• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 5
  • 2
  • Tagged with
  • 33
  • 33
  • 16
  • 12
  • 11
  • 10
  • 10
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Strain engineered nanomembranes as anodes for lithium ion batteries

Deng, Junwen 30 January 2015 (has links) (PDF)
Lithium ion batteries (LIBs) have attracted considerable interest due to their wide range of applications, such as portable electronics, electric vehicles (EVs) and aerospace applications. Particularly, the emergence of a variety of nanostructured materials has driven the development of LIBs towards the next generation, which is featured with high specific energy and large power density. Herein, rolled-up nanotechnology is introduced for the design of strain-released materials as anodes of LIBs. Upon this approach, self-rolled nanostructures can be elegantly combined with different functional materials and form a tubular shape by relaxing the intrinsic strain, thus allowing for enhanced tolerance towards stress cracking. In addition, the hollow tube center efficiently facilitates electrolyte mass flow and accommodates volume variation during cycling. In this context, such structures are promising candidates for electrode materials of LIBs to potentially address their intrinsic issues. This work focuses on the development of superior structures of Si and SnO2 for LIBs based on the rolled-up nanotech. Specifically, Si is the most promising substitute for graphite anodes due to its abundance and high theoretical gravimetric capacity. Combined with the C material, a Si/C self-wound nanomembrane structure is firstly realized. Benefiting from a strain-released tubular shape, the bilayer self-rolled structures exhibit an enhanced electrochemical behavior over commercial Si microparticles. Remarkably, this behavior is further improved by introducing a double-sided carbon coating to form a C/Si/C self-rolled structure. With SnO2 as active material, an intriguing sandwich-stacked structure is studied. Furthermore, this novel structure, with a minimized strain energy due to strain release, exposes more active sites for the electrochemical reactions, and also provides additional channels for fast ion diffusion and electron transport. The electrochemical characterization and morphology evolution reveal the excellent cycling performance and stability of such structures.
22

Compact Helical Antenna for Smart Implant Applications

Karnaushenko, Dmitriy D. 06 December 2017 (has links) (PDF)
Medical devices have made a big step forward in the past decades. One of the most noticeable medical events of the twenties century was the development of long-lasting, wireless electronic implants such as identification tags, pacemakers and neuronal stimulators. These devices were only made possible after the development of small scale radio frequency electronics. Small radio electronic circuits provided a way to operate in both transmission and reception mode allowing an implant to communicate with an external world from inside a living organism. Bidirectional communication is a vital feature that has been increasingly implemented in similar systems to continuously record biological parameters, to remotely configure the implant, or to wirelessly stimulate internal organs. Further miniaturisation of implantable devices to make the operation of the device more comfortable for the patient requires rethinking of the whole radio system concept making it both power efficient and of high performance. Nowadays, high data throughput, large bandwidth, and long term operation requires new radio systems to operate at UHF (ultra-high frequency) bands as this is the most suitable for implantable applications. For instance, the MICS (Medical Implant Communication System) band was introduced for the communication with implantable devices. However, this band could only enable communication at low data rates. This was acceptable for the transmission of telemetry data such as heart beat rate, respiratory and temperature with sub Mbps rates. Novel developments such as neuronal and prosthetic implants require significantly higher data rates more than 10 Mbps that can be achieved with large bandwidth communicating systems operating at higher frequencies in a GHz range. Higher operating frequency would also resolve a strong issue of MICS devices, namely the scale of implants defined by dimensions of antennas used at this band. Operation at 2.4 GHz ISM band was recognized to be the most adequate as it has a moderate absorption in the human body providing a compromise between an antenna/implant scale and a total power efficiency of the communicating system. This thesis addresses a key challenge of implantable radio communicating systems namely an efficient and small scale antenna design which allows a high yield fabrication in a microelectronic fashion. It was demonstrated that a helical antenna design allows the designer to precisely tune the operating frequency, input impedance, and bandwidth by changing the geometry of a self-assembled 3D structure defined by an initial 2D planar layout. Novel stimuli responsive materials were synthesized, and the rolled-up technology was explored for fabrication of 5.5-mm-long helical antenna arrays operating in ISM bands at 5.8 and 2.4 GHz. Characterization and various applications of the fabricated antennas are successfully demonstrated in the thesis.
23

Designing Electrochemical Energy Storage Microdevices: Li-Ion Batteries and Flexible Supercapacitors

Si, Wenping 30 January 2015 (has links) (PDF)
Die Menschheit steht vor der großen Herausforderung der Energieversorgung des 21. Jahrhundert. Nirgendwo ist diese noch dringlicher geworden als im Bereich der Energiespeicherung und Umwandlung. Konventionelle Energie kommt hauptsächlich aus fossilen Brennstoffen, die auf der Erde nur begrenzt vorhanden sind, und hat zu einer starken Belastung der Umwelt geführt. Zusätzlich nimmt der Energieverbrauch weiter zu, insbesondere durch die rasante Verbreitung von Fahrzeugen und verschiedener Kundenelektronik wie PCs und Mobiltelefone. Alternative Energiequellen sollten vor einer Energiekrise entwickelt werden. Die Gewinnung erneuerbarer Energie aus Sonne und Wind sind auf jeden Fall sehr wichtig, aber diese Energien sind oft nicht gleichmäßig und andauernd vorhanden. Energiespeichervorrichtungen sind daher von großer Bedeutung, weil sie für eine Stabilisierung der umgewandelten Energie sorgen. Darüber hinaus ist es eine enttäuschende Tatsache, dass der Akku eines Smartphones jeglichen Herstellers heute gerade einen Tag lang ausreicht, und die Nutzer einen zusätzlichen Akku zur Hand haben müssen. Die tragbare Elektronik benötigt dringend Hochleistungsenergiespeicher mit höherer Energiedichte. Der erste Teil der vorliegenden Arbeit beinhaltet Lithium-Ionen-Batterien unter Verwendung von einzelnen aufgerollten Siliziumstrukturen als Anoden, die durch nanotechnologische Methoden hergestellt werden. Eine Lab-on-Chip-Plattform wird für die Untersuchung der elektrochemischen Kinetik, der elektrischen Eigenschaften und die von dem Lithium verursachten strukturellen Veränderungen von einzelnen Siliziumrohrchen als Anoden in einer Lithium-Ionen-Batterie vorgestellt. In dem zweiten Teil wird ein neues Design und die Herstellung von flexiblen on-Chip, Festkörper Mikrosuperkondensatoren auf Basis von MnOx/Au-Multischichten vorgestellt, die mit aktueller Mikroelektronik kompatibel sind. Der Mikrosuperkondensator erzielt eine maximale Energiedichte von 1,75 mW h cm-3 und eine maximale Leistungsdichte von 3,44 W cm-3. Weiterhin wird ein flexibler und faserartig verwebter Superkondensator mit einem Cu-Draht als Substrat vorgestellt. Diese Dissertation wurde im Rahmen des Forschungsprojekts GRK 1215 "Rolled-up Nanotechnologie für on-Chip Energiespeicherung" 2010-2013, finanziell unterstützt von der International Research Training Group (IRTG), und dem PAKT Projekt "Elektrochemische Energiespeicherung in autonomen Systemen, no. 49004401" 2013-2014, angefertigt. Das Ziel der Projekte war die Entwicklung von fortschrittlichen Energiespeichermaterialien für die nächste Generation von Akkus und von flexiblen Superkondensatoren, um das Problem der Energiespeicherung zu addressieren. Hier bedanke ich mich sehr, dass IRTG mir die Möglichkeit angebotet hat, die Forschung in Deutschland stattzufinden. / Human beings are facing the grand energy challenge in the 21st century. Nowhere has this become more urgent than in the area of energy storage and conversion. Conventional energy is based on fossil fuels which are limited on the earth, and has caused extensive environmental pollutions. Additionally, the consumptions of energy are still increasing, especially with the rapid proliferation of vehicles and various consumer electronics like PCs and cell phones. We cannot rely on the earth’s limited legacy forever. Alternative energy resources should be developed before an energy crisis. The developments of renewable conversion energy from solar and wind are very important but these energies are often not even and continuous. Therefore, energy storage devices are of significant importance since they are the one stabilizing the converted energy. In addition, it is a disappointing fact that nowadays a smart phone, no matter of which brand, runs out of power in one day, and users have to carry an extra mobile power pack. Portable electronics demands urgently high-performance energy storage devices with higher energy density. The first part of this work involves lithium-ion micro-batteries utilizing single silicon rolled-up tubes as anodes, which are fabricated by the rolled-up nanotechnology approach. A lab-on-chip electrochemical device platform is presented for probing the electrochemical kinetics, electrical properties and lithium-driven structural changes of a single silicon rolled-up tube as an anode in lithium ion batteries. The second part introduces the new design and fabrication of on chip, all solid-state and flexible micro-supercapacitors based on MnOx/Au multilayers, which are compatible with current microelectronics. The micro-supercapacitor exhibits a maximum energy density of 1.75 mW h cm-3 and a maximum power density of 3.44 W cm-3. Furthermore, a flexible and weavable fiber-like supercapacitor is also demonstrated using Cu wire as substrate. This dissertation was written based on the research project supported by the International Research Training Group (IRTG) GRK 1215 "Rolled-up nanotech for on-chip energy storage" from the year 2010 to 2013 and PAKT project "Electrochemical energy storage in autonomous systems, no. 49004401" from 2013 to 2014. The aim of the projects was to design advanced energy storage materials for next-generation rechargeable batteries and flexible supercapacitors in order to address the energy issue. Here, I am deeply indebted to IRTG for giving me an opportunity to carry out the research project in Germany. September 2014, IFW Dresden, Germany Wenping Si
24

Rolled-up microtubes as components for Lab-on-a-Chip devices

Harazim, Stefan M. 29 November 2012 (has links) (PDF)
Rolled-up nanotechnology based on strain-engineering is a powerful tool to manufacture three-dimensional hollow structures made of virtually any kind of material on a large variety of substrates. The aim of this thesis is to address the key features of different on- and off-chip applications of rolled-up microtubes through modification of their basic framework. The modification of the framework pertains to the tubular structure, in particular the diameter of the microtube, and the material which it is made of, hence achieving different functionalities of the final rolled-up structure. The tuning of the microtube diameter which is adjusted to the individual size of an object allows on-chip studies of single cells in artificial narrow cavities, for example. Another modification of the framework is the addition of a catalytic layer which turns the microtube into a self-propelled catalytic micro-engine. Furthermore, the tuneability of the diameter can have applications ranging from nanotools for drilling into cells, to cargo transporters in microfluidic channels. Especially rolled-up microtubes based on low-cost and easy to deposit materials, such as silicon oxides, can enable the exploration of novel systems for several scientific topics. The main objective of this thesis is to combine microfluidic features of rolled-up structures with optical sensor capabilities of silicon oxide microtubes acting as optical ring resonators, and to integrate these into a Lab-on-a-Chip system. Therefore, a new concept of microfluidic integration is developed in order to establish an inexpensive, reliable and reproducible fabrication process which also sustains the optical capabilities of the microtubes. These integrated microtubes act as optofluidic refractrometric sensors which detect changes in the refractive index of analytes using photoluminescence spectroscopy. The thesis concludes with a demonstration of a functional portable sensor device with several integrated optofluidic sensors. / Die auf verspannten Dünnschichten basierende „rolled-up nanotechnologie“ ist eine leistungsfähige Methode um dreidimensionale hohle Strukturen (Mikroröhrchen) aus nahezu jeder Art von Material auf einer großen Vielfalt von Substraten herzustellen. Ausgehend von der Möglichkeit der Skalierung des Röhrchendurchmessers und der Modifikation der Funktionalität des Röhrchens durch Einsatz verschiedener Materialien und Oberflächenfunktionalisierungen kann eine große Anzahl an verschiedenen Anwendungen ermöglicht werden. Eine Anwendung behandelt unter anderem on-chip Studien einzelner Zellen wobei die Mikroröhrchen, an die Größe der Zelle angepasste, Reaktionscontainer darstellen. Eine weitere Modifikation der Funktionalität der Mikroröhrchen kann durch das Aufbringen einer katalytischen Schicht realisiert werden, wodurch das Mikroröhrchen zu einem selbstangetriebenen katalytischen Mikro-Motor wird. Hauptziel dieser Arbeit ist es Mikrometer große optisch aktive Glasröhrchen herzustellen, diese mikrofluidisch zu kontaktieren und als Sensoren in Lab-on-a-Chip Systeme zu integrieren. Die integrierten Glasröhrchen arbeiten als optofluidische Ringresonatoren, welche die Veränderungen des Brechungsindex von Fluiden im inneren des Röhrchens durch Änderungen im Evaneszenzfeld detektieren können. Die Funktionsfähigkeit eines Demonstrators wird mit verschiedenen Flüssigkeiten gezeigt, dabei kommt ein Fotolumineszenz Spektrometer zum Anregen des Evaneszenzfeldes und Auslesen des Signals zum Einsatz. Die entwickelte Integrationsmethode ist eine Basis für ein kostengünstiges, zuverlässiges und reproduzierbares Herstellungsverfahren von optofluidischen Mikrochips basierend auf optisch aktiven Mikroröhrchen.
25

Imaging Spin Textures on Curved Magnetic Surfaces

Streubel, Robert 08 September 2015 (has links) (PDF)
Gegenwärtige Bestrebungen materialwissenschaftlicher Forschung beschäftigen sich unter anderem mit der Überführung zweidimensionaler Elemente elektronischer, optischer, plasmonischer oder magnetischer Funktionalität in den dreidimensionalen (3D) Raum. Dieser Ansatz vermag mittels Krümmung und struktureller Topologie bereits vorhandene Eigenschaften abzuändern beziehungsweise neue Funktionalitäten bereitzustellen. Vor allem Vektoreigenschaften wie die Magnetisierung kondensierter Materie lassen sich aufgrund der Brechung der Inversionssymmetrie in gekrümmten Flächen stark beeinflussen. Neben der Entwicklung diverser Vorgänge zur Herstellung 3D magnetischer Gegenstände sind geeignete Untersuchungsmethoden wie beispielsweise tomografische Abbildungen der Magnetisierung von Nöten, die maßgeblich die physikalischen Eigenschaften bestimmen. Die vorliegende Dissertationsschrift befasst sich mit der Abbildung von magnetischen Domänen in 3D gekrümmten Dünnschichten beruhend auf dem Effekt des zirkularen magnetischen Röntgendichroismus (XMCD). Die in diesem Zusammenhang entwickelte magnetische Röntgentomografie (MXT) basierend auf weicher Röntgenmikroskopie stellt eine zu Elektronenholografie und Neutronentomografie komplementäre Methodik dar, welche großes Anwendungspotential in der elementspezifischen Untersuchung magnetischer gekrümmter Flächen mit örtlicher Auflösung im Nanometerbereich aufweist. Die Schwierigkeit der Interpretation von Abbildungen magnetischer Strukturen in gekrümmten Flächen rührt von der Dreidimensionalität und der Vektoreigenschaft der Magnetisierung her. Die hierzu notwendigen Kenntnisse sind anhand von zwei topologisch verschiedenen Flächen in Form hemisphärischer Kappen und hohler Zylinder erschlossen worden. Die praktische Anwendung von MXT ist abschließend anhand der Rekonstruktion magnetischer Domänen in aufgerollten Dünnschichten mit zylindrischer Form verdeutlicht. / One of the foci of modern materials sciences is set on expanding conventional two-dimensional electronic, photonic, plasmonic and magnetic devices into the third dimension. This approach provides means to modify conventional or to launch novel functionalities by tailoring curvature and three-dimensional (3D) shape. The degree of effect is particularly high for vector properties like the magnetization due to an emergent inversion symmetry breaking. Aside from capabilities to design and synthesize 3D magnetic architectures, proper characterization methods, such as magnetic tomographic imaging techniques, need to be developed to obtain a thorough understanding of the system’s response under external stimuli. The main objective of this thesis is to develop a visualization technique that provides nanometer spatial resolution to image the peculiarities of the magnetic domain patterns on extended 3D curved surfaces. The proposed and realized concept of magnetic soft X-ray tomography (MXT), based on the X-ray magnetic circular dichroism (XMCD) effect with soft X-ray microscopies, has the potential to become a powerful tool to investigate element specifically an entirely new class of 3D magnetic objects with virtually any shape and magnetization. Imaging curved surfaces meets the challenge of three-dimensionality and requires a profound understanding of the recorded XMCD contrast. These experiences are gained by visualizing magnetic domain patterns on two distinct 3D curved surfaces, namely magnetic cap structures and rolled-up magnetic nanomembranes with cylindrical shape. The capability of MXT is demonstrated by reconstructing the magnetic domain patterns on 3D curved surfaces resembling hollow cylindrical objects.
26

Rolled-up microtubes as components for Lab-on-a-Chip devices

Harazim, Stefan M. 09 November 2012 (has links)
Rolled-up nanotechnology based on strain-engineering is a powerful tool to manufacture three-dimensional hollow structures made of virtually any kind of material on a large variety of substrates. The aim of this thesis is to address the key features of different on- and off-chip applications of rolled-up microtubes through modification of their basic framework. The modification of the framework pertains to the tubular structure, in particular the diameter of the microtube, and the material which it is made of, hence achieving different functionalities of the final rolled-up structure. The tuning of the microtube diameter which is adjusted to the individual size of an object allows on-chip studies of single cells in artificial narrow cavities, for example. Another modification of the framework is the addition of a catalytic layer which turns the microtube into a self-propelled catalytic micro-engine. Furthermore, the tuneability of the diameter can have applications ranging from nanotools for drilling into cells, to cargo transporters in microfluidic channels. Especially rolled-up microtubes based on low-cost and easy to deposit materials, such as silicon oxides, can enable the exploration of novel systems for several scientific topics. The main objective of this thesis is to combine microfluidic features of rolled-up structures with optical sensor capabilities of silicon oxide microtubes acting as optical ring resonators, and to integrate these into a Lab-on-a-Chip system. Therefore, a new concept of microfluidic integration is developed in order to establish an inexpensive, reliable and reproducible fabrication process which also sustains the optical capabilities of the microtubes. These integrated microtubes act as optofluidic refractrometric sensors which detect changes in the refractive index of analytes using photoluminescence spectroscopy. The thesis concludes with a demonstration of a functional portable sensor device with several integrated optofluidic sensors. / Die auf verspannten Dünnschichten basierende „rolled-up nanotechnologie“ ist eine leistungsfähige Methode um dreidimensionale hohle Strukturen (Mikroröhrchen) aus nahezu jeder Art von Material auf einer großen Vielfalt von Substraten herzustellen. Ausgehend von der Möglichkeit der Skalierung des Röhrchendurchmessers und der Modifikation der Funktionalität des Röhrchens durch Einsatz verschiedener Materialien und Oberflächenfunktionalisierungen kann eine große Anzahl an verschiedenen Anwendungen ermöglicht werden. Eine Anwendung behandelt unter anderem on-chip Studien einzelner Zellen wobei die Mikroröhrchen, an die Größe der Zelle angepasste, Reaktionscontainer darstellen. Eine weitere Modifikation der Funktionalität der Mikroröhrchen kann durch das Aufbringen einer katalytischen Schicht realisiert werden, wodurch das Mikroröhrchen zu einem selbstangetriebenen katalytischen Mikro-Motor wird. Hauptziel dieser Arbeit ist es Mikrometer große optisch aktive Glasröhrchen herzustellen, diese mikrofluidisch zu kontaktieren und als Sensoren in Lab-on-a-Chip Systeme zu integrieren. Die integrierten Glasröhrchen arbeiten als optofluidische Ringresonatoren, welche die Veränderungen des Brechungsindex von Fluiden im inneren des Röhrchens durch Änderungen im Evaneszenzfeld detektieren können. Die Funktionsfähigkeit eines Demonstrators wird mit verschiedenen Flüssigkeiten gezeigt, dabei kommt ein Fotolumineszenz Spektrometer zum Anregen des Evaneszenzfeldes und Auslesen des Signals zum Einsatz. Die entwickelte Integrationsmethode ist eine Basis für ein kostengünstiges, zuverlässiges und reproduzierbares Herstellungsverfahren von optofluidischen Mikrochips basierend auf optisch aktiven Mikroröhrchen.
27

Compact Helical Antenna for Smart Implant Applications

Karnaushenko, Dmitriy D. 19 October 2017 (has links)
Medical devices have made a big step forward in the past decades. One of the most noticeable medical events of the twenties century was the development of long-lasting, wireless electronic implants such as identification tags, pacemakers and neuronal stimulators. These devices were only made possible after the development of small scale radio frequency electronics. Small radio electronic circuits provided a way to operate in both transmission and reception mode allowing an implant to communicate with an external world from inside a living organism. Bidirectional communication is a vital feature that has been increasingly implemented in similar systems to continuously record biological parameters, to remotely configure the implant, or to wirelessly stimulate internal organs. Further miniaturisation of implantable devices to make the operation of the device more comfortable for the patient requires rethinking of the whole radio system concept making it both power efficient and of high performance. Nowadays, high data throughput, large bandwidth, and long term operation requires new radio systems to operate at UHF (ultra-high frequency) bands as this is the most suitable for implantable applications. For instance, the MICS (Medical Implant Communication System) band was introduced for the communication with implantable devices. However, this band could only enable communication at low data rates. This was acceptable for the transmission of telemetry data such as heart beat rate, respiratory and temperature with sub Mbps rates. Novel developments such as neuronal and prosthetic implants require significantly higher data rates more than 10 Mbps that can be achieved with large bandwidth communicating systems operating at higher frequencies in a GHz range. Higher operating frequency would also resolve a strong issue of MICS devices, namely the scale of implants defined by dimensions of antennas used at this band. Operation at 2.4 GHz ISM band was recognized to be the most adequate as it has a moderate absorption in the human body providing a compromise between an antenna/implant scale and a total power efficiency of the communicating system. This thesis addresses a key challenge of implantable radio communicating systems namely an efficient and small scale antenna design which allows a high yield fabrication in a microelectronic fashion. It was demonstrated that a helical antenna design allows the designer to precisely tune the operating frequency, input impedance, and bandwidth by changing the geometry of a self-assembled 3D structure defined by an initial 2D planar layout. Novel stimuli responsive materials were synthesized, and the rolled-up technology was explored for fabrication of 5.5-mm-long helical antenna arrays operating in ISM bands at 5.8 and 2.4 GHz. Characterization and various applications of the fabricated antennas are successfully demonstrated in the thesis.
28

Strain engineered nanomembranes as anodes for lithium ion batteries

Deng, Junwen 08 January 2015 (has links)
Lithium ion batteries (LIBs) have attracted considerable interest due to their wide range of applications, such as portable electronics, electric vehicles (EVs) and aerospace applications. Particularly, the emergence of a variety of nanostructured materials has driven the development of LIBs towards the next generation, which is featured with high specific energy and large power density. Herein, rolled-up nanotechnology is introduced for the design of strain-released materials as anodes of LIBs. Upon this approach, self-rolled nanostructures can be elegantly combined with different functional materials and form a tubular shape by relaxing the intrinsic strain, thus allowing for enhanced tolerance towards stress cracking. In addition, the hollow tube center efficiently facilitates electrolyte mass flow and accommodates volume variation during cycling. In this context, such structures are promising candidates for electrode materials of LIBs to potentially address their intrinsic issues. This work focuses on the development of superior structures of Si and SnO2 for LIBs based on the rolled-up nanotech. Specifically, Si is the most promising substitute for graphite anodes due to its abundance and high theoretical gravimetric capacity. Combined with the C material, a Si/C self-wound nanomembrane structure is firstly realized. Benefiting from a strain-released tubular shape, the bilayer self-rolled structures exhibit an enhanced electrochemical behavior over commercial Si microparticles. Remarkably, this behavior is further improved by introducing a double-sided carbon coating to form a C/Si/C self-rolled structure. With SnO2 as active material, an intriguing sandwich-stacked structure is studied. Furthermore, this novel structure, with a minimized strain energy due to strain release, exposes more active sites for the electrochemical reactions, and also provides additional channels for fast ion diffusion and electron transport. The electrochemical characterization and morphology evolution reveal the excellent cycling performance and stability of such structures.
29

Designing Electrochemical Energy Storage Microdevices: Li-Ion Batteries and Flexible Supercapacitors

Si, Wenping 22 January 2015 (has links)
Die Menschheit steht vor der großen Herausforderung der Energieversorgung des 21. Jahrhundert. Nirgendwo ist diese noch dringlicher geworden als im Bereich der Energiespeicherung und Umwandlung. Konventionelle Energie kommt hauptsächlich aus fossilen Brennstoffen, die auf der Erde nur begrenzt vorhanden sind, und hat zu einer starken Belastung der Umwelt geführt. Zusätzlich nimmt der Energieverbrauch weiter zu, insbesondere durch die rasante Verbreitung von Fahrzeugen und verschiedener Kundenelektronik wie PCs und Mobiltelefone. Alternative Energiequellen sollten vor einer Energiekrise entwickelt werden. Die Gewinnung erneuerbarer Energie aus Sonne und Wind sind auf jeden Fall sehr wichtig, aber diese Energien sind oft nicht gleichmäßig und andauernd vorhanden. Energiespeichervorrichtungen sind daher von großer Bedeutung, weil sie für eine Stabilisierung der umgewandelten Energie sorgen. Darüber hinaus ist es eine enttäuschende Tatsache, dass der Akku eines Smartphones jeglichen Herstellers heute gerade einen Tag lang ausreicht, und die Nutzer einen zusätzlichen Akku zur Hand haben müssen. Die tragbare Elektronik benötigt dringend Hochleistungsenergiespeicher mit höherer Energiedichte. Der erste Teil der vorliegenden Arbeit beinhaltet Lithium-Ionen-Batterien unter Verwendung von einzelnen aufgerollten Siliziumstrukturen als Anoden, die durch nanotechnologische Methoden hergestellt werden. Eine Lab-on-Chip-Plattform wird für die Untersuchung der elektrochemischen Kinetik, der elektrischen Eigenschaften und die von dem Lithium verursachten strukturellen Veränderungen von einzelnen Siliziumrohrchen als Anoden in einer Lithium-Ionen-Batterie vorgestellt. In dem zweiten Teil wird ein neues Design und die Herstellung von flexiblen on-Chip, Festkörper Mikrosuperkondensatoren auf Basis von MnOx/Au-Multischichten vorgestellt, die mit aktueller Mikroelektronik kompatibel sind. Der Mikrosuperkondensator erzielt eine maximale Energiedichte von 1,75 mW h cm-3 und eine maximale Leistungsdichte von 3,44 W cm-3. Weiterhin wird ein flexibler und faserartig verwebter Superkondensator mit einem Cu-Draht als Substrat vorgestellt. Diese Dissertation wurde im Rahmen des Forschungsprojekts GRK 1215 "Rolled-up Nanotechnologie für on-Chip Energiespeicherung" 2010-2013, finanziell unterstützt von der International Research Training Group (IRTG), und dem PAKT Projekt "Elektrochemische Energiespeicherung in autonomen Systemen, no. 49004401" 2013-2014, angefertigt. Das Ziel der Projekte war die Entwicklung von fortschrittlichen Energiespeichermaterialien für die nächste Generation von Akkus und von flexiblen Superkondensatoren, um das Problem der Energiespeicherung zu addressieren. Hier bedanke ich mich sehr, dass IRTG mir die Möglichkeit angebotet hat, die Forschung in Deutschland stattzufinden. / Human beings are facing the grand energy challenge in the 21st century. Nowhere has this become more urgent than in the area of energy storage and conversion. Conventional energy is based on fossil fuels which are limited on the earth, and has caused extensive environmental pollutions. Additionally, the consumptions of energy are still increasing, especially with the rapid proliferation of vehicles and various consumer electronics like PCs and cell phones. We cannot rely on the earth’s limited legacy forever. Alternative energy resources should be developed before an energy crisis. The developments of renewable conversion energy from solar and wind are very important but these energies are often not even and continuous. Therefore, energy storage devices are of significant importance since they are the one stabilizing the converted energy. In addition, it is a disappointing fact that nowadays a smart phone, no matter of which brand, runs out of power in one day, and users have to carry an extra mobile power pack. Portable electronics demands urgently high-performance energy storage devices with higher energy density. The first part of this work involves lithium-ion micro-batteries utilizing single silicon rolled-up tubes as anodes, which are fabricated by the rolled-up nanotechnology approach. A lab-on-chip electrochemical device platform is presented for probing the electrochemical kinetics, electrical properties and lithium-driven structural changes of a single silicon rolled-up tube as an anode in lithium ion batteries. The second part introduces the new design and fabrication of on chip, all solid-state and flexible micro-supercapacitors based on MnOx/Au multilayers, which are compatible with current microelectronics. The micro-supercapacitor exhibits a maximum energy density of 1.75 mW h cm-3 and a maximum power density of 3.44 W cm-3. Furthermore, a flexible and weavable fiber-like supercapacitor is also demonstrated using Cu wire as substrate. This dissertation was written based on the research project supported by the International Research Training Group (IRTG) GRK 1215 "Rolled-up nanotech for on-chip energy storage" from the year 2010 to 2013 and PAKT project "Electrochemical energy storage in autonomous systems, no. 49004401" from 2013 to 2014. The aim of the projects was to design advanced energy storage materials for next-generation rechargeable batteries and flexible supercapacitors in order to address the energy issue. Here, I am deeply indebted to IRTG for giving me an opportunity to carry out the research project in Germany. September 2014, IFW Dresden, Germany Wenping Si
30

Imaging Spin Textures on Curved Magnetic Surfaces

Streubel, Robert 27 August 2015 (has links)
Gegenwärtige Bestrebungen materialwissenschaftlicher Forschung beschäftigen sich unter anderem mit der Überführung zweidimensionaler Elemente elektronischer, optischer, plasmonischer oder magnetischer Funktionalität in den dreidimensionalen (3D) Raum. Dieser Ansatz vermag mittels Krümmung und struktureller Topologie bereits vorhandene Eigenschaften abzuändern beziehungsweise neue Funktionalitäten bereitzustellen. Vor allem Vektoreigenschaften wie die Magnetisierung kondensierter Materie lassen sich aufgrund der Brechung der Inversionssymmetrie in gekrümmten Flächen stark beeinflussen. Neben der Entwicklung diverser Vorgänge zur Herstellung 3D magnetischer Gegenstände sind geeignete Untersuchungsmethoden wie beispielsweise tomografische Abbildungen der Magnetisierung von Nöten, die maßgeblich die physikalischen Eigenschaften bestimmen. Die vorliegende Dissertationsschrift befasst sich mit der Abbildung von magnetischen Domänen in 3D gekrümmten Dünnschichten beruhend auf dem Effekt des zirkularen magnetischen Röntgendichroismus (XMCD). Die in diesem Zusammenhang entwickelte magnetische Röntgentomografie (MXT) basierend auf weicher Röntgenmikroskopie stellt eine zu Elektronenholografie und Neutronentomografie komplementäre Methodik dar, welche großes Anwendungspotential in der elementspezifischen Untersuchung magnetischer gekrümmter Flächen mit örtlicher Auflösung im Nanometerbereich aufweist. Die Schwierigkeit der Interpretation von Abbildungen magnetischer Strukturen in gekrümmten Flächen rührt von der Dreidimensionalität und der Vektoreigenschaft der Magnetisierung her. Die hierzu notwendigen Kenntnisse sind anhand von zwei topologisch verschiedenen Flächen in Form hemisphärischer Kappen und hohler Zylinder erschlossen worden. Die praktische Anwendung von MXT ist abschließend anhand der Rekonstruktion magnetischer Domänen in aufgerollten Dünnschichten mit zylindrischer Form verdeutlicht. / One of the foci of modern materials sciences is set on expanding conventional two-dimensional electronic, photonic, plasmonic and magnetic devices into the third dimension. This approach provides means to modify conventional or to launch novel functionalities by tailoring curvature and three-dimensional (3D) shape. The degree of effect is particularly high for vector properties like the magnetization due to an emergent inversion symmetry breaking. Aside from capabilities to design and synthesize 3D magnetic architectures, proper characterization methods, such as magnetic tomographic imaging techniques, need to be developed to obtain a thorough understanding of the system’s response under external stimuli. The main objective of this thesis is to develop a visualization technique that provides nanometer spatial resolution to image the peculiarities of the magnetic domain patterns on extended 3D curved surfaces. The proposed and realized concept of magnetic soft X-ray tomography (MXT), based on the X-ray magnetic circular dichroism (XMCD) effect with soft X-ray microscopies, has the potential to become a powerful tool to investigate element specifically an entirely new class of 3D magnetic objects with virtually any shape and magnetization. Imaging curved surfaces meets the challenge of three-dimensionality and requires a profound understanding of the recorded XMCD contrast. These experiences are gained by visualizing magnetic domain patterns on two distinct 3D curved surfaces, namely magnetic cap structures and rolled-up magnetic nanomembranes with cylindrical shape. The capability of MXT is demonstrated by reconstructing the magnetic domain patterns on 3D curved surfaces resembling hollow cylindrical objects.

Page generated in 0.0743 seconds