21 |
Sistema de agentes polig?nicos para estegan?lise de imagens digitaisAzevedo, Samuel Oliveira de 06 August 2007 (has links)
Made available in DSpace on 2014-12-17T15:47:44Z (GMT). No. of bitstreams: 1
SamuelOA.pdf: 1023593 bytes, checksum: 651d5e25960d6664c54a1e7690f2acb6 (MD5)
Previous issue date: 2007-08-06 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / In this work, we propose a multi agent system for digital image steganalysis, based on the poliginic bees model. Such approach aims to solve the problem of automatic steganalysis for digital media, with a case study on digital images. The system architecture was designed not only to detect if a file is suspicious of covering a hidden message, as well to extract the hidden message or information regarding it. Several experiments were performed whose results confirm a substantial enhancement (from 67% to 82% success rate) by using the multi-agent approach, fact not observed in traditional systems. An ongoing application using the technique is the detection of anomalies in digital data produced by sensors that capture brain emissions in little animals. The detection of such anomalies can be used to prove theories and evidences of imagery completion during sleep provided by the brain in visual cortex areas / Neste trabalho, propomos um sistema multi-agentes para estegan?lise em imagens digitais, baseado na met?fora das abelhas polig?nicas. Tal abordagem visa resolver o problema da estegan?lise autom?tica de m?dias digitais, com estudo de caso para imagens digitais. A arquitetura do sistema foi projetada n?o s? para detectar se um arquivo ? ou n?o suspeito de possuir uma mensagem oculta em si, como tamb?m para extrair essa mensagem ou informa??es acerca dela. Foram realizados v?rios experimentos cujos resultados confirmam uma melhoria substancial (de 67% para 82% de acertos) com o uso da abordagem multi-agente, fato n?o observado em outros sistemas tradicionais. Uma aplica??o atualmente em andamento com o uso da t?cnica ? a detec??o de anomalias em dados digitais produzidos por sensores que captam emiss?es cerebrais em pequenos animais. A detec??o de tais anomalias pode ser usada para comprovar teorias e evidencias de complementa??o do imageamento durante o sono, provida pelo c?rebro nas ?reas visuais do c?rtex cerebral
|
22 |
Classificadores e aprendizado em processamento de imagens e visão computacional / Classifiers and machine learning techniques for image processing and computer visionRocha, Anderson de Rezende, 1980- 03 March 2009 (has links)
Orientador: Siome Klein Goldenstein / Tese (doutorado) - Universidade Estadual de Campinas, Instituto da Computação / Made available in DSpace on 2018-08-12T17:37:15Z (GMT). No. of bitstreams: 1
Rocha_AndersondeRezende_D.pdf: 10303487 bytes, checksum: 243dccfe5255c828ce7ead27c27eb1cd (MD5)
Previous issue date: 2009 / Resumo: Neste trabalho de doutorado, propomos a utilizaçãoo de classificadores e técnicas de aprendizado de maquina para extrair informações relevantes de um conjunto de dados (e.g., imagens) para solução de alguns problemas em Processamento de Imagens e Visão Computacional. Os problemas de nosso interesse são: categorização de imagens em duas ou mais classes, detecçãao de mensagens escondidas, distinção entre imagens digitalmente adulteradas e imagens naturais, autenticação, multi-classificação, entre outros. Inicialmente, apresentamos uma revisão comparativa e crítica do estado da arte em análise forense de imagens e detecção de mensagens escondidas em imagens. Nosso objetivo é mostrar as potencialidades das técnicas existentes e, mais importante, apontar suas limitações. Com esse estudo, mostramos que boa parte dos problemas nessa área apontam para dois pontos em comum: a seleção de características e as técnicas de aprendizado a serem utilizadas. Nesse estudo, também discutimos questões legais associadas a análise forense de imagens como, por exemplo, o uso de fotografias digitais por criminosos. Em seguida, introduzimos uma técnica para análise forense de imagens testada no contexto de detecção de mensagens escondidas e de classificação geral de imagens em categorias como indoors, outdoors, geradas em computador e obras de arte. Ao estudarmos esse problema de multi-classificação, surgem algumas questões: como resolver um problema multi-classe de modo a poder combinar, por exemplo, caracteríisticas de classificação de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos demasiadamente em como normalizar o vetor-comum de caracteristicas gerado? Como utilizar diversos classificadores diferentes, cada um, especializado e melhor configurado para um conjunto de caracteristicas ou classes em confusão? Nesse sentido, apresentamos, uma tecnica para fusão de classificadores e caracteristicas no cenário multi-classe através da combinação de classificadores binários. Nós validamos nossa abordagem numa aplicação real para classificação automática de frutas e legumes. Finalmente, nos deparamos com mais um problema interessante: como tornar a utilização de poderosos classificadores binarios no contexto multi-classe mais eficiente e eficaz? Assim, introduzimos uma tecnica para combinação de classificadores binarios (chamados classificadores base) para a resolução de problemas no contexto geral de multi-classificação. / Abstract: In this work, we propose the use of classifiers and machine learning techniques to extract useful information from data sets (e.g., images) to solve important problems in Image Processing and Computer Vision. We are particularly interested in: two and multi-class image categorization, hidden messages detection, discrimination among natural and forged images, authentication, and multiclassification. To start with, we present a comparative survey of the state-of-the-art in digital image forensics as well as hidden messages detection. Our objective is to show the importance of the existing solutions and discuss their limitations. In this study, we show that most of these techniques strive to solve two common problems in Machine Learning: the feature selection and the classification techniques to be used. Furthermore, we discuss the legal and ethical aspects of image
forensics analysis, such as, the use of digital images by criminals. We introduce a technique for image forensics analysis in the context of hidden messages detection and image classification in categories such as indoors, outdoors, computer generated, and art works. From this multi-class classification, we found some important questions: how to solve a multi-class problem in order to combine, for instance, several different features such as color, texture, shape, and silhouette without worrying about the pre-processing and normalization of the combined feature vector? How to take advantage of different classifiers, each one custom tailored to a specific set of classes in confusion? To cope with most of these problems, we present a feature and classifier fusion technique based on combinations of binary classifiers. We validate our solution with a real application for automatic produce classification. Finally, we address another interesting problem: how to combine powerful binary classifiers in the multi-class scenario more effectively? How to boost their efficiency? In this context, we present a solution that boosts the efficiency and effectiveness of multi-class from binary
techniques. / Doutorado / Engenharia de Computação / Doutor em Ciência da Computação
|
23 |
Image Structures For Steganalysis And EncryptionSuresh, V 04 1900 (has links) (PDF)
In this work we study two aspects of image security: improper usage and illegal access of images. In the first part we present our results on steganalysis – protection against improper usage of images. In the second part we present our results on image encryption – protection against illegal access of images.
Steganography is the collective name for methodologies that allow the creation of invisible –hence secret– channels for information transfer. Steganalysis, the counter to steganography, is a collection of approaches that attempt to detect and quantify the presence of hidden messages in cover media.
First we present our studies on stego-images using features developed for data stream classification towards making some qualitative assessments about the effect of steganography on the lower order bit planes(LSB) of images. These features are effective in classifying different data streams. Using these features, we study the randomness properties of image and stego-image LSB streams and observe that data stream analysis techniques are inadequate for steganalysis purposes. This provides motivation to arrive at steganalytic techniques that go beyond the LSB properties. We then present our steganalytic approach which takes into account such properties.
In one such approach, we perform steganalysis from the point of view of quantifying the effect of perturbations caused by mild image processing operations–zoom-in/out, rotation, distortions–on stego-images. We show that this approach works both in detecting and estimating the presence of stego-contents for a particularly difficult steganographic technique known as LSB matching steganography.
Next, we present our results on our image encryption techniques. Encryption approaches which are used in the context of text data are usually unsuited for the purposes of encrypting images(and multimedia objects) in general. The reasons are: unlike text, the volume to be encrypted could be huge for images and leads to increased computational requirements; encryption used for text renders images incompressible thereby resulting in poor use of bandwidth. These issues are overcome by designing image encryption approaches that obfuscate the image by intelligently re-ordering the pixels or encrypt only parts of a given image in attempts to render them imperceptible. The obfuscated image or the partially encrypted image is still amenable to compression. Efficient image encryption schemes ensure that the obfuscation is not compromised by the inherent correlations present in the image. Also they ensure that the unencrypted portions of the image do not provide information about the encrypted parts. In this work we present two approaches for efficient image encryption.
First, we utilize the correlation preserving properties of the Hilbert space-filling-curves to reorder images in such a way that the image is obfuscated perceptually. This process does not compromise on the compressibility of the output image. We show experimentally that our approach leads to both perceptual security and perceptual encryption. We then show that the space-filling curve based approach also leads to more efficient partial encryption of images wherein only the salient parts of the image are encrypted thereby reducing the encryption load.
In our second approach, we show that Singular Value Decomposition(SVD) of images is useful from the point of image encryption by way of mismatching the unitary matrices resulting from the decomposition of images. It is seen that the images that result due to the mismatching operations are perceptually secure.
|
24 |
Itérations chaotiques pour la sécurité de l'information dissimulée / Chaotic iterations for the Hidden Information SecurityFriot, Nicolas 05 June 2014 (has links)
Les systèmes dynamiques discrets, œuvrant en itérations chaotiques ou asynchrones, se sont avérés être des outils particulièrement intéressants à utiliser en sécurité informatique, grâce à leur comportement hautement imprévisible, obtenu sous certaines conditions. Ces itérations chaotiques satisfont les propriétés de chaos topologiques et peuvent être programmées de manière efficace. Dans l’état de l’art, elles ont montré tout leur intérêt au travers de schémas de tatouage numérique. Toutefois, malgré leurs multiples avantages, ces algorithmes existants ont révélé certaines limitations. Cette thèse a pour objectif de lever ces contraintes, en proposant de nouveaux processus susceptibles de s’appliquer à la fois au domaine du tatouage numérique et au domaine de la stéganographie. Nous avons donc étudié ces nouveaux schémas sur le double plan de la sécurité dans le cadre probabiliste. L’analyse de leur biveau de sécurité respectif a permis de dresser un comparatif avec les autres processus existants comme, par exemple, l’étalement de spectre. Des tests applicatifs ont été conduits pour stéganaliser des processus proposés et pour évaluer leur robustesse. Grâce aux résultats obtenus, nous avons pu juger de la meilleure adéquation de chaque algorithme avec des domaines d’applications ciblés comme, par exemple, l’anonymisation sur Internet, la contribution au développement d’un web sémantique, ou encore une utilisation pour la protection des documents et des donnés numériques. Parallèlement à ces travaux scientifiques fondamentaux, nous avons proposé plusieurs projets de valorisation avec pour objectif la création d’une entreprise de technologies innovantes. / Discrete dynamical systems by chaotic or asynchronous iterations have proved to be highly interesting toolsin the field of computer security, thanks to their unpredictible behavior obtained under some conditions. Moreprecisely, these chaotic iterations possess the property of topological chaos and can be programmed in anefficient way. In the state of the art, they have turned out to be really interesting to use notably through digitalwatermarking schemes. However, despite their multiple advantages, these existing algorithms have revealedsome limitations. So, these PhD thesis aims at removing these constraints, proposing new processes whichcan be applied both in the field of digital watermarking and of steganography. We have studied these newschemes on two aspects: the topological security and the security based on a probabilistic approach. Theanalysis of their respective security level has allowed to achieve a comparison with the other existing processessuch as, for example, the spread spectrum. Application tests have also been conducted to steganalyse and toevaluate the robustness of the algorithms studied in this PhD thesis. Thanks to the obtained results, it has beenpossible to determine the best adequation of each processes with targeted application fields as, for example,the anonymity on the Internet, the contribution to the development of the semantic web, or their use for theprotection of digital documents. In parallel to these scientific research works, several valorization perspectiveshave been proposed, aiming at creating a company of innovative technology.
|
Page generated in 0.0696 seconds