211 |
Calculation of Physical Processes at the LHCAl-Binni, Usama Adnan 01 December 2011 (has links)
With the start of the age of the Large Hadron Collider (LHC) two challenges face theoreticians and computational physicists. The first is about understanding theories beyond the Standard Model and producing verifiable predictions that can be tested against what the LHC and subsequent machines would produce. The second is to improve computational methods so that the new experimental precision is matched by a theoretical one. But this improvement is also crucial for the detection of potential deviations from Standard Model predictions and possibly also finding the elusive Higgs. This work tries to address problems in both areas. In the first part we study the effects of adding tension in considering a black-hole on a brane. Such black-holes are predicted by some models as potential phenomena at the LHC. We calculate the effects of adding tension on observable quantities of black-holes, namely, quasinormal mode frequencies and Hawking radiation, and we show how this improves predictions. In the second part we investigate the computational problem of extending the Britto-Cachazo-Feng-Witten (BCFW) method to 1-loop level. The BCFW has been successfully used in recent years to compute scattering amplitudes at tree-level by suitably complex-shifting external momenta and reducing diagrams to simpler ones. In our investigation we establish that the BCFW can be extended to 1-loop, which means that 1-loop integrands can be treated as trees and can be broken down further into even simpler trees using the BCFW. We explicitly look at the effects of the shift for the lowest three n-point cases, but also demonstrate how the result extends to arbitrary n.
|
212 |
Strings as Sigma Models and in the Tensionless LimitPersson, Jonas January 2007 (has links)
This thesis considers two different aspects of string theory, the tensionless limit of the string and supersymmetric sigma models with extended supersymmetry. First, the tensionless limit is used to find a IIB supergravity background generated by a tensionless string. The background has the characteristics of a gravitational shock-wave. Then, the quantization of the tensionless string in a pp-wave background is performed and the result is found to agree with what is obtained by taking a tensionless limit directly in the quantized theory of the tensile string. Hence, in the pp-wave background the tensionless limit commutes with quantization. Next, supersymmetric sigma models and the relation between extended world-sheet supersymmetry and target space geometry is studied. The sigma model with N=(2,2) extended supersymmetry is considered and the requirement on the target space to have a bi-Hermitean geometry is reviewed. The Hamiltonian formulation of the model is constructed and the target space is shown to have generalized Kähler geometry. The equivalence between bi-Hermitean geometry and generalized Kähler follows, in this context, from the equivalence between the Lagrangian- and Hamiltonian formulation of the sigma model. Then, T-duality in the Hamiltonian formulation of the sigma model is studied and the explicit T-duality transformation is constructed. It is shown that the transformation is a symplectomorphism, i.e. a generalization of a canonical transformation. Under certain assumptions, the amount of extended supersymmetry present in the sigma model is shown to be preserved under the T-duality transformation. Next, extended supersymmetry in a first order formulation of the sigma model is studied. By requiring N=(2,2) extended world-sheet supersymmetry an intriguing geometrical structure arises and in a special case generalized complex geometry is found to be contained in the new framework.
|
213 |
Strings, Branes and Non-trivial Space-timesBjörnsson, Jonas January 2008 (has links)
This thesis deals with different aspects of string and /p/-brane theories. One of the motivations for string theory is to unify the forces in nature and produce a quantum theory of gravity. /p/-branes and related objects arise in string theory and are related to a non-perturbative definition of the theory. The results of this thesis might help in understanding string theory better. The first part of the thesis introduces and discusses relevant topics for the second part of the thesis which consists of five papers. In the three first papers we develop and treat a perturbative approach to relativistic /p/-branes around stretched geometries. The unperturbed theory is described by a string- or particle-like theory. The theory is solved, within perturbation theory, by constructing successive canonical transformations which map the theory to the unperturbed one order by order. The result is used to define a quantum theory which requires for consistency d = 25 + p dimensions for the bosonic /p/-branes and d = 11 for the supermembrane. This is one of the first quantum results for extended objects beyond string theory and is a confirmation of the expectation of an eleven-dimensional quantum membrane. The two last papers deal with a gauged WZNW-approach to strings moving on non-trivial space-times. The groups used in the formulation of these models are connected to Hermitian symmetric spaces of non-compact type. We have found that the GKO-construction does not yield a unitary spectrum. We will show that there exists, however, a different approach, the BRST approach, which gives unitarity under certain conditions. This is the first example of a difference between the GKO- and BRST construction. This is one of the first proofs of unitarity of a string theory in a non-trivial non-compact space-time. Furthermore, new critical string theories in dimensions less then 26 or 10 is found for the bosonic and supersymmetric string, respectively.
|
214 |
The fuzzy horizonMurugan, Anand January 2007 (has links)
The fuzzball model of a black hole is an attempt to resolve the many paradoxes and puzzles of black hole physics that have revealed themselves over the last century. These badly behaved solutions of general relativity have given physicists one of the few laboratories to test candidate quantum theories of gravity. Though little is known about exactly what lies beyond the event horizon, and what the ultimate fate of matter that falls in to a black hole is, we know a few intriguing and elegant semi-classical results that have kept physicists occupied. Among these are the known black hole entropy and the Hawking radiation process.
|
215 |
Worlds and strings: ontology and epistemology in fundamental physics / Mundos e cordas: ontologia e epistemologia em física fundamentalDiana Taschetto 06 February 2018 (has links)
This work is divided into two major topics: many-worlds (or multiverse) theories in cosmology and Richard Dawids string theory-based epistemology, or non-empirical confirmation theory, as he calls it. The former is discussed in part I and the latter in part II of this dissertation. These topics are not intertwined in this work, as are not the essays that compose each chapter: in part I, first chapter, probability arguments that are presented in the literature as indications a multiverse must exist are accessed, whereas the second chapter is concerned with analyzing the metaphysical view that motivates many-world theory building, namely, the need to find unconditioned explanations in physics. Non-empirical confirmation theory is built upon three arguments, the No Alternatives Argument, the Meta-Inductive Argument from the Success of Other Theories in the Research Program and the Unexpected Explanatory Coherence Argument. Each compose a chapter in part II of this work, as they encode different philosophical issues that require for their assessment different tools from the philosophers arsenal. Skeptical conclusions are drawn at the end of each chapter. The wide spectrum of questions this work touches are designed to give at least slight indication that critical exploration of foundational theories made upon grounds familiar to philosophers can be found as internal to scientific practice itself, if that practice is concerned with the discovery, refinement and revision of fundamental theories. / Este trabalho divide-se em dois grandes tópicos: teorias de muitos mundos (ou multiverso) em cosmologia e a epistemologia não-empírica, embasada na teoria das cordas, de Richard Dawid. O primeiro é discutido na parte I e o segundo compõe a parte II deste trabalho. Tais tópicos não estão ligados, e a problemática desenvolvida em cada capítulo deste trabalho é, em larga medida, independente das demais: no primeiro capítulo da parte I argumentos probabilísticos indicados a literatura em prol da existência de muitos mundos são analisados, enquanto no segundo capítulo os pressupostos metafísicos que motivam a construção de teorias de muitos mundos em cosmologia, a saber, o fundamentalismo que busca explicações não-condicionadas para os fenômenos com os quais lida a física, são discutidos. A teoria da confirmação não-empírica de Dawid, tema da segunda parte deste trabalho, tem por base três argumentos, a saber, o argumento das alternativas inexistentes, o argumento meta-indutivo do sucesso de outras teorias no programa de pesquisa e o argumento da coerência explanatória inesperada. Cada um destes argumentos é tema de um capítulo neste trabalho, posto que desvelam problemáticas filosóficas distintas que requerem, por sua natureza, ferramentas de análise diferentes. Conclusões céticas são indicadas ao final de cada capítulo. O amplo espectro de questões que aborda este trabalho é desenhado com o propósito de fornecer ao menos vaga indicação de que a exploração crítica de teorias fundamentais, levadas a cabo a partir de vieses familiares ao filósofo, pode ser vista como interna à própria prática científica, se esta prática é preocupada com a descoberta, refinamento e revisão de teorias fundamentais.
|
216 |
Holographic backgrounds from D-brane probesMoskovic, Micha 30 May 2014 (has links)
The gauge/string correspondence provides a non-perturbative definition of string theory and hence quantum gravity in some backgrounds, making it possible to translate statements about strongly coupled quantum field theories into results about gravity. <p><p>In this thesis, we focus on the derivation of holographic backgrounds from the field theory, without using any supergravity input. Instead, we rely crucially on the addition of probe D-branes to the stack of D-branes generating the background.<p>From the field theory description of the probe branes in the presence of the background branes, one can compute an effective action for the probes (in a suitable low-energy/near-horizon limit) by integrating out the background branes. Comparing this action with the D-brane probe action in a generic supergravity background then allows to determine the holographic background dual to the considered field theory vacuum.<p><p>In the first part, the required pre-requisites of field and string theory are recalled and this strategy to derive holographic backgrounds is explained in more detail on the basic case of D3-branes in flat space probed by a small number of D-instantons.<p><p>The second part contains the original results of this thesis, obtained by applying this strategy to several specific examples. We first derive the duals to three continuous deformations (Coulomb branch, β and non-commutative deformations) of the basic case, in the limit in which the D-instantons can probe the full geometry. We then derive the enhançon mechanism in a dual to a simple N=2 quiver gauge theory by using a fractional D-instanton as a probe and exploiting recent exact results on the Coulomb branch of N=2 quivers.<p>Finally, we obtain the near-horizon D4-brane geometry by probing the D4-branes with a small number of D0-branes.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
217 |
Ontologically Founded Causal Sets: Constraints for a Future Physical Theory of EverythingBlau, Winfried 08 August 2016 (has links)
The paper is located on the border between physics, mathematics and philosophy (ontology). The latter is required to embed the dualistic by nature mathematics into a monistic metatheory. It is shown, that a consequent philosophical monism and an approach which starts from the origin of the universe imposes significant constraints on a physical Theory-of-Everything. This may be helpful for finding such a theory. A philosophical system that is monistic and at the same time structured clear enough to be compatible with mathematical thinking is the Hegelian dialectic logic. With the aid of this logic the necessary existence of a causal chain embedded in the general, unconditional and timeless being is proved constructively. In the causal chain our entire reality is coded. It is termed by Hegel as determinate being in contrast to being. The chain has a beginning, representing the birth of the universe (big bang) and the beginning of time. It is isomorphic to the natural numbers. The half-ring structure of the natural numbers induces a secondary causal network. Thus the ontological approach results in a special version of the theory or causal sets. The causal network is topologically homeo-morphic to an infinite dimensional Minkowski cone. Each prime number corresponds to a dimension. Hypothetical small 'bumps” of 4D spacetime (Brane) in the direction of the extra dimensions of the Minkowski manifold mean topological defects, which can be interpreted as curvature of spacetime. This means a bridge to the general theory of relativity. On the other hand, the bumps may be interpreted as objects with which one can handle similar to the strings in string theory. / Die Arbeit bewegt sich im Grenzgebiet zwischen Physik, Mathematik und Philosophie (Ontologie). Letztere wird benötigt, um die vom Wesen her dualistische Mathematik in eine monistische Metatheorie einzubetten. Es wird gezeigt, dass ein konsequenter philosophischer Monismus und ein Denken vom Ursprung des Universums her einer physikalischen Theorie-von-Allem erhebliche Randbedingungen auferlegen. Für das Auffinden einer solchen Theorie kann das hilfreich sein. Ein philosophisches System, dass monistisch ist und zugleich klar genug strukturiert um mit der mathematischen Denkweise kompatibel zu sein ist die Hegelsche dialektische Logik. Unter Zuhilfenahme dieser Logik wird die notwendige Existenz einer in das allgemeine, unbedingte und zeitlose Sein eingebetteten, aber vom Chaos dieses Seins unbeeinflussten kausalen Kette konstruktiv bewiesen. In dieser kausalen Kette ist unsere gesamte Realität codiert, von Hegel als Dasein im Gegensatz zum Sein bezeichnet. Die Kette hat einen Anfang, der den Anfang des Universums und den Anfang der Zeit darstellt. Sie ist isomorph zu den natürlichen Zahlen. Deren Halbring-Struktur induziert ein sekundäres kausales Netzwerk. Somit ist das Ergebnis der ontologischen Herangehensweise eine spezielle Version der Theorie der kausalen Mengen. Das Netzwerk ist topologisch homöomorph ist zu einem unendlich dimensionalen Minkowski-Kegel. Jeder Primzahl entspricht eine Dimension. Hypothetische kleine „Ausbeulungen“ oder „Bumps“ der 4D-Raumzeit (Brane) in Richtung der Extradimensionen der Minkowski-Mannigfaltigkeit bedeuten topologische Baufehler, die sich als Krümmung der Raumzeit interpretieren lassen und eine Brücke zur allgemeinen Relativi-tätstheorie darstellen. Auf der anderen Seite lassen sich die Ausbeulungen der Brane als Objekte deuten, mit denen man ähnlich umgehen kann wie mit den Strings der Stringtheorie.
|
218 |
Vybraná témata ve strunové teorii pole a fyzice D-brán / Selected topics in string field theory and physics of D-branesVošmera, Jakub January 2020 (has links)
We discuss certain aspects of string field theory and its applications in exploring the land- scape of classical string theory vacua. We start by giving a brief overview of various tree-level string field theories, as well as of some relevant mathematical background. As a byproduct of our general discussion of observables, we present a new gauge-invariant quantity for the A∞ formulation of open superstring field theory. Putting particular emphasis on perturba- tive methods, we proceed to review in detail the construction of tree-level effective actions governing the dynamics of a certain subset of degrees of freedom. In light of recent devel- opments, we also discuss efficient methods for evaluating certain vertices of zero-momentum effective actions for open superstring and heterotic string field theories in the presence of a global N = 2 worldsheet superconformal symmetry. We show how to apply this perturbative approach to study dynamics of the D(−1)/D3 system (both with and without a B-field), while also discussing a number of more complicated Dp-brane configurations. At generic points in their moduli spaces, such bound states of Dp-branes clearly cannot be described in terms of simple Dirichlet or Neumann boundary conditions. The rest of this thesis is therefore devoted to developing analytic...
|
219 |
F-theory on six-dimensional symmetric toroidal orbifolds / F-Theorie auf sechs dimensionalen symmetrischen toroidalen OrbifaltigkeitenKohl, Finn Bjarne January 2021 (has links)
In this thesis, compactifications of F-theory on six dimensional symmetric toroidalorbifolds are explored. These orbifold geometries have been mathematically classified and it is natural to ask what the physical implications of string theorycompactifications on those geometries are. Since compactifications of string theory to six dimensions describe a sweet spot in terms of developed methods andrich model-building possibilities, it is interesting to investigate the landscape ofthese theories opposed to the swampland of only apparently consistent quantumtheories of gravity. Additionally, superconformal field theories can exist in at mostsix dimensions. These emerge naturally in the considered F-theory constructions. The present work explores effects of compactifications on such orbifolds buildingon the work of [arXiv:1905.00116v1 [hep-th]]. It constitutes a step towards extendingthe geometric classification of these orbifolds to a classification of the physical models. Beyond [arXiv:1905.00116v1 [hep-th]], roto-translations have severe effects on thegeometry and thus the field theory and the spectrum. These effects are discussedin this thesis and include, amongst others, twisted affine folding of gauge groups, the emergence of superconformal points away from intersecting branes as well assuperconformal sectors related to the multiple fibre. / In dieser Thesis werden Kompaktifizierungen von F-Theorie auf sechs dimensionalen symmetrischen, toroidalen Orbifaltigkeiten untersucht. Da diese Orbifaltigkeiten mathematisch klassifiziert wurden, stellt sich auf natürliche Weisedie Frage nach den physikalischen Implikationen von Kompaktifizierungen vonString Theorie auf diesen. In Kompaktifizierungen von String Theorie zu sechs Dimensionen balancieren sich der Fortschritt der Methoden und die Möglichkeitenphysikalische Theorien zu modellieren optimal. Daher ist es wichtig das "Landscape" dieser Theorien zu untersuchen, im Gegensatz zu dem so genannten "Swampland" von vermeintlich konsistenten Quantentheorien der Gravitation. Darüber hinaus stellt sich heraus, dass superkonforme Feldtheorien höchstens insechs Dimensionen existieren können. Die vorliegende Arbeit erkundet die Effekte von Kompaktifizierungen auf solchen Orbifaltigkeiten aufbauend auf der Arbeit von [arXiv:1905.00116v1 [hep-th]]. Sie stellt einen wichtigen Schritt dar auf dem Weg zu einer Ausweitung der geometrischen Klassifikation dieser Orbifaltigkeiten zu einer Klassifikation der physikalischen Modelle. Über [arXiv:1905.00116v1 [hep-th]] hinaus resultieren Roto-Translationen in Effekten auf die Feldtheorie sowie deren Spektrum. Diese Effekte werden in dieser Thesis diskutiert. Beispiele reichen von getwisteten affinen Faltungen von Eichgruppen, zu dem Auftreten von superkonformen Punkten ohne sich schneidende Branen und superkonforme Sektoren in Verbindung mit dem "mehrfach Faser"-Phänomen. / <p>This thesis was conducted under the regulations of Heidelberg University under the joint supervision of Professor Luca Amendola (University of Heidelberg) and Assistant Professor Magdalena Larfors (Uppsala University) during a one-year ERASMUS-exchange.</p>
|
220 |
String field theory, non-commutativity and higher spinsBouatta, Nazim 10 September 2008 (has links)
In Chapter 1, we give an introduction to the topic of open string field theory. The concepts presented include gauge invariance, tachyon condensation, as well as the star product.<p>In Chapter 2, we give a brief review of vacuum string field theory (VSFT), an approach to open string field theory around the stable vacuum of the tachyon. We discuss the sliver state explaining its role as projector in the space of half-string basis. We review the construction of D-brane solutions in vacuum string field theory. We show that in the sliver basis the star product correspond to a matrix product. <p>Using the material introduced in the previous chapters, in Chapter 3 we establish a translation dictionary between open and closed strings, starting from open string field theory. Under this correspondence, we show that (off--shell) level--matched closed string states are represented by star algebra projectors in open string field theory. As an outcome of our identification, we show that boundary states, which in closed string theory represent D-branes, correspond to the identity string field in the open string side. <p>We then turn to noncommutative field theories. In Chapter 4, we introduce the framework in which we will work. The tools introduced are solitons, projectors, and partial isometries.<p>The ideas of Chapter 4 are applied to specific examples in Chapter 5, where we present new solutions of noncommutative gauge theories in which coincident vortices expand into circular shells. As the theories are noncommutative, the naive definition of the locations of the vortices and shells is gauge-dependent, and so we define and calculate the profiles of these solutions using the gauge-invariant noncommutative Wilson lines introduced by Gross and Nekrasov. We find that charge 2 vortex solutions are characterized by two positions and a single nonnegative real number, which we demonstrate is the radius of the shell. We find that the radius is identically zero in all 2-dimensional solutions. If one considers solutions that depend on an additional commutative direction, then there are time-dependent solutions in which the radius oscillates, resembling a braneworld description of a cyclic universe. There are also smooth BIon-like space-dependent solutions in which the shell expands to infinity, describing a vortex ending on a domain wall.<p>In Chapter 6, we review the Fronsdal models for free high-spin fields that exhibit peculiar properties. We discuss the triplet structure of totally symmetric tensors of the free String Field Theory and their generalization to AdS background.<p>In Chapter 7, in the context of massless higher spin gauge fields in constant curvature spaces discussed in chapter 6, we compute the surface charges which generalize the electric charge for spin one, the color charges in Yang-Mills theories and the energy-momentum and the angular momentum for asymptotically flat gravitational fields. We show that there is a one-to-one map from surface charges onto divergence free Killing tensors. These Killing tensors are computed by relating them to a cohomology group of the first quantized BRST model underlying the Fronsdal action.<p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0923 seconds