• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 320
  • 162
  • 89
  • 38
  • 24
  • 22
  • 18
  • 14
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 790
  • 303
  • 253
  • 228
  • 131
  • 122
  • 101
  • 88
  • 87
  • 84
  • 78
  • 72
  • 70
  • 66
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

The Preparation and Phase Transformation of Nanometer Zirconia Thin Film by Ion Beam Sputtering Method

Yeh, Sung-wei 30 June 2006 (has links)
Nanocrystalline £\-Zr condensates deposited by ion beam sputtering on the NaCl (100) surfaces and then annealed at 100 ¢J to 750 ¢J in air. The phases present were identified by transmission electron microscopy to be nanometer-size £\-Zr+ZrO¡B£\-Zr+ZrO+c-ZrO2¡Bc-ZrO2¡Bc-+t-ZrO2¡Bt-ZrO2¡Band t-+m-ZrO2 phase assemblages with increasing annealing temperature. The zirconia showed strong {100} preferred orientation due to parallel epitaxy with NaCl (100) when annealed between 150 ¢J and 500 ¢J in air. The c- and t-zirconia condensates also showed (111)-specific coalescence among themselves. The c- and/or t-ZrO2 formation can be accounted for by the small grain size, the presence of low-valence Zr cation and the lateral constraint of the neighboring grains. (Part 1) Nanocrystalline £\-Zr condensates were deposited on the NaCl (100) plane at 25 to 450 ¢J by radio frequency ion beam sputtering from a pure 99.9¢H Zr disk. The nano condensates were identified by transmission electron microscopy to be quasiamorphous, £\-Zr, £\-Zr+ZrO and £\-Zr+ZrO+c-ZrO2 phase assemblages with increasing substrate temperature. At 400 ¢J and under 1-20 sccm oxygen, c- and t-ZrO2 nanocondensates were assembled on NaCl (100) as monolayer nanocrystalline material and showed strong preferred orientation. The c- and/or t-ZrO2 were retained by small grain size, low-valence Zr cation and 2-D matrix constraint of the film. (Part 2) Nanosized c- and t-ZrO2 were formed as monolayer nanocrystalline film on NaCl (100) plane by radio frequency ion beam sputtering. The microstructure and the epitaxy relationship with the NaCl (100) plane were studied by a high resolution transmission electron microscope. The epitaxy orientation was found to be [001]Z//[001]N, [100]Z//[1 0]N (group A), and [011]Z//[001]N, [100]Z//[100]N (group B) between zirconia (Z) and NaCl (N). Group B has two variants and is the dominant type. The possible causes for the epitaxy relationship are discussed. Crystallites within the same group can merge by rotation and coalesce into a single crystal, whereas crystallites in different groups can form high-angle grain boundaries. (Part 3) Special interfaces were formed for the c- and/or t-ZrO2 (Z) nano-crystals when deposited on the NaCl (N) (100) cleavage plane by ion beam sputtering to follow the epitaxy relationships of [001]Z//[001]N, (100)Z//(1 0)N (group A); and [011]Z//[001]N, (100)Z//(100)N (group B1) or (100)Z//(010)N (group B2). The nanoparticles in group A and B were impinged and coalesced to form {220}A/{200}B and {200}A/{111}B interfaces; with anchored dislocation whereas those in group B1 and B2 form {220}B1/{200}B2 interface. The {220}A/{200}B interface is found to be of especially low energy due to good match O2¡V lattice sites, and smoothly joints {200} and {220} planes across the interfaces without mismatch strain and dislocations. The special interfaces may shed light on the epitaxial mechanism of nanocrystalline materials in general. (Part 4)
172

Production Of Amorphous Silicon/ P-type Crystalline Silicon Heterojunction Solar Cells By Sputtering And Pecvd Methods

Eygi, Zeynep Deniz 01 December 2011 (has links) (PDF)
Silicon heterojunction solar cells, a-Si:H/c-Si, are promising technology for future photovoltaic systems. An a-Si:H/c-Si heterojunction solar cell combines the advantages of single crystalline silicon photovoltaic with thin-film technologies. This thesis reports a detailed survey of heterojunction silicon solar cells with p-type wafer fabricated by magnetron sputtering and Plasma Enhanced Chemical Vapor Deposition (PECVD) techniques at low processing temperature. In the first part of this study, magnetron sputtering method was employed to fabricate a-Si:H thin films and then a-Si:H/c-Si solar cells. Amorphous silicon (a-Si:H) films were grown on glass in order to perform electrical and optical characterizations. The J-V characteristics of the silicon heterojunction solar cells were analyzed as a function of a-Si:H properties. It was shown that a-Si thin films with well-behaved chemical and electronic properties could be fabricated by the magnetron sputtering. Hydrogenation of the grown film could be achieved by H2 introduction into the chamber during the sputtering. In spite of the good film properties, fabricated solar cells had poor photovoltaic parameters with a low rectification characteristic. This low device performance was caused by high resistivity and low doping concentration in the sputtered film. The second part of the thesis is dedicated to heterojunction solar cells fabricated by PECVD. In this part a systematic study of various PECVD processing parameters were carried out to optimize the a-Si:H(n) emitter properties for the a-Si:H(n)/c-Si(p) solar cell applications. In the next stage, a thin optimized a-Si:H(i) buffer layer was included on the emitter side and on the rear side of the c-Si(p) to improve the surface passivation. Insertion of an a-Si:H(i) buffer layer yielded higher high open circuit voltage (Voc) with lower fill factor. It was shown that high Voc is due to the efficient surface passivation by the front/rear intrinsic layer which was also confirmed by the measurement of high effective lifetime for photo-generated carriers. Low fill factor on the other hand is caused by increasing resistivity of the solar cells by inserting low conductivity a-Si:H(i) layers.
173

The study of AlN thin film grown on bottom electrode under room temperature condition

Huang, Ching-Ju 15 May 2000 (has links)
In this study, highly C-axis oriented AlN thin films stacked upon Al bottom electrode on Si and Glass substrate are deposited with Reactive RF magnetron sputtering Technique. Three different sputtering systems were utilized to evaluate the optimized growth parameters. Room temperature growth was applied to the all system. During thin film growing , the substrate bias condition, sputtering work pressure, sputtering power and the N2 concentration are those key parameters to be adjusted in order to gain smooth surface morphology and highly C-axis prefer orientation AlN thin films. The crystallography of the deposited films was analyzed by x-ray diffraction (XRD). Film surface morphology was characterized by scanning electron microscopy (SEM). Meanwhile, transmission electron microscopy (TEM) was adopted to observe the microstructure and determine the grain size of the film. The results of the XRD patterns showed that in a 17cm long sputtering working distance condition, the AlN (002) can be obtained and the peak intensity can be increased when the sputtering power was fixed meanwhile reduced the working pressure and applied the negative bias on the substrate. The surface morphology can be improved with long working sputtering distance. The micrography of the TEM reveals that there is a transition region between Al metal and AlN film. Fine column structures can be observed in the initial growth stage. The size of the grain increased as the film became thicker. Strong AlN (002) ring pattern was obtained from the region of the top of the film. It indicates that the AlN (002) will not appear till the thickness of the film reach the critical thickness.
174

Resources and global competitive advanatage: A study of the vacuum coating equipment industry in Taiwan

Chou, Tsung,Lang 05 August 2000 (has links)
Following the growth of IC and opto-elctronic industry in Taiwan in recent years, vacuum coaters used in the both industries has drawn a lot attention and initiated a growing investment in this sector. Conventional wisdom toward this industry had been much related to consumer products such watch cases and low-price optical lenses and decorative plastic parts. Companies facing unique industrial market characteristics and tougher competition, Competitive strategies for Taiwanese players in this sector are explored. Resources based theory and related secondary industrial data were used to form a base on which a managerial strategy and marketing perspevtives are built. As limited source of industrial information available from existing vacuum coating companies in Taiwan either inform of interview or indigenous literature, the thesis were prepared mostly based on author's industrial experiences, data provided by author's company and related academy literature related to strategy. A further field study for a generalization of competition strategy shall be required and refined for this special industry in Taiwan.
175

Performance Analysis and Improvement of a DC Magnetron Sputtering System

Lai, Ming-chih 20 July 2009 (has links)
The DC magnetron sputtering system (MSS) is used in microelectronic industries, and is a key device in the thin film depositions manufacturing process. The major influence factors of the DC magnetron sputtering system operational performance such as operational time and target utilization, which are due to unsatisfactory interactions between electrons and electromagnetic field inside the sputter. This study hopes to improve an established DC MSS, by employing commercial finite element analysis software that will be calculated the flux density, and using three-dimensional equation of motion to estimate the behavior of electrons inside the sputter; furthermore, in the light of the influence electrons position and speed, proposed refinements that the magnetic field above the target is controlled to make the performance improvement. Results from a study showed that the operational trajectory of the electrons at different magnetic flux density levels on top of the target after an operational period, the proposed refinements can increase the sputtering efficiency by as much as 30%. Other than that, through the similarities and dissimilarities between the additional magnetic fields and the main magnetic flux direction, the target erosion profiles with the refinements are more evenly spread out; reduction in the target material consumptions can also be expected.
176

The Effects of Heat Treatments on Zinc Nitride Thin Films and the PN Junction Characterization

Li, Cheng-Hua 07 September 2009 (has links)
There are many intensive researches for zinc compounds due to their wide band gaps and potential applications in visible and UV optoelectronic technologies. Zinc nitride is a n-type semiconductor material having a direct band gap, and is not widely studied. Previous papers reported that zinc nitride is a n-type semiconductor having low resistivity and high electron mobility. Its band gap varies from 1.23 eV to 3.2 eV depending on the process condition. In this work, we successfully fabricated zinc nitride p-n junction by heat treatment on zinc nitride films. The threshold voltage of p-n junction is about 1 V. The Zinc nitride films were prepared by reactive RF magnetron sputtering. The as-grown zinc nitride thin film is a n-type material. It is found that the film treated at 300¢J for 3 hours can be changed to a p-type material. The zinc nitride has a very low resistance (2.2¡Ñ10-2 £[-cm) and high carrier concentration (3.88¡Ñ1019 cm-3) after the heat treatment. The optical band gap of zinc nitride was determined as a direct band gap varying from 1.1 eV to 1.6 eV according to the temperature of heat treatment. The zinc nitride was successfully prepared with various electrical characteristics and band gaps by controlling the temperature of heat treatment.
177

Evolution of Ion-Induced Ripple Patterns - Anisotropy, nonlinearity, and scaling

Keller, A. 16 September 2010 (has links) (PDF)
This thesis addresses the evolution of nanoscale ripple patterns on solid surfaces during low-energy ion sputtering. Particular attention is paid to the long-time regime in which the surface evolution is dominated by nonlinear processes. This is explored in simulation and experiment. In numerical simulations, the influence of anisotropy on the evolution of the surface patterns in the anisotropic stochastic Kuramoto-Sivashinsky (KS) equation with and without damping is studied. For a strong nonlinear anisotropy, a 90 rotation of the initial ripple pattern is observed and explained by anisotropic renormalization properties of the anisotropic KS equation. This explanation is supported by comparison with analytical predictions. In contrast to the isotropic stochastic KS equation, interrupted ripple coarsening is found in the presence of low damping. This coarsening seems to be a nonlinear anisotropy effect that occurs only in a narrow range of the nonlinear anisotropy parameter. Ex-situ atomic force microscopy (AFM) investigations of Si(100) surfaces sputtered with sub-keV Ar ions under oblique ion incidence show the formation of a periodic ripple pattern. This pattern is oriented normal to the direction of the ion beam and has a periodicity well below 100 nm. With increasing ion fluence, the ripple pattern is superposed by larger corrugations that form another quasi-periodic pattern at high fluences. This ripple-like pattern is oriented parallel to the direction of the ion beam and has a periodicity of around one micrometer. Interrupted wavelength coarsening is observed for both patterns. A dynamic scaling analysis of the AFM images shows the appearance of anisotropic scaling at large lateral scales and high fluences. Based on comparison with the predictions of different nonlinear continuum models, the recent hydrodynamic model of ion erosion, a generalization of the anisotropic KS equation, is considered as a potentially powerful continuum description of this experiment. In further in-situ experiments, the dependence of the dynamic scaling behavior of the sputtered Si surface on small variations of the angle of incidence is investigated by grazing incidence small angle X-ray scattering (GISAXS). A transition from strongly anisotropic to isotropic scaling is observed. This indicates the presence of at least two fixed points in the system, an anisotropic and an isotropic one. The dynamic scaling exponents of the isotropic fixed point are in reasonable agreement with those of the Kardar-Parisi-Zhang (KPZ) equation. It remains to be seen whether the hydrodynamic model is able to show such a transition from anisotropic to isotropic KPZ-like scaling.
178

Sputtering deposition of barium titanate film on nickel foil

Bao, Lijie. January 2009 (has links)
Thesis (Ph.D.)--University of Delaware, 2009. / Principal faculty advisor: Robert L. Opila, Dept. of Materials Science & Engineering. Includes bibliographical references.
179

Combined Tungsten Disulfide and Graphene Low Friction Thin Film : Synthesis and Characterization

Johansson, Fredrik January 2015 (has links)
Tungsten disulfide is a proven material as a low friction solid coating. The material is well characterized and has proven its capabilities the last century. Graphene is this centurys most promising material with electrical and mechanical properties. With it the 2D material revolution have started. In this thesis I present a feasible way to sputter tungsten disulfide on graphene as a substrate with little damage to the graphene from energetic particles and a straight forward method to quantize the damage before and after deposition. Further I investigate compositional changes in the sputtered films depending on processing pressure and how tungsten disulfide film thickness and the amount of graphene damage affects the materials low friction capabilities. It is shown that graphene is not a viable substrate for a low friction tungsten disulfide film and that tungsten disulfide is an excellent material for low friction coatings even down too a few nanometers and that the films behavior during load in the friction testing significantly depends on the processing pressure during sputtering.
180

Molybdenum as a back contact for cucl treated cds/cdte solar cells

Jayabal, Matheshkumar 01 June 2005 (has links)
CdTe is one of the most promising absorbers for use in inexpensive semiconductor solar cells having achieved a high efficiency of 16.4% in small area cells [1]. One of the most important technological problems in obtaining high efficiencies is to have a good ohmic contact on the CdTe, which is characterized by a very high work function [2]. Cu is used as a dopant in CdTe at the contact to promote quantum mechanical tunneling [3]. But the oversupply of Cu causes the diffusion of Cu through CdTe to the underlying CdS layer resulting in the degradation of the cell performance. It has been reported that Cu was segregated near the CdS/CdTe junction. To avoid the Cu segregation at the junction, Cu supply should be minimized while the ohmic characteristics of p-CdTe contact are maintained [4]. In this thesis, the main objective is to understand the role of Cu at the CdS/CdTe interface. Here the Cu is added at the CdS/CdTe interface and is avoided at the back contact.

Page generated in 0.1733 seconds