis January 2021 (has links)
Pharmacogivilance consists in carefully monitoring drugs in order to re-evaluate their risk for people’s health. The sooner the Adverse Drug Reactions are detected, the sooner one can act consequently. This thesis aims at discovering such reactions in electronical health records under the constraint of lacking annotated data, in order to replicate the scenario of the Regional Center for Pharmacovigilance of Nice. We investigate how in a semi-supervised learning design the unlabeled data can contribute to improve classification scores. Results suggest an excellent recall in discovering adverse reactions and possible classification improvements under specific data distribution. / Läkemedelsövervakningen består i kolla försiktigt läkemedlen så att utvärdera dem för samhällets hälsa. Ju tidigare de läkemedelsrelaterade biverkningarna upptäcks, desto tidigare man får handla dem. Detta exjobb söker att upptäcka de där läkemedelsrelaterade biverkningarnna inom elektroniska hälsopost med få datamärkningar, för att återskapa Nice regionalt läkemedelelsöveraknings-centrumets situationen. Vi undersöker hur en halvväglett lärande lösning kan hjälpa att förbättra klassificeringsresultat. Resultaten visar en god återställning med biverknings-upptäckning och möjliga förbättringar.
25

Active Learning for Named Entity Recognition with Swedish Language Models / Aktiv Inlärning för Namnigenkänning med Svenska Språkmodeller

Öhman, Joey January 2021 (has links)
The recent advancements of Natural Language Processing have cleared the path for many new applications. This is primarily a consequence of the transformer model and the transfer-learning capabilities provided by models like BERT. However, task-specific labeled data is required to fine-tune these models. To alleviate the expensive process of labeling data, Active Learning (AL) aims to maximize the information gained from each label. By including a model in the annotation process, the informativeness of each unlabeled sample can be estimated and hence allow human annotators to focus on vital samples and avoid redundancy. This thesis investigates to what extent AL can accelerate model training with respect to the number of labels required. In particular, the focus is on pre- trained Swedish language models in the context of Named Entity Recognition. The data annotation process is simulated using existing labeled datasets to evaluate multiple AL strategies. Experiments are evaluated by analyzing the F1 score achieved by models trained on the data selected by each strategy. The results show that AL can significantly accelerate the model training and hence reduce the manual annotation effort. The state-of-the-art strategy for sentence classification, ALPS, shows no sign of accelerating the model training. However, uncertainty-based strategies consistently outperform random selection. Under certain conditions, these strategies can reduce the number of labels required by more than a factor of two. / Framstegen som nyligen har gjorts inom naturlig språkbehandling har möjliggjort många nya applikationer. Det är mestadels till följd av transformer-modellerna och lärandeöverföringsmöjligheterna som kommer med modeller som BERT. Däremot behövs det fortfarande uppgiftsspecifik annoterad data för att finjustera dessa modeller. För att lindra den dyra processen att annotera data, strävar aktiv inlärning efter att maximera informationen som utvinns i varje annotering. Genom att inkludera modellen i annoteringsprocessen, kan man estimera hur informationsrikt varje träningsexempel är, och på så sätt låta mänskilga annoterare fokusera på viktiga datapunkter. Detta examensarbete utforskar hur väl aktiv inlärning kan accelerera modellträningen med avseende på hur många annoterade träningsexempel som behövs. Fokus ligger på förtränade svenska språkmodeller och uppgiften namnigenkänning. Dataannoteringsprocessen simuleras med färdigannoterade dataset för att evaluera flera olika strategier för aktiv inlärning. Experimenten evalueras genom att analysera den uppnådda F1-poängen av modeller som är tränade på datapunkterna som varje strategi har valt. Resultaten visar att aktiv inlärning har en signifikant förmåga att accelerera modellträningen och reducera de manuella annoteringskostnaderna. Den toppmoderna strategin för meningsklassificering, ALPS, visar inget tecken på att kunna accelerera modellträningen. Däremot är osäkerhetsbaserade strategier är konsekvent bättre än att slumpmässigt välja datapunkter. I vissa förhållanden kan dessa strategier reducera antalet annoteringar med mer än en faktor 2.
26

Bootstrapping Annotated Job Ads using Named Entity Recognition and Swedish Language Models / Identifiering av namngivna enheter i jobbannonser genom användning av semi-övervakade tekniker och svenska språkmodeller

Nyqvist, Anna January 2021 (has links)
Named entity recognition (NER) is a task that concerns detecting and categorising certain information in text. A promising approach for NER that recently has emerged is fine-tuning Transformer-based language models for this specific task. However, these models may require a relatively large quantity of labelled data to perform well. This can limit NER models applicability in real-world applications as manual annotation often is costly and time-consuming. In this thesis, we investigate the learning curve of human annotation and of a NER model during a semi-supervised bootstrapping process. Special emphasis is given the dependence of the number of classes and the amount of training data used in the process. We first annotate a set of collected job advertisements and then apply bootstrapping using both annotated and unannotated data and continuously fine-tune a pre-trained Swedish BERT model. The initial class system is simplified during the bootstrapping process according to model performance and inter-annotator agreement. The model performance increased as the training set grew larger with a final micro F1-score of 54%. This result provides a good baseline, and we point out several improvements that can be made to further enhance performance. We further identify classes handled differently by the annotators and potential factors as to why this is. Suggestions for future work include adjusting the current class system further by removing classes that were identified as low-performing in this thesis. / Namngiven entitetsigenkänning (eng. named entity recognition) innebär att identifiera och kategorisera nyckelord i text. En ny lovande teknik för identifiering av namngivna enheter är att finjustera Transformerbaserade språkmodeller för denna specifika uppgift. Dessa modeller kräver dock stora mängder märkt data för att prestera väl. Detta kan begränsa antal områden i vilka de kan användas då manuell märkning av data ofta är kostsamt och tidskrävande. I denna avhandling undersöker vi inlärningskurvan för manuell annotering och för en språkmodell under en halvövervakad bootstrapping process. Särskild vikt läggs på hur modellens och annoterarnas inlärning påverkas av antal klasser och mängden träningsdata som används i processen. Vi annoterar först en samling jobbannonser och tillämpar sedan en bootstrapping process med både märkt och omärkt data i vilken en förtränad svensk BERT-modell kontinuerligt finjusteras. Det första klasssystemet förenklas under processens gång beroende på modellprestation och interannoterar-överenskommelse. Modellen presterade bättre med mer träningsdata och uppnådde en slutlig micro F1-score på 54%. Detta resultat ger en bra baslinje, och vi föreslår flera förbättringar som kan göras för att ytterligare förbättra modellprestationen. Vidare identifierar vi även klasser som hanteras olika av annoterare och potentiella faktorer till vad detta beror på. Förslag för framtida arbete inkluderar att justera det nuvarande klasssystemet ytterligare genom att ta bort klasser som identifierades som lågpresterande i denna avhandling.
27

Text Content Features for Hybrid Recommendations : Pre-trained Language Models for Better Recommendations

Lazarova, Mariya January 2021 (has links)
Nowadays, with the ever growing availability of options in many areas of our lives, it is crucial to have good ways to navigate your choices. This is why recommendation engines’ role is growing more important. Recommenders are often based on user-item interaction. In many areas like news and podcasts, however, by the time there is enough interaction data for an item, the item has already become irrelevant. This is why incorporating content features is desirable, as the content does not depend on the popularity or novelty of an item. Very often, there is text describing an item, so text features are good candidates for features within recommender systems. Within Natural Language Processing (NLP), pre-trained language models based on the Transformer architecture have brought a revolution in recent years, achieving state-of-the-art performance on many language tasks. Because of this, it is natural to explore how such models can play a role within recommendation systems. The scope of this work is on the intersection between NLP and recommendation systems where we investigate what are the effects of adding BERT-based encodings of titles and descriptions of movies and books to a recommender system. The results show that even in off-the-shelf BERT-models there is a considerable amount of information on movie and book similarity. It also shows that BERT based representations could be used in a recommender system for user recommendation to combine the best of collaborative and content representations. In this thesis, it is shown that adding deep pre-trained language model representations could improve a recommender system’s capability to predict good items for users with up to 0.43 AUC-ROC score for a shallow model, and 0.017 AUC-ROC score for a deeper model. It is also shown that SBERT can be fine-tuned to encode item similarity with up to 0.03 nDCG and up to 0.05 nDCG@10 score improvement. / Med den ständigt växande tillgängligheten av val i många delar av våra liv har det blivit viktigt att enkelt kunna navigera kring olika alternativ. Det är därför rekommendationssystems har blivit viktigare. Rekommendationssystem baseras ofta på interaktion-historiken mellan användare och artikel. När tillräckligt mycket data inom nyheter och podcast har hunnits samlats in för att utföra en rekommendation så har artikeln hunnit bli irrelevant. Det är därför det är önskvärt att införa innehållsfunktioner till rekommenderaren, då innehållet inte är beroende av popularitet eller nymodigheten av artikeln. Väldigt ofta finns det text som beskriver en artikel vilket har lett till textfunktioner blivit bra kandidater som funktion för rekommendationssystem. Inom Naturlig Språkbehandling (NLP), har förtränande språkmodeller baserad på transformator arkitekturen revolutionerat området de senaste åren. Den nya arkitekturen har uppnått toppmoderna resultat på flertal språkuppgifter. Tack vare detta, har det blivit naturligt att utforska hur sådana modeller kan fungera inom rekommendationssystem. Det här arbetet är mellan två områden, NLP och rekommendationssystem. Arbetet utforskar effekten av att lägga till BERT-baserade kodningar av titel och beskrivning av filmer, samt böcker till ett rekommendationssystem. Resultaten visar att även i förpackade BERT modeller finns det mycket av information om likheter mellan film och böcker. Resultaten visar även att BERT representationer kan användas i rekommendationssystem för användarrekommendationer, i kombination med kollaborativa och artikel baserade representationer. Uppsatsen visar att lägga till förtränade djupspråkmodell representationer kan förbättra rekommendationssystemens förmåga att förutsäga bra artiklar för användare. Förbättringarna är upp till 0.43 AUC-ROC poäng för en grundmodell, samt 0.017 AUC-ROC poäng för en djupmodell. Uppsatsen visar även att SBERT kan bli finjusterad för att koda artikel likhet med upp till 0.03 nDCG och upp till 0.05 nDCG@10 poängs förbättring.
28

Decentralized Large-Scale Natural Language Processing Using Gossip Learning / Decentraliserad Storskalig Naturlig Språkbehandling med Hjälp av Skvallerinlärning

Alkathiri, Abdul Aziz January 2020 (has links)
The field of Natural Language Processing in machine learning has seen rising popularity and use in recent years. The nature of Natural Language Processing, which deals with natural human language and computers, has led to the research and development of many algorithms that produce word embeddings. One of the most widely-used of these algorithms is Word2Vec. With the abundance of data generated by users and organizations and the complexity of machine learning and deep learning models, performing training using a single machine becomes unfeasible. The advancement in distributed machine learning offers a solution to this problem. Unfortunately, due to reasons concerning data privacy and regulations, in some real-life scenarios, the data must not leave its local machine. This limitation has lead to the development of techniques and protocols that are massively-parallel and data-private. The most popular of these protocols is federated learning. However, due to its centralized nature, it still poses some security and robustness risks. Consequently, this led to the development of massively-parallel, data private, decentralized approaches, such as gossip learning. In the gossip learning protocol, every once in a while each node in the network randomly chooses a peer for information exchange, which eliminates the need for a central node. This research intends to test the viability of gossip learning for large- scale, real-world applications. In particular, it focuses on implementation and evaluation for a Natural Language Processing application using gossip learning. The results show that application of Word2Vec in a gossip learning framework is viable and yields comparable results to its non-distributed, centralized counterpart for various scenarios, with an average loss on quality of 6.904%. / Fältet Naturlig Språkbehandling (Natural Language Processing eller NLP) i maskininlärning har sett en ökande popularitet och användning under de senaste åren. Naturen av Naturlig Språkbehandling, som bearbetar naturliga mänskliga språk och datorer, har lett till forskningen och utvecklingen av många algoritmer som producerar inbäddningar av ord. En av de mest använda av dessa algoritmer är Word2Vec. Med överflödet av data som genereras av användare och organisationer, komplexiteten av maskininlärning och djupa inlärningsmodeller, blir det omöjligt att utföra utbildning med hjälp av en enda maskin. Avancemangen inom distribuerad maskininlärning erbjuder en lösning på detta problem, men tyvärr får data av sekretesskäl och datareglering i vissa verkliga scenarier inte lämna sin lokala maskin. Denna begränsning har lett till utvecklingen av tekniker och protokoll som är massivt parallella och dataprivata. Det mest populära av dessa protokoll är federerad inlärning (federated learning), men på grund av sin centraliserade natur utgör det ändock vissa säkerhets- och robusthetsrisker. Följaktligen ledde detta till utvecklingen av massivt parallella, dataprivata och decentraliserade tillvägagångssätt, såsom skvallerinlärning (gossip learning). I skvallerinlärningsprotokollet väljer varje nod i nätverket slumpmässigt en like för informationsutbyte, vilket eliminerarbehovet av en central nod. Syftet med denna forskning är att testa livskraftighetenav skvallerinlärning i större omfattningens verkliga applikationer. I synnerhet fokuserar forskningen på implementering och utvärdering av en NLP-applikation genom användning av skvallerinlärning. Resultaten visar att tillämpningen av Word2Vec i en skvallerinlärnings ramverk är livskraftig och ger jämförbara resultat med dess icke-distribuerade, centraliserade motsvarighet för olika scenarier, med en genomsnittlig kvalitetsförlust av 6,904%.
29

Test Case Generation from Specifications Using Natural Language Processing / Testfallsgenerering från specifikationer med hjälp av naturlig språkbehandling

Salman, Alzahraa January 2020 (has links)
Software testing plays a fundamental role in software engineering as it ensures the quality of a software system. However, one of the major challenges of software testing is its costs since it is a time and resource-consuming process which according to academia and industry can take up to 50% of the total development cost. Today, one of the most common ways of generating testcases is through manual labor by analyzing specification documents to produce test scripts, which tends to be an expensive and error prone process. Therefore, optimizing software testing by automating the test case generation process can result in time and cost reductions and also lead to better quality of the end product. Currently, most of the state-of-the-art solutions for automatic test case generation require the usage of formal specifications. Such formal specifications are not always available during the testing process and if available, they require expert knowledge for writing and understanding them. One artifact that is often available in the testing domain is test case specifications written in natural language. In this thesis, an approach for generating integration test cases from natural language test case specifications is designed, applied and, evaluated. Machine learning and natural language processing techniques are used to implement the approach. The proposed approach is conducted and evaluated on an industrial testing project at Ericsson AB in Sweden. Additionally, the approach has been implemented as a tool with a graphical user interface for aiding testers in the process of test case generation. The approach involves performing natural language processing techniques for parsing and analyzing the test case specifications to generate feature vectors that are later mapped to label vectors containing existing C# test scripts filenames. The feature and label vectors are used as input and output, respectively, in a multi-label text classification process. The approach managed to produce test scripts for all test case specifications and obtained a best F1 score of 89% when using LinearSVC as the classifier and performing data augmentation on the training set. / Programvarutestning spelar en grundläggande roll i programvaruutveckling då den säkerställer kvaliteten på ett programvarusystem. En av de största utmaningarna med programvarutestning är dess kostnader eftersom den är en tids och resurskrävande process som enligt akademin och industrin kan ta upp till 50% av den totala utvecklingskostnaden. Ett av de vanligaste sätten att generera testfall idag är med manuellt arbete genom analys av testfallsspecifikationer, vilket tenderar att vara en dyr och felbenägen process. Därför kan optimering av programvarutestning genom automatisering av testfallsgenereringsprocessen resultera i tids- och kostnadsminimeringar och även leda till bättre kvalitet på slutprodukten. Nuförtiden kräver de flesta toppmoderna lösningarna för automatisk testfallsgenerering användning av formella specifikationer. Sådana specifikationer är inte alltid tillgängliga under testprocessen och om de är tillgängliga, så krävs det expertkunskap för att skriva och förstå dem. En artefakt som ofta finns i testdomänen är testfallspecifikationer skrivna på naturligt språk. I denna rapport utformas, tillämpas och utvärderas en metod för generering av integrationstestfall från testfallsspecifikationer skrivna på naturligt språk. Maskininlärnings- och naturlig språkbehandlingstekniker används för implementationen av metoden. Den föreslagna metoden genomförs och utvärderas vid ett industriellt testprojekt hos Ericsson AB i Sverige. Dessutom har metoden implementerats som ett verktyg med ett grafiskt användargränssnitt för att hjälpa testare i testfallsgenereringsprocessen. Metoden fungerar genom att utföra naturlig språkbehandlingstekniker på testfallsspecifikationer för att generera egenskapsvektorer som senare mappas till etikettsvektorer som innehåller befintliga C# testskriptfilnamn. Engenskaps och etikettsvektorerna används sedan som indata och utdata, respektive, för textklassificeringsprocessen. Metoden lyckades producera testskript för allatestfallsspecifikationer och fick en bästa F1 poäng på 89% när LinearSVC användes för klassificeringen och datautökning var utförd på träningsdatat.
30

Integrating Telecommunications-Specific Language Models into a Trouble Report Retrieval Approach / Integrering av telekommunikationsspecifika språkmodeller i en metod för hämtning av problemrapporter

Bosch, Nathan January 2022 (has links)
In the development of large telecommunications systems, it is imperative to identify, report, analyze and, thereafter, resolve both software and hardware faults. This resolution process often relies on written trouble reports (TRs), that contain information about the observed fault and, after analysis, information about why the fault occurred and the decision to resolve the fault. Due to the scale and number of TRs, it is possible that a newly written fault is very similar to previously written faults, e.g., a duplicate fault. In this scenario, it can be beneficial to retrieve similar TRs that have been previously created to aid the resolution process. Previous work at Ericsson [1], introduced a multi-stage BERT-based approach to retrieve similar TRs given a newly written fault observation. This approach significantly outperformed simpler models like BM25, but suffered from two major challenges: 1) it did not leverage the vast non-task-specific telecommunications data at Ericsson, something that had seen success in other work [2], and 2) the model did not generalize effectively to TRs outside of the telecommunications domain it was trained on. In this thesis, we 1) investigate three different transfer learning strategies to attain stronger performance on a downstream TR duplicate retrieval task, notably focusing on effectively integrating existing telecommunicationsspecific language data into the model fine-tuning process, 2) investigate the efficacy of catastrophic forgetting mitigation strategies when fine-tuning the BERT models, and 3) identify how well the models perform on out-of-domain TR data. We find that integrating existing telecommunications knowledge through the form of a pretrained telecommunications-specific language model into our fine-tuning strategies allows us to outperform a domain adaptation fine-tuning strategy. In addition to this, we find that Elastic Weight Consolidation (EWC) is an effective strategy for mitigating catastrophic forgetting and attaining strong downstream performance on the duplicate TR retrieval task. Finally, we find that the generalizability of models is strong enough to perform reasonably effectively on out-of-domain TR data, indicating that the approaches may be eligible in a real-world deployment. / Vid utvecklingen av stora telekommunikationssystem är det absolut nödvändigt att identifiera, rapportera, analysera och därefter lösa både mjukvaru och hårdvarufel. Denna lösningsprocess bygger ofta på noggrant skrivna felrapporter (TRs), som innehåller information om det observerade felet och, efter analys, information om varför felet uppstod och beslutet att åtgärda felet. På grund av skalan och antalet TR:er är det möjligt att ett nyskrivet fel är mycket likt tidigare skrivna fel, t.ex. ett duplikatfel. I det här scenariot kan det vara mycket fördelaktigt att hämta tidigare skapade, liknande TR:er för att underlätta upplösningsprocessen. Tidigare arbete på Ericsson [1], introducerade en flerstegs BERT-baserad metod för att hämta liknande TRs givet en nyskriven felobservation. Detta tillvägagångssätt överträffade betydligt enklare modeller som BM-25, men led av två stora utmaningar: 1) det utnyttjade inte den stora icke-uppgiftsspecifika telekommunikationsdatan hos Ericsson, något som hade sett framgång i annat arbete [2], och 2) modellen generaliserades inte effektivt till TR:er utanför den telekommunikationsdomän som den bildades på. I den här masteruppsatsen undersöker vi 1) tre olika strategier för överföringsinlärning för att uppnå starkare prestanda på en nedströms TR dubbletthämtningsuppgift, varav några fokuserar på att effektivt integrera fintliga telekommunikationsspecifika språkdata i modellfinjusteringsprocessen, 2) undersöker effektiviteten av katastrofala missglömningsreducerande strategier vid finjustering av BERT-modellerna, och 3) identifiera hur väl modellerna presterar på TR-data utanför domänen. Resultatet är genom att integrera befintlig telekommunikationskunskap i form av en förtränad telekommunikationsspecifik språkmodell i våra finjusteringsstrategier kan vi överträffa en finjusteringsstrategi för domänanpassning. Utöver detta har vi fåt fram att EWC är en effektiv strategi för att mildra katastrofal glömska och uppnå stark nedströmsprestanda på dubbla TR hämtningsuppgiften. Slutligen finner vi att generaliserbarheten av modeller är tillräckligt stark för att prestera någorlunda effektivt på TR-data utanför domänen, vilket indikerar att tillvägagångssätten som beskrivs i denna avhandling kan vara kvalificerade i en verklig implementering.

Page generated in 0.0668 seconds