• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 14
  • 12
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 125
  • 65
  • 53
  • 47
  • 41
  • 25
  • 23
  • 22
  • 20
  • 19
  • 17
  • 14
  • 14
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Structural Studies Of Mycobacterial Uracil-DNA Glycosylase (Ung) And Single-Stranded DNA Binding Protein (SSB)

Kaushal, Prem Singh 04 1900 (has links) (PDF)
For survival and successful propagation, every organism has to maintain the genomic integrity of the cell. The information content, in the form of nucleotide bases, is constantly threatened by endogenous agents and environmental pollutants. In particular, pathogenic mycobacteria are constantly exposed to DNA-damaging assaults such as reactive oxygen species (ROS) and reactive nitrogen intermediate (RNI), in their habitat which is inside host macrophage. In addition, the genome of Mycobacterium tuberculosis makes it more susceptible for guanine oxidation and cytosine deamination as it is G-C rich. Therefore DNA repair mechanisms are extremely important for the mycobacterium. An important enzyme involved in DNA repair is uracil-DNA glycosylase (Ung). To access the genomic information, during repair as well as DNA replication and recombination, dsDNA must unwind to form single stranded (ss) intermediates. ssDNA is more prone to chemical and nuclease attacks that can produce breaks or lesions and can also inappropriately self associate. In order to preserve ssDNA intermediates, cells have evolved a specialized class of ssDNA-binding proteins (SSB) that associate with ssDNA with high affinity. As part of a major programme on mycobacterial proteins in this laboratory, structural studies on mycobacterial uracil-DNA glycosylase (Ung) and single-stranded DNA binding protein (SSB) have been carried out. The structures were solved using the well-established techniques of protein X-ray crystallography. The hanging drop vapour diffusion and microbatch methods were used for crystallization in all cases. X-ray intensity data were collected on a MAR Research imaging plate mounted on a Rigaku RU200 X-ray generator. The data were processed using the HKL program suite. The structures were solved by the molecular replacement method using the program PHASER and AMoRe. Structure refinements were carried out using the programs CNS and REFMAC. Model building was carried out using COOT. PROCHECK, ALIGN, INSIGHT and NACCESS were used for structure validation and analysis of the refined structures. MD simulations were performed using the software package GROMACS v 3.3.1. Uracil-DNA glycosylase (UNG), a repair enzyme involved in the excision of uracil from DNA, from mycobacteria differs from UNGs from other sources, particularly in the sequence in the catalytically important loops. The structure of the enzyme from Mycobacterium tuberculosis (MtUng) in complex with a proteinaceous inhibitor (Ugi) has been determined by X-ray analysis of a crystal containing seven crystallographically independent copies of the complex. This structure provides the first geometric characterization of a mycobacterial UNG. A comparison of the structure with those of other UNG proteins of known structure shows that a central core region of the molecule is relatively invariant in structure and sequence, while the N- and C-terminal tails exhibit high variability. The tails are probably important in folding and stability. The mycobacterial enzyme exhibits differences in UNG-Ugi interactions compared with those involving UNG from other sources. The MtUng-DNA complex modelled on the basis of the known structure of the complex involving the human enzyme indicates a domain closure in the enzyme when binding to DNA. The binding involves a larger burial of surface area than is observed in binding by human UNG. The DNA-binding site of MtUng is characterized by the presence of a higher proportion of arginyl residues than is found in the binding site of any other UNG of known structure. In addition to the electrostatic effects produced by the arginyl residues, the hydrogen bonds in which they are involved compensate for the loss of some interactions arising from changes in amino-acid residues, particularly in the catalytic loops. The results arising from the present investigation represent unique features of the structure and interaction of mycobacterial Ungs. To gain further insights, the structure of Mycobacterium tuberculosis Ung (MtUng) in its free form was also determined. Comparison with appropriate structures indicate that the two domain enzyme slightly closes up when binding to DNA while it slightly opens up when binding to its proteinaceous inhibitor Ugi. The structural changes on complexation in the catalytic loops reflect the special features of their structure in the mycobacterial protein. A comparative analysis of available sequences of the enzyme from different sources indicates high conservation of amino acid residues in the catalytic loops. The uracil binding pocket in the structure is occupied by a citrate ion. The interactions of the citrate ion with the protein mimic those of uracil in addition to providing insights into other possible interactions that inhibitors could be involved in. SSB is an essential accessory protein required during DNA replication, repair and recombination, and various other DNA transactions. Eubacteral single stranded DNA binding (SSB) proteins constitute an extensively studied family of proteins. The variability in the quaternary association in these tetrameric proteins was first demonstrated through the X-ray analysis of the crystal structure of Mycobacterium tuberculosis SSB (MtSSB) and Mycobacterium smegmatis (MsSSB) in this laboratory. Subsequent studies on these proteins elsewhere have further explored this variability, but attention was solely concentrated on the variability in the relative orientation of the two dimers that constitute the tetramer. Furthermore, the effect of this variability on the properties of the tetrameric molecule was not adequately addressed. In order to further explore this variability and strengthen structural information on mycobacterial SSBs in particular, and on SSB proteins in general, the crystal structures of two forms of Mycobacterium leprae single stranded DNA-binding protein (MlSSB) has been determined. Comparison of the structures with other eubacterial SSB structures indicates considerable variation in their quaternary association although the DNA binding domains in all of them exhibit the same OB-fold. This variation has no linear correlation with sequence variation, but it appears to correlate well with variation in protein stability. Molecular dynamics simulations have been carried out on tetrameric molecules derived from the two forms and the prototype E. coli SSB and the individual subunits of both the proteins. The X-ray studies and molecular dynamics simulations together yield information on the relatively rigid and flexible regions of the molecule and the effect of oligomerization on flexibility. The simulations provide insights into the changes in the subunit structure on oligomerization. They also provide insights into the stability and time evolution of the hydrogen bonds/water-bridges that connect two pairs of monomers in the tetramer. In continuation of our effort to understand structure-function relationships of mycobacterial SSBs, the structure of MsSSB complexed with a 31-mer polydeoxy-cytidine single stranded DNA (ssDNA) was determined. The mode of ssDNA binding in the MsSSB is different from the modes in the known structures of similar complexes of the proteins from E. coli (EcSSB) and Helicobacter pylori (HpSSB). The modes in the EcSSB and HpSSB also exhibit considerable differences between them. A comparison of the three structures reveals the promiscuity of DNA-binding to SSBs from different species in terms of symmetry and the path followed by the bound DNA chain. It also reveals commonalities within the diversity. The regions of the protein molecule involved in DNA-binding and the nature of the residues which interact with the DNA, exhibit substantial similarities. The regions which exhibit similarities are on the central core of the subunit which is unaffected by tetramerisation. The variable features of DNA binding are associated with the periphery of the subunit, which is involved in oligomerization. Thus, there is some correlation between variability in DNA-binding and the known variability in tetrameric association in SSBs. In addition to the work on Ung and SSB, the author was involved in X-ray studies on crystals of horse methemoglobin at different levels of hydration, which is described in the Appendix of the thesis. The crystal structure of high-salt horse methaemoglobin has been determined at environmental relative humidities (r.h.) of 88, 79, 75 and 66%. The molecule is in the R state in the native and the r.h. 88% crystals. At r.h.79% the molecule appears to move towards the R2 state. The crystal structure at r.h.66% is similar, but not identical, to that at r.h.75%. Thus variation in hydration leads to variation in the quaternary structure. Furthermore, partial dehydration appears to shift the structure from the R state to the R2 state. This observation is in agreement with the earlier conclusion that the changes in protein structure that accompany partial dehydration are similar to those that occur during protein action. A part of the work presented in the thesis has been reported in the following publications. 1. Singh, P., Talawar, R.K., Krishna, P.D., Varshney, U. & Vijayan, M. (2006). Overexpression, purification, crystallization and preliminary X-ray analysis of uracil N-glycosylase from Mycobacterium tuberculosis in complex with a proteinaceous inhibitor. Acta Crystallogr. F62, 1231-1234. 2. Kaushal, P.S., Talawar, R.K., Krishna, P.D., Varshney, U. & Vijayan, M. (2008). Unique features of the structure and interactions of mycobacterial uracil-DNA glycosylase: structure of a complex of the Mycobacterium tuberculosis enzyme in comparison with those from other sources. Acta Crystallogr. D64, 551-560. 3. Kaushal, P.S., Sankaranarayanan, R. & Vijayan, M. (2008). Water-mediated variability in the structure of relaxed-state haemoglobin. Acta Crystallogr. F64, 463-469.
102

Development and applications of a new reverse genetics method for the generation of single-stranded positive-sense RNA viruses / Développement et application d'une nouvelle méthode de génétique inverse pour la production de virus ARN simple brin de polarité positive

Aubry, Fabien 12 December 2014 (has links)
La génétique inverse est devenue une méthode clé pour la production de virus à ARN génétiquement modifiés et pour comprendre les propriétés cellulaires et biologiques des virus. Cependant les méthodes les plus fréquemment utilisées, basées sur le clonage de génomes viraux complets dans des plasmides, sont laborieuses et imprévisibles. La première partie de cette thèse présente des études sur la mise au point d'un nouveau système de génétique inverse, appelé méthode ISA (Amplicons-Sous génomique-Infectieux), qui permet la génération, en quelques jours, de virus infectieux sauvages et génétiquement modifiés appartenant à trois familles différentes de virus à ARN simple brin de polarité positive, avec une grande maîtrise des séquences virales. Dans la deuxième partie de cette thèse, nous avons appliqué pour la première fois à un arbovirus (CHIKV), le ré-encodage des codons - une méthode développée récemment et très excitante pour le développement de vaccins vivants atténués. En utilisant une approche aléatoire de ré-encodage des codons qui attribue au hasard des codons sur la base de la séquence en acides aminés correspondante, nous avons mis en évidence des pertes importantes de fitness réplicatif sur des cellules de primates et d'arthropodes. La diminution du fitness réplicatif est en corrélation avec le degré de ré-encodage, une observation qui peut aider à la modulation de l'atténuation virale. En utilisant l'expérience acquise avec le CHIKV, nous avons transposé avec succès ce mécanisme d'atténuation au JEV et amélioré notre maîtrise du processus d'atténuation en utilisant une combinaison de la synthèse de novo et de la méthode ISA. / Reverse genetics has become a key methodology for producing genetically modified RNA viruses and deciphering cellular and viral biological properties, but the most commonly used methods, based on the preparation of plasmid-based complete viral genomes, are laborious and unpredictable. The first part of this thesis presents studies relating to the development of a new reverse genetics system, designated the ISA (Infectious-Subgenomic-Amplicons) method, which enabled the generation of both wild-type and genetically modified infectious viruses belonging to three different families of positive, single stranded RNA viruses within days with great control of the viral sequences. In the second part of this thesis, we applied for the first time to an arbovirus (CHIKV), codon re-encoding - a recently developed and very exciting method for the development of live attenuated vaccines. Using a random codon re-encoding approach which randomly attributed nucleotide codons based on their corresponding amino acid sequence, we identified major fitness losses of CHIKV in both primate and arthropod cells. The decrease of replicative fitness correlated with the extent of re-encoding, an observation that may assist in the modulation of viral attenuation. Detailed analysis of these observed replicative fitness losses indicated that they are the consequence of several independent re-encoding induced events. Using the experience acquired on the CHIKV, we successfully transposed this attenuation mechanism to JEV and improved our control of the attenuation process by using a combination of de novo synthesis and the ISA method.
103

The C Terminus of Activation Induced Cytidine Deaminase (AID) Recruits Proteins Important for Class Switch Recombination to the IG Locus: A Dissertation

Ranjit, Sanjay 14 December 2010 (has links)
Activation-induced cytidine deaminase (AID) is a key protein required for both class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes. AID is induced in B cells during an immune response. Lack of AID or mutant form of AID causes immunodeficiency; e.g., various mutations in the C terminus of AID causes hyper IgM (HIGM2) syndrome in humans. The C terminal 10 amino acids of AID are required for CSR but not for SHM. During both CSR and SHM, AID deaminates dCs within Ig genes, converting them to dUs, which are then either replicated over, creating mutations, or excised by uracil DNA glycosylase (UNG), leading to DNA breaks in Ig switch regions. Also, the mismatch repair (MMR) heterodimer Msh2-Msh6 recognizes U:G mismatches resulting from AID activity and initiates MMR, which leads to increased switch region double strand breaks (DSBs). DSBs are essential intermediates of CSR; lack of UNG or MMR results in a reduction of DSBs and CSR. The DSBs created in the Sμ and one of the downstream S-regions during CSR are recombined by non-homologous end joining (NHEJ) to complete CSR. Available data suggest that AID is required not only for the deamination step of CSR, but also for one or more of the steps of CSR that are downstream of deamination step. This study investigates the role of C terminus of AID in CSR steps downstream of deamination. Using retroviral transduction into mouse splenic B cells, I show that AID binds cooperatively with UNG and Msh2-Msh6 to the Ig Sμ region, and this depends on the AID C terminus. I also show that the function of MMR during CSR depends on the AID C terminus. Surprisingly, the C terminus of AID is not required for Sμ or Sγ3 DSBs, suggesting its role in CSR occurs during repair and/or recombination of DSBs.
104

Structural and Biophysical Studies of Single-Stranded DNA Binding Proteins and dnaB Helicases, Proteins Involved in DNA Replication and Repair

Johnson, Vinu January 2007 (has links)
No description available.
105

Chronic hepatitis C: Liver disease manifestations with regard to respective innate immunity receptors gene polymorphisms / Chronische Hepatitis C: Manifestationen der Lebererkrankung in Bezug auf die relevanten Genpolymorphismen des angeborenen Immunsystems

Askar, Eva 04 July 2011 (has links)
Etwa 3% der Weltbevölkerung sind von dem Hepatitis-C-Virus-Infektion betroffen. Phänotyp der HCV-induzierten Lebererkrankung variiert stark von einem Patienten zum anderen. Die Wahrnehmung der viralen doppelsträngigen RNA (dsRNA) und einzelsträngigen RNA (ssRNA) durch den Toll-like-Rezeptor 3 (TLR3) bzw. TLR7 scheinen an der Früherkennung der Pathogene und an der Wirtsantwort auf viraler Infektion beteiligt zu sein. Darüber hinaus ist die membran-assoziierte Form des Endotoxin-Rezeptor-Bestandteils CD14 (mCD14) mit TLR3 in Intrazellulärräumen kolokalisiert und erweitert die dsRNA-Erkennung und TLR3-Signalleitung. Die vorliegende Arbeit analysiert epidemiologische und klinische Daten von Patienten kaukasischer Abstammung mit einer chronischen Hepatitis C in Bezug auf bestimmte Einzellnukleotidpolymorphismen (SNPs) mit relevanten minor allele frequencies (MAFs) in Genen, die für obengenannte Rezeptoren kodieren. Es wurde keine Assoziation von dem TLR3-Promotor-Polymorphism rs5743305 (T/A) mit TLR3-Genexpression gefunden, weder in peripheren mononukleären Zellen des Blutes (PBMCs) noch in der Leber; keine weitere Korrelation mit epidemiologischen und klinischen Parametern der chronischen Erkrankung waren zu beobachten. Andererseits, T-homozygote Patienten am rs3775291-(C/T)-Polymorphismus (der in Exon 4 lokalisierter nicht-synonymer SNP) zeigen Tendenz zu einer höheren TLR3-Genexpression in der Leber. Außerdem, unter HCV-subtyp-1a-infizierten Patienten sind keine T-Homozygoten zu finden. Im Unterschied zur Lage bei alkoholischer Lebererkrankung wurde in chronischen Hepatitis-C-Patienten keine Assoziation zwischen den Fibrosegrad und CD14-Gen-C-159T-Polymorphismus gefunden. Bei T-homozygoten Patienten wurden jedoch häufiger portale lymphoide Aggregaten gefunden als bei C-Allele-Trägern. Außerdem das Vorhandensein von portalen lymphoiden Aggregaten korrelierte eng mit der Leberentzündung und mit Gallengangsläsionen. Am Ende wurde der funktionelle nicht-synonyme SNP in Exon 3 des X-gekoppelten TLR7 Gens, rs179008/Gln11Leu, untersucht. Die Analyse war auf homo- und hemizygoten Personen, die mittels Allelspezifischentranskriptquantifizierung (ASTQ) in heterozygoten weiblichen Personen eingeordnet wurden, eingeschränkt. Es zeigte sich dabei ein individueller verzerrter Mosaizismus in PBMCs. Das variante T-Allel war nur mit der Anwesenheit der portalen lymphoiden Aggregaten assoziiert. Hepatische Viruslast und Expression der Gene, die bekannterweise bei einer chronischer HCV-Infektion induziert sind, unterschieden sich zwischen Wildtyp- und Variantallelträger nicht. Jedoch eine signifikant niedrigere Expression der interleukin-29 (IL-29)/lambda1 interferon (IFN-λ1) und beider Untereinheiten seines Rezeptors (IL-10 Rβ and IL-28Rα) war bei T-homo- und hemizygoten Patienten zu beobachten. Diese Tatsache könnte eher eine Auswirkung auf die Ansprechbarkeit auf zukünftige IFN- λ-basierte Therapie haben, als auf eine Vorhersage des Ausgangs der gängigen IFN-α-basierten Therapie.
106

Structural and mechanistic studies on prolyl hydroxylases

Chowdhury, Rasheduzzaman January 2008 (has links)
Oxygen dependent prolyl-4-hydroxylation of the alpha-subunit of the hypoxia inducible transcription factor (HIF-alpha) plays an essential role in the hypoxic response. Hydroxylation of proline residues in the N- or C-terminal oxygen dependent degradation domains (NODD or CODD) increases the affinity of HIF-alpha to the von Hippel-Lindau protein (pVHL) by approx. 1000 fold so signalling for HIF-alpha degradation. With limiting oxygen, HIF-alpha hydroxylation slows, it dimerises with HIF-beta and activates the transcription of a gene array. Prolyl-4-hydroxylation also stabilises the triple helix structure of collagen, the most abundant human protein. Both the collagen and the HIF prolyl hydroxylases (PHDs) are Fe(II) and 2-oxoglutarate (2OG) dependent oxygenases. Crystal structures of PHD2 in complex with CODD were determined in the current study. Together with biochemical analyses, the results demonstrate that catalysis involves a mobile region of PHD2 that encloses the hydroxylation site and stabilises the PHD2.Fe(II).2OG complex. When bound to PHD2 the pyrrolidine ring of the non-hydroxylated proline-residue adopts a C⁴-endo conformation. Evidence is provided that 4R-hydroxylation enables a stereoelectronic effect that changes the proline conformation to the C⁴-exo state, as observed when hydroxylated HIF-alpha is bound to pVHL and in collagen. The results help to rationalise NODD/CODD selectivity data for PHD isoforms and the effects of clinically observed mutations on PHD2 catalysis. Analyses on the interaction of nitric oxide with PHD2 are described and discussed with respect to regulation of the hypoxic response by nitric oxide.
107

Un rôle pour les protéines de la famille Whirly dans le maintien de la stabilité du génome des organelles chez Arabidopsis thaliana

Maréchal, Alexandre 07 1900 (has links)
Le maintien de la stabilité du génome est essentiel pour la propagation de l’information génétique et pour la croissance et la survie des cellules. Tous les organismes possèdent des systèmes de prévention des dommages et des réarrangements de l’ADN et nos connaissances sur ces processus découlent principalement de l’étude des génomes bactériens et nucléaires. Comparativement peu de choses sont connues sur les systèmes de protection des génomes d’organelles. Cette étude révèle l’importance des protéines liant l’ADN simple-brin de la famille Whirly dans le maintien de la stabilité du génome des organelles de plantes. Nous rapportons que les Whirlies sont requis pour la stabilité du génome plastidique chez Arabidopsis thaliana et Zea mays. L’absence des Whirlies plastidiques favorise une accumulation de molécules rearrangées produites par recombinaison non-homologue médiée par des régions de microhomologie. Ce mécanisme est similaire au “microhomology-mediated break-induced replication” (MMBIR) retrouvé chez les bactéries, la levure et l’humain. Nous montrons également que les organelles de plantes peuvent réparer les bris double-brin en utilisant une voie semblable au MMBIR. La délétion de différents membres de la famille Whirly entraîne une accumulation importante de réarrangements dans le génome des organelles suite à l’induction de bris double-brin. Ces résultats indiquent que les Whirlies sont aussi importants pour la réparation fidèle des génomes d’organelles. En se basant sur des données biologiques et structurales, nous proposons un modèle où les Whirlies modulent la disponibilité de l’ADN simple-brin, régulant ainsi le choix des voies de réparation et permettant le maintien de la stabilité du génome des organelles. Les divers aspects de ce modèle seront testés au cours d’expériences futures ce qui mènera à une meilleure compréhension du maintien de la stabilité du génome des organelles. / Maintenance of genome stability is essential for the accurate propagation of genetic information and for cell growth and survival. Organisms have therefore developed efficient strategies to prevent DNA lesions and rearrangements. Much of the information concerning these strategies has been obtained through the study of bacterial and nuclear genomes. Comparatively little is known about how organelle genomes maintain a stable structure. This study implicates the single-stranded nucleic acid-binding proteins of the Whirly family in the maintenance of plant organelle genome stability. Here we report that the plastid-localized single-stranded DNA binding proteins of the Whirly family are required for plastid genome stability in Arabidopsis thaliana and Zea mays. Absence of plastidial Whirlies favors the accumulation of rearranged molecules that arise through a non-homologous recombination mechanism mediated by regions of microhomology. This mechanism is similar to the microhomology-mediated break-induced replication (MMBIR) described in bacteria, yeast and humans. Additionally we show that plant organelles can repair double-strand breaks using a MMBIR-like pathway. Plants lacking Whirly proteins accumulate elevated levels of microhomology-mediated DNA rearrangements upon double-strand break induction, indicating that Whirlies also contribute to the accurate repair of plant organelle genomes. Using biological and structural data, we propose a working model in which Whirlies modulate the access of repair proteins and complementary DNA to single-stranded regions, thereby regulating the choice of repair pathways and maintaining plant organelle genome stability. The various aspects of this model will be tested in future experiments which should allow a better understanding of the mechanisms underlying genome stability in plant organelles.
108

Le maintien de la stabilité génomique du plastide : un petit génome d’une grande importance

Lepage, Étienne 04 1900 (has links)
Chez les plantes, le génome plastidique est continuellement exposé à divers stress mutagènes, tels l’oxydation des bases et le blocage des fourches de réplication. Étonnamment, malgré ces menaces, le génome du plastide est reconnu pour être très stable, sa stabilité dépassant même celle du génome nucléaire. Néanmoins, les mécanismes de réparation de l’ADN et du maintien de la stabilité du génome plastidique sont encore peu connus. Afin de mieux comprendre ces processus, nous avons développé une approche, basée sur l’emploi de la ciprofloxacine, qui nous permet d’induire des bris d’ADN double-brins (DSBs) spécifiquement dans le génome des organelles. En criblant, à l’aide de ce composé, une collection de mutants d’Arabidopsis thaliana déficients pour des protéines du nucléoïde du plastide, nous avons identifié 16 gènes vraisemblablement impliqués dans le maintien de la stabilité génomique de cette organelle. Parmi ces gènes, ceux de la famille Whirly jouent un rôle primordial dans la protection du génome plastidique face aux réarrangements dépendants de séquences de microhomologie. Deux autres familles de gènes codant pour des protéines plastidiques, soit celle des polymérases de types-I et celle des recombinases, semblent davantage impliquées dans les mécanismes conservateurs de réparation des DSBs. Les relations épistatiques entre ces gènes et ceux des Whirly ont permis de définir les bases moléculaires des mécanismes de la réparation dépendante de microhomologies (MHMR) dans le plastide. Nous proposons également que ce type de mécanismes servirait en quelque sorte de roue de secours pour les mécanismes conservateurs de réparation. Finalement, un criblage non-biaisé, utilisant une collection de plus de 50,000 lignées mutantes d’Arabidopsis, a été réalisé. Ce criblage a permis d’établir un lien entre la stabilité génomique et le métabolisme des espèces réactives oxygénées (ROS). En effet, la plupart des gènes identifiés lors de ce criblage sont impliqués dans la photosynthèse et la détoxification des ROS. Globalement, notre étude a permis d’élargir notre compréhension des mécanismes du maintien de la stabilité génomique dans le plastide et de mieux comprendre l’importance de ces processus. / The plant plastidial genome is constantly threatened by many mutagenic stresses, such as base oxidation and replication fork stalling. Despite these threats, the plastid genome has long been known to be more stable than the nuclear genome, suggesting that alterations of its structure would have dramatic consequences on plant fitness. At the moment, little is known about the genes and the pathways allowing such conservation of the organelle genome sequences. To gain insight into these mechanisms, we developed an assay which uses ciprofloxacin, a gyrase inhibitor, to generate DNA double-strand breaks (DSBs) exclusively in plant organelles. By screening mutants deficient for proteins composing the plastid nucleoid on ciprofloxacin, we were able to identify 16 candidate genes, most likely involved in the repair of DSBs in plastid. Among these genes, those of the Whirly family of single-stranded DNA binding proteins are shown to be key factors in protecting the genome from error-prone microhomology mediated repair (MHMR). Two other family of proteins, the plastid type-I polymerases and the plastid recombinases, seem to be involved in the conservative repair pathways. The evaluation of the epistatic relationship between those two genes and the Whirly genes led us to define the molecular basis of MHMR and to propose that they might act as a backup system for conservative repair pathways. Finally, a non-biased screen, using 50,000 different insertion lines, allowed the identification of numerous genes that were already associated with ROS homeostasis, suggesting a link between DNA repair and ROS imbalance. Globally, our study shed light on the mechanisms that allow the maintenance of plastid genome, while explaining the importance of such conservation of the plastid genome.
109

Simulation numérique du processus d’assemblage de câbles flexibles en grands déplacements / Numerical simulation of the assembly process of flexible cables under large displacements

Cottanceau, Emmanuel 10 April 2018 (has links)
Avec l’essor de l’électronique embarquée, les câbles électriques constituentune part importante des pièces automobiles tandis que l’espace à bord n’a cessé de diminuer. Leur flexibilité requiert la prédiction de leur déformation durant leur montage afin d’éviter le contact avec d’autres pièces du véhicule et leur endommagement. Les outils actuels ne permettent pas une prédiction assez réaliste et précise de leur comportement, nécessaire dans un volume de travail très restreint. Les étapes de montage sont donc validées via la réalisation de maquettes réelles coûteuses. Cette thèsea pour but d’améliorer la simulation numérique de ces pièces souples. Nous proposonsici un code de simulation 3D basé sur un modèle de poutre géométriquement exact résolu par la méthode des éléments finis. Son originalité tient dans le couplage des quaternions pour modéliser les rotations 3D et de la méthode asymptotique numérique pour la continuation du système non linéaire qui lui confère une grande robustesse. Un banc d’essai permettant l’identification des paramètres homogénéisés nécessaires au modèle numérique et sa validation par comparaison de la géométrie finale et du chemin d’équilibre est présenté. Combinés à des développements analytiques sur les modèles de poutres avec cisaillement, les essais mènent à une évaluation critique du modèle deTimoshenko 3D pour la représentation des torons de câbles. / With on-board electronics expansion, electrical cables are an essential partof automotive pieces and the space on board has plummeted. Their flexibility requires to predict their deformation during vehicle assembly in order to avoid the contact with other pieces and damaging. Current numerical tools do not allow a realistic and accurate prediction, which is necessary in the obstructed car space. Assembly steps thus are validated on costly physical mock-ups. This thesis aims at improving numerical simulation of these flexible pieces. We herein propose a 3D algorithm based on a geometrically exact beam model solved by the finite element method. This work’s originality stands in coupling quaternions as rotational parameters and the asymptotic numerical method as nonlinear solver which results in a very robust algorithm. A test bench designed to identify the homogenized beam parameters of the numerical model and to validate it by offering a comparison on the final geometry and the equilibrium path is presented. Analytical developments on shear beams and the results of these experimental tests lead to a critical evaluation of the 3D Timoshenko model for representing stranded cables.
110

Un rôle pour les protéines de la famille Whirly dans le maintien de la stabilité du génome des organelles chez Arabidopsis thaliana

Maréchal, Alexandre 07 1900 (has links)
Le maintien de la stabilité du génome est essentiel pour la propagation de l’information génétique et pour la croissance et la survie des cellules. Tous les organismes possèdent des systèmes de prévention des dommages et des réarrangements de l’ADN et nos connaissances sur ces processus découlent principalement de l’étude des génomes bactériens et nucléaires. Comparativement peu de choses sont connues sur les systèmes de protection des génomes d’organelles. Cette étude révèle l’importance des protéines liant l’ADN simple-brin de la famille Whirly dans le maintien de la stabilité du génome des organelles de plantes. Nous rapportons que les Whirlies sont requis pour la stabilité du génome plastidique chez Arabidopsis thaliana et Zea mays. L’absence des Whirlies plastidiques favorise une accumulation de molécules rearrangées produites par recombinaison non-homologue médiée par des régions de microhomologie. Ce mécanisme est similaire au “microhomology-mediated break-induced replication” (MMBIR) retrouvé chez les bactéries, la levure et l’humain. Nous montrons également que les organelles de plantes peuvent réparer les bris double-brin en utilisant une voie semblable au MMBIR. La délétion de différents membres de la famille Whirly entraîne une accumulation importante de réarrangements dans le génome des organelles suite à l’induction de bris double-brin. Ces résultats indiquent que les Whirlies sont aussi importants pour la réparation fidèle des génomes d’organelles. En se basant sur des données biologiques et structurales, nous proposons un modèle où les Whirlies modulent la disponibilité de l’ADN simple-brin, régulant ainsi le choix des voies de réparation et permettant le maintien de la stabilité du génome des organelles. Les divers aspects de ce modèle seront testés au cours d’expériences futures ce qui mènera à une meilleure compréhension du maintien de la stabilité du génome des organelles. / Maintenance of genome stability is essential for the accurate propagation of genetic information and for cell growth and survival. Organisms have therefore developed efficient strategies to prevent DNA lesions and rearrangements. Much of the information concerning these strategies has been obtained through the study of bacterial and nuclear genomes. Comparatively little is known about how organelle genomes maintain a stable structure. This study implicates the single-stranded nucleic acid-binding proteins of the Whirly family in the maintenance of plant organelle genome stability. Here we report that the plastid-localized single-stranded DNA binding proteins of the Whirly family are required for plastid genome stability in Arabidopsis thaliana and Zea mays. Absence of plastidial Whirlies favors the accumulation of rearranged molecules that arise through a non-homologous recombination mechanism mediated by regions of microhomology. This mechanism is similar to the microhomology-mediated break-induced replication (MMBIR) described in bacteria, yeast and humans. Additionally we show that plant organelles can repair double-strand breaks using a MMBIR-like pathway. Plants lacking Whirly proteins accumulate elevated levels of microhomology-mediated DNA rearrangements upon double-strand break induction, indicating that Whirlies also contribute to the accurate repair of plant organelle genomes. Using biological and structural data, we propose a working model in which Whirlies modulate the access of repair proteins and complementary DNA to single-stranded regions, thereby regulating the choice of repair pathways and maintaining plant organelle genome stability. The various aspects of this model will be tested in future experiments which should allow a better understanding of the mechanisms underlying genome stability in plant organelles.

Page generated in 0.0586 seconds