Spelling suggestions: "subject:"stetigen"" "subject:"stetige""
1 |
Kontrahierende endliche Markoffsche Entscheidungsprozesse /Reetz, Dieter Armin. January 1980 (has links)
Freie Universiẗat, Fachbereich 10 - Wirtschaftswiss., Diss., 1979--Berlin.
|
2 |
Reduktion der Evolutionsgleichungen in Banach-RäumenRoncoroni, Lavinia 27 May 2016 (has links) (PDF)
In this thesis we analyze lumpability of infinite dimensional dynamical systems. Lumping is a method to project a dynamics by a linear reduction operator onto a smaller state space on which a self-contained dynamical description exists. We consider a well-posed dynamical system defined on a Banach space X and generated by an operator F, together with a linear and bounded map M : X → Y, where Y is another Banach space. The operator M is surjective but not an isomorphism and it represents a reduction of the state space. We investigate whether the
variable y = M x also satisfies a well-posed and self-contained dynamics on Y . We work in the context of strongly continuous semigroup theory. We first discuss lumpability of linear systems in Banach spaces. We give conditions for a reduced operator to exist on Y and to describe the evolution of the new variable y . We also study lumpability of nonlinear evolution equations, focusing on dissipative operators, for which some interesting results exist, concerning the existence and uniqueness of solutions, both in the classical sense of smooth
solutions and in the weaker sense of strong solutions. We also investigate the regularity properties inherited by the reduced operator from the original operator F . Finally, we describe a particular kind of lumping in the context of C*-algebras. This lumping represents a different interpretation of a restriction operator. We apply this lumping to Feller semigroups, which are important because they can be associated in a unique way to Markov processes. We show that the fundamental properties of Feller semigroups are preserved by this lumping. Using these ideas, we give a short proof of the classical Tietze extension theorem based on C*-algebras and Gelfand theory.
|
3 |
Model checking compositional Markov systemsJohr, Sven January 2007 (has links)
Zugl.: Saarbrücken, Univ., Diss., 2007
|
4 |
Reduktion der Evolutionsgleichungen in Banach-RäumenRoncoroni, Lavinia 19 May 2016 (has links)
In this thesis we analyze lumpability of infinite dimensional dynamical systems. Lumping is a method to project a dynamics by a linear reduction operator onto a smaller state space on which a self-contained dynamical description exists. We consider a well-posed dynamical system defined on a Banach space X and generated by an operator F, together with a linear and bounded map M : X → Y, where Y is another Banach space. The operator M is surjective but not an isomorphism and it represents a reduction of the state space. We investigate whether the
variable y = M x also satisfies a well-posed and self-contained dynamics on Y . We work in the context of strongly continuous semigroup theory. We first discuss lumpability of linear systems in Banach spaces. We give conditions for a reduced operator to exist on Y and to describe the evolution of the new variable y . We also study lumpability of nonlinear evolution equations, focusing on dissipative operators, for which some interesting results exist, concerning the existence and uniqueness of solutions, both in the classical sense of smooth
solutions and in the weaker sense of strong solutions. We also investigate the regularity properties inherited by the reduced operator from the original operator F . Finally, we describe a particular kind of lumping in the context of C*-algebras. This lumping represents a different interpretation of a restriction operator. We apply this lumping to Feller semigroups, which are important because they can be associated in a unique way to Markov processes. We show that the fundamental properties of Feller semigroups are preserved by this lumping. Using these ideas, we give a short proof of the classical Tietze extension theorem based on C*-algebras and Gelfand theory.
|
5 |
Krylov subspace methods and their generalizations for solving singular linear operator equations with applications to continuous time Markov chainsSchneider, Olaf 16 December 2009 (has links) (PDF)
Viele Resultate über MR- und OR-Verfahren zur Lösung linearer Gleichungssysteme bleiben (in leicht modifizierter Form) gültig, wenn der betrachtete Operator nicht invertierbar ist. Neben dem für reguläre Probleme charakteristischen Abbruchverhalten, kann bei einem singulären Gleichungssystem auch ein so genannter singulärer Zusammenbruch auftreten. Für beide Fälle werden verschiedene Charakterisierungen angegeben. Die Unterrauminverse, eine spezielle verallgemeinerte Inverse, beschreibt die Näherungen eines MR-Unterraumkorrektur-Verfahrens. Für Krylov-Unterräume spielt die Drazin-Inverse eine Schlüsselrolle. Bei Krylov-Unterraum-Verfahren kann a-priori entschieden werden, ob ein regulärer oder ein singulärer Abbruch auftritt. Wir können zeigen, dass ein Krylov-Verfahren genau dann für beliebige Startwerte eine Lösung des linearen Gleichungssystems liefert, wenn der Index der Matrix nicht größer als eins und das Gleichungssystem konsistent ist. Die Berechnung stationärer Zustandsverteilungen zeitstetiger Markov-Ketten mit endlichem Zustandsraum stellt eine praktische Aufgabe dar, welche die Lösung eines singulären linearen Gleichungssystems erfordert. Die Eigenschaften der Übergangs-Halbgruppe folgen aus einfachen Annahmen auf rein analytischem und matrixalgebrischen Wege. Insbesondere ist die erzeugende Matrix eine singuläre M-Matrix mit Index 1. Ist die Markov-Kette irreduzibel, so ist die stationäre Zustandsverteilung eindeutig bestimmt.
|
6 |
Krylov subspace methods and their generalizations for solving singular linear operator equations with applications to continuous time Markov chainsSchneider, Olaf 09 October 2006 (has links)
Viele Resultate über MR- und OR-Verfahren zur Lösung linearer Gleichungssysteme bleiben (in leicht modifizierter Form) gültig, wenn der betrachtete Operator nicht invertierbar ist. Neben dem für reguläre Probleme charakteristischen Abbruchverhalten, kann bei einem singulären Gleichungssystem auch ein so genannter singulärer Zusammenbruch auftreten. Für beide Fälle werden verschiedene Charakterisierungen angegeben. Die Unterrauminverse, eine spezielle verallgemeinerte Inverse, beschreibt die Näherungen eines MR-Unterraumkorrektur-Verfahrens. Für Krylov-Unterräume spielt die Drazin-Inverse eine Schlüsselrolle. Bei Krylov-Unterraum-Verfahren kann a-priori entschieden werden, ob ein regulärer oder ein singulärer Abbruch auftritt. Wir können zeigen, dass ein Krylov-Verfahren genau dann für beliebige Startwerte eine Lösung des linearen Gleichungssystems liefert, wenn der Index der Matrix nicht größer als eins und das Gleichungssystem konsistent ist. Die Berechnung stationärer Zustandsverteilungen zeitstetiger Markov-Ketten mit endlichem Zustandsraum stellt eine praktische Aufgabe dar, welche die Lösung eines singulären linearen Gleichungssystems erfordert. Die Eigenschaften der Übergangs-Halbgruppe folgen aus einfachen Annahmen auf rein analytischem und matrixalgebrischen Wege. Insbesondere ist die erzeugende Matrix eine singuläre M-Matrix mit Index 1. Ist die Markov-Kette irreduzibel, so ist die stationäre Zustandsverteilung eindeutig bestimmt.
|
7 |
Business Cycle Models with Embodied Technological Change and Poisson Shocks / Konjunkturmodelle mit Investitionsgebundenem Technologischen Fortschritt und Poisson SchocksSchlegel, Christoph 03 October 2004 (has links) (PDF)
The first part analyzes an Endogenous Business Cycle model with embodied technological change. Households take an optimal decision about their spending for consumption and financing of R&D. The probability of a technology invention occurring is an increasing function of aggregate R&D expenditure in the whole economy. New technologies bring higher productivity, but rather than applying to the whole capital stock, they require a new vintage of capital, which first has to be accumulated before the productivity gain can be realized. The model offers some valuable features: Firstly, the response of output following a technology shock is very gradual; there are no jumps. Secondly, R&D is an ongoing activity; there are no distinct phases of research and production. Thirdly, R&D expenditure is pro-cyclical and the real interest rate is counter-cyclical. Finally, long-run growth is without scale effects. The second part analyzes a RBC model in continuous time featuring deterministic incremental development of technology and stochastic fundamental inventions arriving according to a Poisson process. In a special case an analytical solution is presented. In the general case a delay differential equation (DDE) has to be solved. Standard numerical solution methods fail, because the steady state is path dependent. A new solution method is presented which is based on a modified method of steps for DDEs. It provides not only approximations but also upper and lower bounds for optimal consumption path and steady state. Furthermore, analytical expressions for the long-term equilibrium distributions of the stationary variables of the model are presented. The distributions can be described as extended Beta distributions. This is deduced from a methodical result about a delay extension of the Pearson system.
|
8 |
Contributions to Lattice-like Properties on Ordered Normed SpacesTzschichholtz, Ingo 23 July 2006 (has links) (PDF)
Banachverbände spielen sowohl in der Theorie als auch in der Anwendung von geordneten normierten Räume eine bedeutende Rolle. Einerseits erweisen sich viele in der Praxis relevanten Räume als Banachverbände, andererseits ermöglichen die Vektorverbandsstruktur und die enge Beziehung zwischen Ordnung und Norm ein tiefes Verständnis solcher normierter Räume. An dieser Stelle setzen folgende Überlegungen an: - Die genaue Untersuchung einiger Resultate der reichhaltigen Banachverbandstheorie ließ (zu Recht) vermuten, dass in manchen Fällen die Verbandsnormeigenschaft keine notwendige Voraussetzung ist. In der Literatur gibt es bereits einige interessante Untersuchungen allgemeiner geordneter normierter Räume mit qualifizierten positiven Kegeln und in dem Zusammenhang eine Reihe wertvoller Dualitätsaussagen. An dieser Stelle sind die Eigenschaften der Normalität, der Nichtabgeflachtheit und der Regularität eines Kegels erwähnt, welche selbst im Falle eines mit einer Norm versehenen Vektorverbandes eine schwächere Relation zwischen Ordnung und Norm ergeben als die Verbandsnormeigenschaft. - In einer neueren Arbeit wurde der aus der Theorie der Vektorverbände gut bekannte Begriff der Disjunktheit bereits auf beliebige geordnete Räume verallgemeinert, wobei viele Eigenschaften disjunkter Vektoren, des disjunkten Komplements einer Menge usw., welche aus der Verbandstheorie bekannt sind, erhalten bleiben. Auf entsprechende Weise, d.h. durch das Ersetzen exakter Infima und Suprema durch Mengen unterer bzw. oberer Schranken, können der Modul eines Vektors sowie der Begriff der Solidität einer Menge für geordnete (normierte) Räume eingeführt werden. An solchen Überlegungen knüpft die vorliegende Arbeit an. Im Kapitel m-Normen ======== werden verallgemeinerte Formen der M-Norm Eigenschaft eingeführt und untersucht. AM-Räume und (approximative) Ordnungseinheit-Räume sind Beispiele für geordnete normierte Räume mit m-Norm. Die Schwerpunkte dieses Kapitels sind zum Einen Kegel- und Normeigenschaften dieser Räume und deren Charakterisierung mit Hilfe solcher Eigenschaften und zum Anderen Dualitätsaussagen, wie sie zum Teil bereits aus der Theorie der AM- und AL-Räume bekannt sind. Minimal totale Mengen ===================== Ziel dieses Kapitels ist es, den oben erwähnten verallgemeinerten Disjunktheitsbegiff für geordnete normierte Räume zu untersuchen. Eine zentrale Rolle spielen dabei totale Mengen im Dualraum und insbesondere minimal totale Mengen sowie deren Zusammenhang mit der Disjunktheit von Elementen des Ausgangsraumes. Normierte pre-Riesz Räume ========================= Wie bereits bekannt, lässt sich jeder pre-Riesz Raum ordnungsdicht in einen (bis auf Isomorphie) eindeutigen minimalen Vektorverband einbetten, die so genannte Riesz Vervollständigung. Ist der pre-Riesz Raum normiert und sein positiver Kegel abgeschlossen, dann kann eine Verbandsnorm auf der Riesz Vervollständigung eingeführt werden, welche sich in vielen Fällen als äquivalent zur Ausgangsnorm auf dem pre-Riesz Raum erweist. Es ist allgemein bekannt, dass sich dann auch stetige lineare Funktionale fortsetzen lassen. In diesem Kapitel wird nun untersucht, inwiefern sich Ordnungsrelationen auf einer Menge stetiger linearer Funktionale beim Übergang zur Menge der Fortsetzungen erhalten lassen. Die gewonnenen Erkenntnisse kommen anschließend bei Untersuchungen zur schwachen bzw. schwach*-Topologie auf geordneten normierten Räumen zur Anwendung. Hierbei werden zwei Fragestellungen behandelt. Zum Einen gilt das Augenmerk disjunkten Folgen in geordneten normierten Räumen. Als Beispiel seien ordnungsbeschränkte disjunkte Folgen in geordneten normierten Räumen mit halbmonotoner mNorm genannt, welche stets schwach gegen Null konvergieren. Zum Anderen werden monoton fallende Folgen und Netze bzw. disjunkte Folgen von stetigen linearen Funktionalen auf einem geordneten normierten Raum betrachtet. / Banach lattices play an important role in the theory of ordered normed spaces. One reason is, that many ordered normed vector spaces, that are important in practice, turn out to be Banach lattices, on the other hand, the lattice structure and strong relations between order and norm allow a deep understanding of such ordered normed spaces. At this point the following is to be considered. - The analysis of some results in the rich Banach lattice theory leads to the conjecture, that sometimes the lattice norm property is no necessary supposition. General ordered normed spaces with a convenient positive cone were already examined, where some valuable duality properties could be achieved. We point out the properties of normality, non-flatness and regularity of a cone, which are a weaker relation between order and norm than the lattice norm property in normed vector lattices. - The notion of disjointness in vector lattices has already been generalized to arbitrary ordered vector spaces. Many properties of disjoint elements, the disjoint complement of a set etc., well known from the vector lattice theory, are preserved. The modulus of a vector as well as the concept of the solidness of a set can be introduced in a similar way, namely by replacing suprema and infima by sets of upper and lower bounds, respectively. We take such ideas up in the present thesis. A generalized version of the M-norm property is introduced and examined in section m-norms. ======= AM-spaces and approximate order unit spaces are examples of ordered normed spaces with m-norm. The main points of this section are the special properties of the positive cone and the norm of such spaces and the duality properties of spaces with m-norm. Minimal total sets ================== In this section we examine the mentioned generalized disjointness in ordered normed spaces. Total sets as well as minimal total sets and their relation to disjoint elements play an inportant at this. Normed pre-Riesz spaces ======================= As already known, every pre-Riesz space can be order densely embedded into an (up to isomorphism) unique vector lattice, the so called Riesz completion. If, in addition, the pre-Riesz space is normed and its positive cone is closed, then a lattice norm can be introduced on the Riesz completion, that turns out to be equivalent to the primary norm on the pre-Riesz space in many cases. Positive linear continuous functionals on the pre-Riesz space are extendable to positive linear continuous functionals in this setting. Here we investigate, how some order relations on a set of continuous functionals can be preserved to the set of the extension. In the last paragraph of this section the obtained results are applied for investigations of some questions concerning the weak and the weak* topology on ordered normed vector spaces. On the one hand, we focus on disjoint sequences in ordered normed spaces. On the other hand, we deal with decreasing sequences and nets and disjoint sequences of linear continuous functionals on ordered normed spaces.
|
9 |
Business Cycle Models with Embodied Technological Change and Poisson ShocksSchlegel, Christoph 28 May 2004 (has links)
The first part analyzes an Endogenous Business Cycle model with embodied technological change. Households take an optimal decision about their spending for consumption and financing of R&D. The probability of a technology invention occurring is an increasing function of aggregate R&D expenditure in the whole economy. New technologies bring higher productivity, but rather than applying to the whole capital stock, they require a new vintage of capital, which first has to be accumulated before the productivity gain can be realized. The model offers some valuable features: Firstly, the response of output following a technology shock is very gradual; there are no jumps. Secondly, R&D is an ongoing activity; there are no distinct phases of research and production. Thirdly, R&D expenditure is pro-cyclical and the real interest rate is counter-cyclical. Finally, long-run growth is without scale effects. The second part analyzes a RBC model in continuous time featuring deterministic incremental development of technology and stochastic fundamental inventions arriving according to a Poisson process. In a special case an analytical solution is presented. In the general case a delay differential equation (DDE) has to be solved. Standard numerical solution methods fail, because the steady state is path dependent. A new solution method is presented which is based on a modified method of steps for DDEs. It provides not only approximations but also upper and lower bounds for optimal consumption path and steady state. Furthermore, analytical expressions for the long-term equilibrium distributions of the stationary variables of the model are presented. The distributions can be described as extended Beta distributions. This is deduced from a methodical result about a delay extension of the Pearson system.
|
10 |
Singular Mean-Field Control and Games and Control Randomisation with Applications to Reinforcement LearningDenkert, Robert 28 January 2025 (has links)
Diese Dissertation behandelt zwei Hauptthemen: Mean-Field-Kontrollprobleme (MFC)/-Spiele (MFG) mit mehrdimensionalen singulären Kontrollen sowie den Kontrollrandomisierungsansatz und dessen Anwendungen im Reinforcement Learning. Das erste Kapitel führt MFC-Probleme mit singulären Kontrollen ein, bei denen die Kosten von Zustand, Kontrolle und deren gemeinsamer Verteilung abhängen. Mittels Two-Layer-Parametrisierungen stellen wir die Zielfunktion über stetige Funktionen von Parametrisierung dar, leiten ein dynamisches Programmierungsprinzip (DPP) her und charakterisieren die Wertfunktion als minimale Supersolution einer quasi-variationellen Ungleichung im Wasserstein-Raum. Im zweiten Kapitel betrachten wir MFGs, bei denen Einfluss und Kosten der singulären Kontrolle vom Zustand und der Kontrolle abhängen. Wir führen MFGs von Parametrisierungen ein und zeigen, dass die Zielfunktion auf der Menge der Parametrisierungen stetig ist. Wir beweisen die Existenz von Nash-Gleichgewichten sowohl im MFG der Parametrisierungen als auch im MFG mit singulären Kontrollen. Das dritte Kapitel behandelt MFC-Probleme mit gemeinsamem Rauschen mittels des Kontrollrandomisierungsansatzes, bei dem wir den Kontrollprozess durch einen Poisson-Punktprozess ersetzen und stattdessen dessen Intensität kontrollieren. Nach Reformulierung zulässiger Kontrollen als L0-wertige Prozesse, nur angepasst an das gemeinsame Rauschen, konstruieren wir ein äquivalentes randomisiertes Kontrollproblem und stellen die Wertfunktion mittels einer Rückwärts-Stochastischen-Differentialgleichung (BSDE) dar und leiten ein DPP her. Das vierte Kapitel entwickelt ein Policy-Gradient-Framework für Continuous-Time Reinforcement Learning, basierend auf dem Zusammenhang zwischen stochastischen Kontrollproblemen und randomisierten Problemen. Wir leiten eine Policy-Gradient-Darstellung mit Intensität-Policies her und entwickeln Actor-Critic-Algorithmen, veranschaulicht anhand von Optimal-Switching-Problemen im Energiesektor. / This thesis explores two main areas: mean-field control (MFC)/games (MFG) with multi-dimensional singular controls and the control randomisation approach together with its applications to reinforcement learning. The first chapter introduces MFC problems with singular controls and costs depending on the state, control, and their joint law. Using novel two-layer parametrisations, we rewrite rewards in terms of continuous functions of parametrisation of the control process, derive a dynamic programming principle (DPP) and characterise the value function as the minimal supersolution to a quasi-variational inequality in the Wasserstein space. The second chapter extends this framework to MFGs where both the impact and costs of singular controls depend on the state and control. We introduce a novel class of MFGs with a broader set of admissible controls, called MFGs of parametrisations, prove that the reward functional is continuous on the set of parametrisations and establish the existence of Nash equilibria in both the MFG of parametrisations and the underlying MFG with singular controls. The third chapter addresses MFC problems with common noise using the control randomisation technique, replacing the control process with a Poisson point process, controlling its intensity instead. By reformulating admissible controls as L0-valued processes adapted only to the common noise, we construct an equivalent randomised control problem and represent the value function via a backward stochastic differential equation (BSDE) with constrained jumps and derive a randomised DPP. The fourth chapter develops a policy gradient framework for continuous-time reinforcement learning based on the connection between stochastic control and randomised problems. We derive a new policy gradient representation featuring parametrised intensity policies and develop tailored actor-critic algorithms, demonstrated via numerical case studies of optimal switching problems in the energy sector.
|
Page generated in 0.0347 seconds