• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 23
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 80
  • 80
  • 72
  • 56
  • 47
  • 44
  • 34
  • 34
  • 21
  • 17
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Desenvolvimento de uma plataforma computacional para análise via método dos elementos finitos de estruturas de concreto armado convencional e reforçado com fibras de aço. / Development of a computational platform for the analysis through the finite element method of reinforced concrete structures and steel fiber reinforced concrete.

Bitencourt Júnior, Luís Antônio Guimarães 19 June 2009 (has links)
Neste trabalho foi desenvolvida uma plataforma computacional para análise via método dos elementos finitos de estruturas de concreto armado convencional e reforçado com fibras de aço. A ferramenta numérica desenvolvida foi obtida por meio do acoplamento do programa FEMOOP, denominado solver com o pré e pós-processador GiD. Esse acoplamento foi possibilitado por meio da programação de um conjunto de arquivos denominados arquivos de customização, responsáveis pelo trabalho conjunto dos programas. Utiliza-se uma única interface gráfica com caixas de diálogo vinculadas ao código do solver, responsáveis por aplicar as condições de contorno do problema, tipo de análise, e aplicação dos materiais nos seus respectivos elementos finitos. Para a representação do concreto, foram implementados elementos finitos planos isoparamétricos quadrilaterais e triangulares e para as armaduras elementos finitos isoparamétricos unifilares lineares e quadráticos representados por meio do modelo discreto. Para o comportamento do concreto, foi considerado um modelo elástico não-linear com comportamento isotrópico até o limite de ruptura, acoplado a um modelo de amolecimento linear na tração. As fissuras são representadas pelo modelo de fissuração distribuída do tipo rotacional. Como critério de resistência para o concreto podem-se usar o modelo de Ottosen ou o modelo de Willam e Warnke de cinco parâmetros implementados na plataforma. Especificamente para considerar a presença de fibras de aço descontínuas na matriz de concreto, é utilizado o critério de ruptura proposto por SEOW e SWADDIWUDHIPONG (2005), que é uma alteração no meridiano de tração do critério proposto por Willam e Warnke. Para o concreto reforçado com fibras de aço fissurado considera-se o trecho pós-fissuração proposto no modelo de tração de LIM et. al (1987). As armaduras têm seu comportamento descrito através de um modelo elasto-plástico bilinear. A interação entre as armaduras e o concreto foi considerada como de aderência perfeita. Como se trata da modelagem de um material com comportamento não-linear, foi implementado para resolução das equações de equilíbrio o método de Newton-Raphson. Por fim, a plataforma final obtida foi avaliada por meio da simulação de vigas de concreto armado convencional e reforçado com fibras de aço disponíveis na literatura, que confirmaram a eficiência das implementações efetuadas. / In this work a computational platform for the analysis of reinforced concrete structures reinforced or not with steel fibers has been developed. This tool is based on the finite element method and has been obtained by the coupling of FEMOOP, denominated solver, with the pre and post-processor program GiD. The coupling has been possible by programming a set of customization files responsible for the communication between the two base programs. A single graphical interface with particular dialog boxes which are linked to the solver facilities is used to apply the boundary conditions, type of analysis, and material properties in the finite element model. For the geometrical representation of concrete elements, plane isoparametric quadrilateral and triangular finite elements have been implemented, while for the steel reinforcement bars, discrete isoparametric truss finite elements with linear end quadratic interpolation have been used. In order to model the mechanical behavior of concrete materials, a nonlinear isotropic elastic model together with a tension softening linear model has been adapted. Cracks are represented through a rotational smeared crack model. Both Ottosen and 5 parameters Willam-Warnke models can be used as the strength criterion of concrete. A failure model proposed by SEOW and SWADDIWUDHIPONG (2005), based on an adaptation of the Willam-Warnke model where a modification of the tension meridian is introduced, is used to consider the discontinuous steel fibers dispersed into the concrete mass. The post-cracking behavior of the steel fiber reinforced concrete considers the tension model proposed by LIM et. al (1987). The steel rebars have their behavior described by a bilinear elastoplastic model. A perfect bond between concrete and the reinforcing bars is assumed. For the solution of the nonlinear equations the Newton-Raphson method is used. The developed computational platform has been evaluated through a set of numerical simulations of tests performed in conventionally reinforced and steel fiber reinforced concrete beams available on the literature. These simulations confirm the efficiency of the current implementation.
42

Failure and toughness of steel fiber reinforced concrete under tension and shear

Barragán, Bryan Erick 22 March 2002 (has links)
La tesis se enmarca en la caracterización, a nivel material, de la fractura del hormigón reforzado con fibras de acero (SFRC) bajo solicitaciones de tracción y cortante, y sobre la determinación de parámetros que representan la tenacidad del material sometido a esos dos modos de carga. Asimismo, se han realizado ensayos hasta rotura por cortante de elementos estructurales a escala real, los cuales se han analizado utilizando formulaciones existentes en distintos códigos de diseño.El comportamiento a tracción uniaxial del hormigón reforzado con fibras de acero se caracteriza utilizando cilindros entallados, elaborados con hormigones de resistencia normal y alta, con y sin fibras de acero. La metodología se extiende también para testigos extraídos de elementos de mayor tamaño. Los resultados se utilizan para definir parámetros de tenacidad y resistencia equivalentes de post-pico utilizables para representar el comportamiento del material y para un posible diseño estructural. Además, se desarrolla un estudio paramétrico experimental, que considera diferentes variables del ensayo y forma de probetas, para definir una configuración confiable del ensayo. Se analizan los modos de rotura observados y se evalúa la respuesta tensión-ancho de fisura. Asimismo, se propone una relación tensión-apertura de fisura característica para el diseño y análisis estructural. El comportamiento a tracción uniaxial se compara también con el de flexión y tracción por compresión diametral.La fractura por cortante se estudia a nivel material, en hormigones de resistencia normal y alta, con y sin fibras de acero, utilizando la configuración de cortante directo denominada push-off. Se analizan el modo de rotura y la respuesta tensión-desplazamiento. Además, se definen parámetros basados en la tenacidad y tensiones equivalentes de cortante para una posible utilización en el diseño estructural.Con el fin de obtener resultados que validen la utilización de las fibras de acero como refuerzo de cortante y al mismo tiempo estudiar la fractura por cortante a nivel estructural, se han realizado ensayos a escala real sobre vigas de sección rectangular y en T. Se analizan las respuestas carga-flecha y carga-ancho de fisura de vigas rectangulares de hormigón reforzado con fibras de acero variando su altura y de vigas T variando las dimensiones del ala. Los resultados obtenidos experimentalmente se utilizan para verificar la aplicabilidad de los métodos de diseño existentes en el caso del hormigón reforzado con fibras de acero. Además, se presenta una propuesta para el diseño a cortante basada en la respuesta tensión-desplazamiento relativo obtenida a partir del ensayo push-off de cortante directo. / The thesis deals with the characterization of the failure of steel fiber reinforced concrete (SFRC) in tension and shear, on the material level, and the determination of parameters that represent the toughness in these two modes of failure. Tests have been performed on large-scale beams failing under shear failure, which have been analyzed using existing design code formulas. The toughness parameters determined from the material are used in the design against such failure.The uniaxial tensile behavior of SFRC is characterized using notched cylinders of normal and high strength concretes, with and without steel fibers. The methodology is also extended to cores extracted from large elements. Results are used to define toughness parameters and equivalent post-peak strengths to be used for representing the material behavior and for possible structural design. Furthermore, a parametric study considering different test variables and specimen shape is carried out in order to define a reliable test configuration. The observed modes of failure are analyzed and the stress-crack width response is evaluated. Also, a characteristic stress-crack width response is proposed for structural analysis and design. The uniaxial tension behavior is also compared with that of flexural and splitting-tension.The shear failure is studied using the direct shear push-off test configuration, in normal and high strength concretes with and without steel fibers. The mode of failure and the stress-slip and stress-crack opening responses are analyzed. Toughness parameters and equivalent shear strengths based on the test results are defined for structural design.In order to provide results for validating the use of steel fibers as shear reinforcement and for studying shear failure at the structural level, full-scale tests on rectangular and T-beams were performed. The load-deflection and load-crack width responses are analyzed and compared with results of plain concrete beam tests. The experimentally-obtained results are used to evaluate the applicability of existing design methods for steel fiber reinforced concrete. Furthermore, a proposal for shear design based on the shear stress versus slip relationship from the push-off shear test is presented.
43

Estudio del comportamiento a flexión y cortante de puentes de dovelas de hormigón con pretensado exterior y junta seca

Turmo Coderque, José 27 October 2003 (has links)
Este trabajo de investigación presenta un estudio sobre el comportamiento de los puentes de dovelas de hormigón con pretensado exterior y juntas secas conjugadas, centrándose en el estudio de la respuesta a solicitaciones de flexión y cortante combinados, en servicio y en rotura. Se evalúa, asimismo, la posibilidad de sustituir total o parcialmente la armadura convencional de las dovelas tras la inclusión de fibras metálicas en el hormigón.Para ello se realizaron ensayos sobre paneles, para evaluar la resistencia de las juntas conjugadas, y ensayos de vigas con distinto grado de pretensado sometidas a flexión y a cortante. Tanto de vigas como de paneles, se fabricaron dos series paralelas, una realizada con hormigón convencional y otra con hormigón reforzado con fibras de acero. Tanto los resultados obtenidos en estos ensayos, como los de los ensayos encontrados en la bibliografía, se han comparado con la variada formulación existente para evaluar la capacidad resistente de las juntas secas conjugadas propuesta por distintos investigadores y normativas.De entre todos los modelos de junta estudiados, todos ellos basados en el Método de los Elementos Finitos, finalmente se han puesto a punto dos modelos para estudiar la transmisión de cortante entre juntas conjugadas. Un modelo elaborado con elementos tipo junta a los que se les confiere un comportamiento de rozamiento coulombiano y que modeliza la junta (y sus llaves conjugadas) con su geometría. Otro modelo de junta plana que modeliza el comportamiento medio de la junta en la zona de llaves con elementos tipo junta dotados de un modelo de comportamiento de rozamiento cohesivo. Estos modelos de junta han sido calibrados y aplicados al estudio de los ensayos. El primer modelo de junta ha sido aplicado al estudio de los ensayos de paneles. Los dos modelos de junta han sido aplicados al estudio de los ensayos realizados sobre vigas, de los que se ha realizado un completo análisis no lineal en teoría de segundo orden, incluyendo el comportamiento no lineal de los materiales. El modelo de junta plana ha sido usado en el estudio de dos ejemplos de puentes, uno isostático y otro continuo.De todo lo anterior se han extraído conclusiones referentes al modelo de análisis, a la resistencia de las juntas, al armado de las dovelas y al comportamiento global de este tipo de estructuras. / This work presents a study of the behaviour of segmental concrete bridges with external prestressing, focussing on the response under combined flexure and shear, in the service and ultimate limit states. The possibility of replacing entirely or partially the conventional reinforcement of the segments through the incorporation of steel fibres in the concrete is also evaluated.Tests have been performed on panels to evaluate the resistance of castellated dry joints, and on large-scale beams with different levels of prestressing for evaluating the response under flexure and shear. The tests were conducted on conventional and steel fibre reinforced concretes. The results obtained in these tests, as well as those found in the literature, have been compared with several design formulas for evaluating the load-carrying capacity of dry castellated joints. The formulas that gave the best predictions have been identified and used further in the analysis of bridge girders. Two models have been used within the framework of the Finite Element Method for simulating the transmission of shear along joints between match-cast segments. In one of the approaches, the geometry of the joints (and the shear keys) is represented with interface elements with Coulomb frictional behaviour. In the other approach, the global behaviour of the key zone of the joint is represented by flat interface elements with cohesive frictional behaviour. These joint models have been calibrated using the results of the experiments. A complete analysis was performed taking into account the geometric nonlinearities and the non-linear behaviour of the materials. The flat joint model has been used in the study of two bridges, one simply supported highway bridge and another five-span highway bridge.The results of the experimental and numerical analyses have led to significant conclusions regarding the modelling of the keys, load-carrying capacity of the joints, reinforcement detailing in the segments and the global behaviour of segmental structures with dry castellated joints.
44

Analysis Of Mechanical Behavior Of High Performance Cement Based Composite Slabs Under Impact Loading

Satioglu, Azize Ceren 01 September 2009 (has links) (PDF)
Studies on the behavior of steel fiber reinforced concrete (SFRC) and slurry infiltrated fibrous concrete (SIFCON) to impact loading have started in recent years. Using these relatively new materials, higher values of tensile and compressive strength can be obtained with greater fracture toughness and energy absorption capacity, and therefore they carry a considerable importance in the design of protective structures. In this thesis, computational analyses concerning impact loading effect on concrete, steel fiber reinforced concrete (SFRC) and slurry infiltrated fibrous concrete (SIFCON) are conducted by the aid of ANSYS AUTODYN 11.0.0 software. In the simulations, the importance of the concrete compressive and tensile strengths, and the fracture energy, together with the target and projectile erosion parameters, were investigated on the response of concrete target and projectile residual velocity. The obtained results of the simulation trials on concrete, SFRC and SIFCON have been compared with the experimental outcomes of three concrete, two SFRC and two SIFCON specimens in terms of deformed target crater radius, depth volume and striking projectile residual velocities. The simulation analyses have shown that, compressive as well as tensile strengths of the concrete, SFRC and SIFCON specimens are of great importance on the crater volume while erosion parameters have a significant effect on the projectile residual velocity. Simulation outcomes possess a higher accuracy for concrete simulations when comparisons are made with available experimental results. This accuracy deteriorates for SFRC and SIFCON specimens. It was further concluded that related material tests of the specimens must be available in order to obtain higher accuracy.
45

Use of non-steel fiber reinforcement in concrete tunnel lining

Seo, Sang Yeon 26 January 2011 (has links)
Fiber reinforcement is being widely used in concrete tunnel linings these days. Using fiber reinforcement can save not only cost, but also labor and time spent on construction. However, many owners hesitate to incorporate fiber reinforcement in tunnel lining due to lack of experience with and knowledge of the behavior of fiber reinforced concrete (FRC) In this study, fiber reinforced concrete was made with various kinds of fibers such as steel fiber, macro-synthetic fiber and hybrid fiber (a blend of macro-synthetic fiber and glass fiber). Many experimental tests were performed to investigate the compressive, flexural and shear behavior of fiber reinforced concrete. In addition to the structural capacity of FRC, the distribution of fiber reinforcement inside the concrete matrix was investigated. Test results of these experimental tests were thoroughly examined to compare and quantify the effects of fiber reinforcement. Next, the test results were used to generate axial force-bending moment interaction diagrams based on current design approaches. In addition, the current design approaches were modified to estimate the accurate and exact value of bending moment. Fiber reinforcement clearly improved the structural performance of tunnel lining. The post-peak flexural and shear strength was significantly influenced by the type and amount of fiber reinforcement. / text
46

Tempiamųjų plieno plaušu armuotų gelžbetoninių elementų įtempių ir deformacijų analizė / Stress and strain analysis of steel fiber reinforced concrete members subjected to tension

Repečka, Justinas 19 June 2013 (has links)
Tiriamajame darbe nagrinėjami tempiamieji plieno plaušu armuoti gelžbetoniniai elementai. Atliekama teorinių skaičiavimo metodų literatūros apžvalga. Darbe gauti nauji eksperimentiniai tempiamųjų plieno plaušu armuotų gelžbetoninių elementų deformacijų duomenys. Iš bandymo rezultatų eliminuojamas betono susitraukimas. Patikslinami Eurokodo 2 ir Model Code tempiamųjų elementų deformacijų skaičiavimo metodai, įvertinant plieno plaušo įtaką. Liekamieji įtempiai apskaičiuojami taikant empirinį metodą. Atliekama teorinių ir eksperimentinių rezultatų palyginamoji analizė. Darbo pabaigoje pateikiami pagrindiniai rezultatai ir išvados. / In this Master Thesis investigation of steel fiber reinforced concrete members subjected to tension is performed. Literature survey on theoretical investigation methods of steel fiber reinforced concrete is done. New experimental data of steel fiber reinforced concrete members subjected to tension is obtained. Concrete shrinkage is eliminated from experimental data.Eurocode 2 and Model Code strain calculation methods of members subjected to tension are adjusted to steel fiber reinforced concrete members. Residual stresses calculated using empirical method. Comperative analysis of experimental and theoretical results is done.
47

Experimental investigation on behavior of steel fiber reinforced concrete (SFRC)

Wang, Chuanbo January 2006 (has links)
During the last four decades, fiber reinforced concrete has been increasingly used in structural applications. It is generally accepted that addition of steel fibers significantly increases tensile toughness and ductility, also slightly enhances the compressive strength. Although several studies have reported previously the favorable attributes of steel fiber reinforced concrete (SFRC), little general data is related to performance modeling. There are studies on the effect of fibers on compression, tension and shear behavior of concrete. As models proposed so far can, at best, describe only a few aspect of SFRC with a given type and amount of fibers, establishing simple and accurate generalized equations to describe the behavior of SFRC in tension, compression and shear that take into account the fiber type and content is essential. Therefore, a comprehensive experimental research on SFRC is conducted in University of Canterbury to develop generalized equations to represent the characteristics of SFRC. In this research, standard material tests of SFRC are carried out in tension, compression and shear to enable the parametric characterization and modeling of SFRC to be conducted. The tests are conducted using two different propriety fiber types (NovotexTM and DramixTM) with volumetric ratios ranging from 0 to 2 percent of the Novotex fibers and with 1 percent Dramix fibers. Compression tests are conducted on small and large cylinders. For characterization of tensile behavior, several different test methods are used including: direct tension of SFRC alone; SFRC with tension applied to an embedded longitudinal rebar; and flexural bending test. Similarly direct shear tests are conducted to investigate the additional shear resistance contributed by steel fibers. Variations in the results of different specimens are reconciled through normalization of stress and strain parameters. Based on the experimental results, empirical relations are derived for modeling and analysis of SFRC.
48

Parameter Optimization Of Steel Fiber Reinforced High Strength Concrete By Statistical Design And Analysis Of Experiments

Ayan, Elif 01 January 2004 (has links) (PDF)
This thesis illustrates parameter optimization of compressive strength, flexural strength and impact resistance of steel fiber reinforced high strength concrete (SFRHSC) by statistical design and analysis of experiments. Among several factors affecting the compressive strength, flexural strength and impact resistance of SFRHSC, five parameters that maximize all of the responses have been chosen as the most important ones as age of testing, binder type, binder amount, curing type and steel fiber volume fraction. Taguchi and regression analysis techniques have been used to evaluate L27(313) Taguchi&amp / #65533 / s orthogonal array and 3421 full factorial experimental design results. Signal to noise ratio transformation and ANOVA have been applied to the results of experiments in Taguchi analysis. Response surface methodology has been employed to optimize the best regression model selected for all the three responses. In this study Charpy Impact Test, which is a different kind of impact test, have been applied to SFRHSC for the first time. The mean of compressive strength, flexural strength and impact resistance have been observed as around 125 MPa, 14.5 MPa and 9.5 kgf.m respectively which are very close to the desired values. Moreover, this study is unique in the sense that the derived models enable the identification of underlying primary factors and their interactions that influence the modeled responses of steel fiber reinforced high strength concrete.
49

Análise teórico-experimental do comportamento de concretos reforçados com fibras de aço quando submetidos a cargas de impacto / A numerical and experimental analysis of steel fiber reinforced concretes subjected to impact loads

Garcez, Estela Oliari January 2005 (has links)
Quando o concreto é submetido a ações especiais, como cargas cíclicas ou ação de cargas de impacto, modificações em sua composição são necessárias, já que o concreto não apresenta desempenho satisfatório à tração, o que compromete o seu comportamento frente à ação de cargas dinâmicas. Uma alternativa para amenizar esta deficiência consiste em adicionar fibras ao concreto. Estas atuam como reforços à tração, transformando a matriz cimentícia, tipicamente frágil, em um material que apresenta boa resistência residual após a fissuração. Buscando colaborar na avaliação da eficiência de diferentes tipos de fibras, o presente trabalho analisa o comportamento de concretos com fibras de aço, submetidos ao impacto, avaliando a influência do fator de forma, do comprimento e do teor de fibras, assim como do tamanho do agregado. São ainda analisados os efeitos da incorporação de fibras na resistência à compressão, na resistência à tração por compressão diametral, no módulo de elasticidade e na tenacidade dos compósitos. Adicionalmente, é executada uma comparação entre os resultados experimentais e os derivados de um esquema de modelagem da situação de impacto através do uso do método de elementos discretos. Buscou-se, através da modelagem teórica, executar um mapeamento dos danos, provocados por cargas de impacto incrementais, ao longo do tempo, bem como determinar as energias necessárias para levar as placas até a ruptura. Os resultados indicam que a incorporação de fibras de aço não consegue retardar o aparecimento da primeira fissura, mas aumenta significativamente a tenacidade dos compósitos. Fibras mais longas e com maior fator de forma tendem a ser mais eficientes, desde que se supere um teor de fibras mínimo, que neste trabalho ficou em torno de 100.000 fibras/m3, para fibras longas (50-60 mm) e de 400.000 fibras/m3, para fibras curtas, cuja ancoragem é menos eficiente. O método de teste de impacto por queda de esfera se mostrou adequado e sensível, porém o esquema de modelagem numérica testado necessita ser refinado para permitir uma adequada simulação do comportamento de concretos com fibras. / When submitted to special loading patterns, derived from dynamical actions such as cyclic or impact loads, concrete elements need to be reinforced, in order to resist the tensile stresses. A feasible alternative, in such cases, is to incorporate fibers in the concrete matrix. The fibers act as a tensile reinforcement, transforming the fragile cement matrix into a composite with significant post-cracking residual strength. In order to contribute with the data collection about the efficiency of different fiber types, the present research work presents an analysis of the behavior of steel fiber reinforced concretes subjected to impact loads. The work investigates the influences of changes in the shape factor, length and amount of fibers. The effects of these combinations on other basic properties of the composites, such as compression strength, split cylinder tensile strength, Young’s modulus and tenacity is also measured. Additionally, a comparison is made between the experimental results from the impact tests and the estimates obtained from a theoretical model that uses the discrete element method (DEM). This theoretical approach aimed to determine if the model was able to simulate the damage evolution over time generated by the increasing impacts loads, as well as to determine the total energy necessary to crack and break the specimens. The results obtained pointed out that the introduction of steel fibers does not affect the energy for the first crack but increases significantly the tenacity of the composite. Longer fibers, with greater shape factors, tend to be more efficient, provided that the fiber content is sufficiently high. The minimum recommended fiber content, according to the data from this research, may be around 100.000 fibers/m3, for longer fibers (50-60 mm). Or around 400.000 fibers/m3, for shorter fibers, which are not so efficient in terms of anchorage. The impact test method developed was considered adequate, being sensitive to the phenomenon and providing reliable data. The DEM model, however, needs to be refined to be able to deal with fiber concrete composites.
50

Aplicação do método dos elementos discretos na análise estática e dinâmica de estruturas de concreto reforçado com fibras de aço / Application of the Discrete Element Method in static and dynamic analysis of steel fiber reinforced concrete structures

Figueiredo, Marcelo Porto de January 2006 (has links)
Quando o concreto é submetido a carregamentos especiais, como cargas cíclicas ou ação de cargas de impacto, modificações em sua composição são necessárias. Uma vez que o material não apresenta desempenho satisfatório à tração, seu comportamento frente a este tipo de carregamento acaba seriamente comprometido. Uma alternativa para amenizar esta deficiência consiste em adicionar fibras de aço ao concreto. Ao adicionar estes elementos à matriz cimentícia, promove-se meios de transferência de tensões através das fissuras, aumentando a tenacidade do material, proporcionando mecanismos de absorção, relacionados com o desligamento e o arrancamento de fibras. Um número significativo de trabalhos experimentais envolvendo os mais diversos tipos de elementos estruturais reforçados com fibras de aço está disponível, havendo, no entanto, uma forte carência sob o ponto de vista de simulações numéricas. Buscando colaborar no desenvolvimento do material, o presente trabalho propõe a aplicação do Método dos Elementos Discretos para simulação do compósito submetido a carregamentos estáticos e dinâmicos. São realizadas alterações no algoritmo do método a fim de realizar a dispersão de fibras de aço na matriz de concreto. A análise das condições de contorno utilizadas em trabalho anterior revela a necessidade de aplicação de apoios elásticos sob pena de superestimar a rigidez do modelo. Os diagramas carga versus deslocamento que resultaram dos ensaios estáticos demonstram que o modelo criado é sensível à adição de fibras: maiores teores conduzem a modelos com maior tenacidade. O ensaio de impacto também se mostrou sensível e o padrão de fissuração encontrado nas simulações revelou uma boa aproximação com ensaios experimentais anteriores. / When submitted to special loading patterns, derived from dynamical actions such as cyclic or impact loads, some alterations in the concrete constitution need to be done, since the material don’t have an adequate behavior under tensile stress. A feasible alternative, in such cases, is to incorporate steel fibers in the concrete matrix. Adding these elements, stress transference mechanisms along the cracks are promoted, increasing the material tenacity. An expressive number of experimental works involving all the kinds of steel fiber reinforced concrete structural elements are available. However, few researches based on numerical methods are found in the literature. In order to contribute with the data collection and the development of the material, the present research work proposes the application of the Discrete Element Method to simulate the composite subjected to static and dynamic loads. Some modifications are made on the method algorithm trying to create the dispersion of fibers in the concrete matrix. The analysis of the boundary conditions used on previous work reveal the importance of using elastic support to don’t overestimate the stiffness of the model. The diagram load versus displacement that came from the static simulations shows that the model is sensible to the addition of fibers: higher proportions of fiber leads to models with higher tenacity. The impact tests also demonstrate sensibility and the crack pattern found on the simulations presented a very good approximation to previous experimental work.

Page generated in 0.0601 seconds