271 |
Otimização global eficiente aplicada a projetos de laminados de rigidez variável. / Efficient global optimization applied to variable stiffness composites designPassos, Adriano Gonçalves dos 01 April 2016 (has links)
CAPES / A otimização global eficiente (ego, do inglês efficient global optimization), apresentada por Donald R. Jones no final da década de 90, tem como proposta solucionar problemas de otimização nos quais, devido a um elevado custo computacional da função objetivo, o número de avaliações desta é severamente limitado. ego baseia-se na otimização pelo uso de superfícies de resposta ou metamodelos, que são funções de baixo custo computacional que se ajustam aos dados “experimentais” (de experimentos físicos, cálculos analíticos ou simulações numéricas) obtidos em pontos escolhidos no domínio de projeto. Como no trabalho original de Jones, o metamodelo de Kriging é aqui utilizado. A eficiência e robustez do método reside no balanceamento entre a necessidade de minimização (ou maximização) da superfície de resposta média com a necessidade de melhoria da aproximação que esta fornece. Nesta dissertação, usa-se o ego para encontrar as orientações curvas de laminados de rigidez variável com geometrias relativamente complexas. Os problemas mostrados possuem número moderado de variáveis (em geral 12) e geometrias que variam de uma simples placa quadrada com furo central a painéis reforçados semelhantes a seções de fuselagem de uma aeronave comercial. Através desses problemas, são abordadas a otimização global com e sem restrições e a otimização multiobjetivo sem restrições. Para contemplar restrições e multiobjetivos, foi necessária a implementação de modificações no algoritmo original de Jones. Para a maior parte dos problemas, o orçamento computacional é restringido em apenas 60 avaliações dos modelos de alta fidelidade (modelos de elementos finitos desenvolvidos no software ansys). Os resultados obtidos mostram que o framework proposto é capaz de encontrar bons projetos para um orçamento computacional limitado. Em relação aos compósitos de rigidez variável, o uso de fibras curvas mostrou ganhos estruturais substanciais. Por exemplo, para a estrutura semelhante à de uma fuselagem de aeronave, chegou-se a observar um aumento de até 47% na carga de flambagem sob carregamento de compressão uniaxial, quando comparada à mesma estrutura com apenas fibras retas comerciais. / The efficient global optimization (ego), presented by Donald R. Jones at the end of the 90s, propose to solve optimization problems where, due to the high computational burden of the cost function, the number of evaluations is severely limited. ego is based on the concept of surrogate models, that are fast-to-compute functions that adjust the “experimental” data (physical, analytic or simulations). In the current work, as well as in the Jones’s one, the Kriging metamodel is used. The efficiency and robustness of the method lays at the balance between exploration and exploitation of the surrogate response. Here, ego is used to find the optimized parameters for curved fiber structures with relatively complex geometry. The number of variables are moderately (in general 12) for the various problems presented and the geometries vary from simple square plates with a central hole to an airplane fuselage-like section. Trough these problems, single objective optimizations with and without constraints and an unconstrained multiobjective optimization are performed. For the constraints and multiobjectives, adaptations to the original framework were made. For most of the problems, the computational budget is set to just 60 evaluations of the high fidelity model (finite element model built using ANSYS software). The results showed that the framework is capable of finding good designs with a limited computational budget. Considering the variable stiffness composites, the use of curved fibers presented substantial structural improvements. For example, for the fuselage-like structure, it was observed an improvement of 47% in the buckling load when compared to straight fibers optimal solution.
|
272 |
Optimisation de forme avec détection automatique de paramètres / Shape optimization with automatic parameters detectionFrabolot, Ferdinand 09 March 2015 (has links)
L’objectif de ce travail de thèse est de pouvoir intégrer totalement l’optimisation de forme des raidisseurs de capot dans un processus de conception industrielle et cela afin d’optimiser la forme et la distribution des raidisseurs dans un contexte multi-objectif (voire multi-disciplinaire) d’une structure 3D surfacique. Pour ce faire, nous avons tout d’abord établi un aperçu de l’état de l’art dans l’optimisation de forme des structures en classifiant les différentes méthodes de paramétrage de forme, en trois catégories ; les méthodes basées sur la géométrie (telle la paramétrisation d’un modèle de type CAO), les méthodes basées sur une grille fixe (telles que les méthodes d’optimisation topologique) et les méthodes basées sur le maillage (telles que les méthodes de régularisation du maillage). Toutefois, aucune de ces méthodes ne satisfait pleinement aux objectifs posés. Nous introduisons ainsi dans cette thèse la méthode FEM-CsG : Finite Element Mesh - Constructive surface Geometry. Imprégnée d’un fort contexte industriel, cette méthode propose une réponse à des contraintes telles que la possibilité de représenter la solution optimale par un ensemble de paramètres CAO, la possibilité d’adapter le modèle EF à l’analyse souhaitée et la garantie d’une représentation géométrique et d’un maillage robuste. En proposant d’intégrer des formes élémentaires paramétrées et prémaillées issues d’une bibliothèque de formes dans une structure coque 3D maillée par l’utilisation des variables issues de la CAO, la méthode FEM-CsG permet une évolution constante de la topologie guidée par l’optimisation. Ainsi, même si la topologie est modifiée la forme résultante reste conforme avec une représentation CAO par construction, correspondant davantage à la réalité des optimisations réalisées en avant-projet. La méthode FEM-CsG a été validée sur deux études de cas, de complexité variable, permettant de mettre en avant la robustesse de cette dernière. Ainsi, avec un choix intelligent et cohérent des variables de formes, les problèmes d’optimisation peuvent avec un nombre restreint de variables explorer un nombre important de topologies ou de formes. Les changements de topologies s’effectuent de manière continue, validant ainsi la méthode à tout type d’analyse souhaitée. / The objective of this thesis work is to be able to completely integrate shape optimization of car inner hood stiffeners in a complex industrial process, in order to fully optimize the shape and distribution of the stiffeners in a multi-objective approach (or even multi-disciplinary) of a 3D surfacic structure. To this end, we established, at the outset, an insight of the state-of-the-art in shape optimization of structures by classifying the different shape parametrizations in three distinct categories : geometry-based methods (a shape parametrization such as a CAD model), grid-based methods (such as topology optimization methods) and mesh-based methods (such as morphing methods or mesh regulation). However, none of these methods fully satisfies the set objectives. Thus, we will introduce in this work the FEM-CsG method : Finite Element Mesh - Constructive surface Geometry. Bolstered by its strong industrial context, this method offers a response to such constraints, i.e. the possibility to represent the optimal solution by a system of CAD parameters, the possibility to adapt the FE model to the wanted analysis and the guarantee of a robust geometrical representation and mesh stability. We offer to incorporate premeshed parameterized elementary forms into a 3D sheet meshed structures. Hence, these forms are arising from a CAD parameterized elementary form library. Furthermore, the FEM-CsG method uses a set of operators acting on the mesh allowing a constant evolution of the topology guided by optimization. Therefore, even if the topology may vary, the resulting shapes comply with CAD representations by construction, a solution better reflecting the reality of optimizations performed during the preliminary development stage. The FEM-CsG method has been validated on two simple case studies in order to bring forward its reliability. Thus, with an intelligent and coherent choice of the design variables, shape optimization issues may, with a restrictive number of variables, explore an important number of shapes and topologies. Topology changes are accomplished in a continuous manner, therefore validating the FEM-CsG method to any desired analysis.
|
273 |
Evolutionary Optimization For Vibration Analysis And ControlDutta, Rajdeep 03 1900 (has links) (PDF)
Problems in the control and identification of structural dynamic systems can lead to multimodal optimization problems, which are difficult to solve using classical gradient based methods. In this work, optimization problems pertaining to the vibration control of smart structures and the exploration of isospectral systems are addressed. Isospectral vibrating systems have identical natural frequencies, and existence of the isospectral systems proves non-uniqueness in system identification. For the smart structure problem, the optimal location(s) of collocated actuator(s)/sensor(s) and the optimal feedback gain matrix are obtained by maximizing the energy dissipated by the feedback control system. For the isospectral system problem, both discrete and continuous systems are considered. An error function is designed to calculate the error between the spectra of two distinct structural dynamic systems. For the discrete system, the Jacobi matrix, derived from the given system, is modified and the problem is posed as an optimization problem where the objective is to minimize the non-negative error function. Isospectral spring-mass systems are obtained. For the continuous system, finite element modeling is used and an error function is designed to calculate the error between the spectra of the uniform beam and the non-uniform beam. Non-uniform cantilever beams which are isospectral to a given uniform cantilever beam are obtained by minimizing the non-negative error function. Numerical studies reveal several isospectral systems, and optimal gain matrices and sensor/actuator locations for the smart structure. New evolutionary algorithms, which do not need genetic operators such as crossover and mutation, are used for the optimization. These algorithms are: Artificial bee colony (ABC) algorithm, Glowworm swarm optimization (GSO) algorithm, Firefly algorithm (FA) and Electromagnetism inspired optimization (EIO) algorithm.
|
274 |
Redes complexas para classificação de dados via conformidade de padrão, caracterização de importância e otimização estrutural / Data classification in complex networks via pattern conformation, data importance and structural optimizationMurillo Guimarães Carneiro 08 November 2016 (has links)
A classificação é uma tarefa do aprendizado de máquina e mineração de dados, na qual um classificador é treinado sobre um conjunto de dados rotulados de forma que as classes de novos itens de dados possam ser preditas. Tradicionalmente, técnicas de classificação trabalham por definir fronteiras de decisão no espaço de dados considerando os atributos físicos do conjunto de treinamento e uma nova instância é classificada verificando sua posição relativa a tais fronteiras. Essa maneira de realizar a classificação, essencialmente baseada nos atributos físicos dos dados, impossibilita que as técnicas tradicionais sejam capazes de capturar relações semânticas existentes entre os dados, como, por exemplo, a formação de padrão. Por outro lado, o uso de redes complexas tem se apresentado como um caminho promissor para capturar relações espaciais, topológicas e funcionais dos dados, uma vez que a abstração da rede unifica a estrutura, a dinâmica e as funções do sistema representado. Dessa forma, o principal objetivo desta tese é o desenvolvimento de métodos e heurísticas baseadas em teorias de redes complexas para a classificação de dados. As principais contribuições envolvem os conceitos de conformidade de padrão, caracterização de importância e otimização estrutural de redes. Para a conformidade de padrão, onde medidas de redes complexas são usadas para estimar a concordância de um item de teste com a formação de padrão dos dados, é apresentada uma técnica híbrida simples pela qual associações físicas e topológicas são produzidas a partir da mesma rede. Para a caracterização de importância, é apresentada uma técnica que considera a importância individual dos itens de dado para determinar o rótulo de um item de teste. O conceito de importância aqui é definido em termos do PageRank, algoritmo usado na engine de busca do Google para definir a importância de páginas da web. Para a otimização estrutural de redes, é apresentado um framework bioinspirado capaz de construir a rede enquanto otimiza uma função de qualidade orientada à tarefa, como, por exemplo, classificação, redução de dimensionalidade, etc. A última investigação apresentada no documento explora a representação baseada em grafo e sua habilidade para detectar classes de distribuições arbitrárias na tarefa de difusão de papéis semânticos. Vários experimentos em bases de dados artificiais e reais, além de comparações com técnicas bastante usadas na literatura, são fornecidos em todas as investigações. Em suma, os resultados obtidos demonstram que as vantagens e novos conceitos propiciados pelo uso de redes se configuram em contribuições relevantes para as áreas de classificação, sistemas de aprendizado e redes complexas. / Data classification is a machine learning and data mining task in which a classifier is trained over a set of labeled data instances in such a way that the labels of new instances can be predicted. Traditionally, classification techniques define decision boundaries in the data space according to the physical features of a training set and a new data item is classified by verifying its relative position to the boundaries. Such kind of classification, which is only based on the physical attributes of the data, makes traditional techniques unable to detect semantic relationship existing among the data such as the pattern formation, for instance. On the other hand, recent works have shown the use of complex networks is a promissing way to capture spatial, topological and functional relationships of the data, as the network representation unifies structure, dynamic and functions of the networked system. In this thesis, the main objective is the development of methods and heuristics based on complex networks for data classification. The main contributions comprise the concepts of pattern conformation, data importance and network structural optimization. For pattern conformation, in which complex networks are employed to estimate the membership of a test item according to the data formation pattern, we present, in this thesis, a simple hybrid technique where physical and topological associations are produced from the same network. For data importance, we present a technique which considers the individual importance of the data items in order to determine the label of a given test item. The concept of importance here is derived from PageRank formulation, the ranking measure behind the Googles search engine used to calculate the importance of webpages. For network structural optimization, we present a bioinspired framework, which is able to build up the network while optimizing a task-oriented quality function such as classification, dimension reduction, etc. The last investigation presented in this thesis exploits the graph representation and its hability to detect classes of arbitrary distributions for the task of semantic role diffusion. In all investigations, a wide range of experiments in artificial and real-world data sets, and many comparisons with well-known and widely used techniques are also presented. In summary, the experimental results reveal that the advantages and new concepts provided by the use of networks represent relevant contributions to the areas of classification, learning systems and complex networks.
|
275 |
Optimización de dimensiones de elementos estructurales mediante el uso de redes neuronales para la reducción de sobrecostos en edificios multifamiliares de 6 pisos ubicado en el distrito de Miraflores / Optimization of dimensions of structural elements through the use of neural networks to reduce cost overruns in 6-story multi-family buildings located in the Miraflores districtSanchez Maguiña, Mildred Madeleine, Vidal Feliz, Pool Rusbel 04 March 2021 (has links)
Los sobrecostos en la construcción de edificaciones de concreto armado representan pérdidas de un 28% de la inversión (Flyvbjerg, 2002), esto se debe a que las secciones de los elementos estructurales son sobredimensionadas y generan mayor costo en el concreto y acero. Por ello, se realizó la presente investigación en la que se empleó una metodología capaz de optimizar las dimensiones de los elementos estructurales (columnas, vigas y placas) en edificios multifamiliares regulares de 6 pisos.
La metodología empleada se basó en el uso de redes neuronales del tipo feedforward, en la que se estableció como variables de entrada, los datos preliminares que se tienen de una edificación y como variables de salida las dimensiones de cada elemento estructural. Para ello, se elaboraron 30 edificios de 6 pisos como base de datos y en cada uno de estos se realizaron las verificaciones de derivas según la Norma Técnica Peruana E 0.30 y la resistencia de cada elemento estructural. De la base de datos se usaron 22 como entrenamiento y 8 para la validación interna de la red neuronal. La estructura de la red neuronal se estableció luego de ejecutar 10 diferentes redes neuronales y se seleccionó la red con un coeficiente de correlación más homogéneo y cercano a 1, en esta investigación fue de 0.98.
Finalmente, se realizó la comparación del volumen de concreto que se emplea en una edificación dimensionada con métodos convencionales con el uso del software ETABS y los obtenidos con el uso de la metodología empleando redes neuronales artificiales, según esto, se calculó la diferencia de concreto entre ambos casos. Con los resultados obtenidos se comprobó que la metodología aplicada en esta investigación brinda un ahorro eficaz cercano al 10%. / Cost overruns in the construction of reinforced concrete buildings represent losses of 28% of the investment (Flyvbjerg, 2002), this is due to the fact that the sections of the structural elements are oversized and generate higher costs in concrete and steel. Therefore, the present research was carried out using a methodology capable of optimizing the dimensions of structural elements (columns, beams and slabs) in regular 6-story multifamily buildings.
The methodology used was based on the use of feedforward neural networks, in which the preliminary data of a building were established as input variables and the dimensions of each structural element as output variables. For this purpose, 30 6-story buildings were prepared as a database and in each one of them the drift verifications were performed according to the Peruvian Technical Standard E 0.30 and the resistance of each structural element. From the database, 22 were used for training and 8 for the internal validation of the neural network. The structure of the neural network was established after running 10 different neural networks and the network with the most homogeneous correlation coefficient close to 1 was selected; in this research it was 0.98.
Finally, a comparison was made between the volume of concrete used in a building dimensioned with conventional methods with the use of ETABS software and those obtained with the use of the methodology employing artificial neural networks, according to this, the difference of concrete between both cases was calculated. With the results obtained, it was proved that the methodology applied in this research provides an effective saving close to 10%. / Tesis
|
276 |
Optimization of Shape Memory Alloy Structures with Respect to Fatigue / Optimisation structurale vis-à-vis de la fatigue des structures en alliages à mémoire de forme.Gu, Xiaojun 25 September 2017 (has links)
Cette thèse présente une approche globale d’optimisation vis-à-vis de la fatigue des matériaux et structures en alliages à mémoire de forme (AMF). Cette approche s’articule en trois étapes : i) Le développement d’une loi de comportement capable de prédire la réponse thermomécanique à l’état stabilisé d’une structure en AMF sous chargement cyclique multiaxial non proportionnel. On prend notamment en compte la dépendance de la déformation résiduelle par rapport à la température. Par ailleurs, la méthode LATIN à grand incrément de temps a été généralisée pour les AMF dans le cadre du modèle ZM. Ceci permet de résoudre les problèmes de convergence numérique rencontrés lorsque le processus de transformation de phase se produit avec une pente du plateau de transformation faible. ii) Le développement d’un critère de fatigue à grand nombre de cycles pour les AMF. Ce critère s’inscrit dans le cadre de la théorie d’adaptation à l’instar du critère de Dang Van pour les métaux élasto-plastiques. Le critère proposé permet de calculer en chaque point de la structure en AMF un facteur de fatigue indiquant son degré de dangerosité. iii) Le développement d’une approche d’optimisation structurale qui peut être utilisée pour améliorer la durée de vie en fatigue prédite par le critère proposé dans la deuxième partie. Des exemples numériques sont traités pour valider chaque étape. L‘approche globale a par ailleurs été testée et validée pour l’optimisation structurale d’un stent. / This thesis presents a comprehensive and effi cient structural optimization approach for shape memory alloys (SMAs) with respect to fatigue. The approach consists of three steps: First, the development of a suitable constitutive model capable of predicting, with good accuracy, the stabilized thermomechanical stress state of a SMA structure subjected to multiaxial nonproportional cyclic loading. The dependence of the saturated residual strain on temperature and loading rate is discussed. In order to overcome numerical convergence problems in situations where the phase transformation process presents little or no positivehardening, the large time increment method (LATIN) is utilized in combination with the ZM (Zaki-Moumni) model to simulate SMA structures instead of conventional incremental methods. Second, a shakedown-based fatigue criterion analogous to the Dang Van model for elastoplastic metals is derived for SMAs to predict whether a SMA structure subjected to high-cycle loading would undergo fatigue. The proposed criterion computes a fatigue factor at each material point, indicating its degree of safeness with respect to high-cycle fatigue. Third, a structural optimization approach, which can be used to improve the fatigue lifetime estimated using the proposed fatigue criterion is presented. The prospects of this work include the validation of the optimization approach with experimental data.
|
277 |
Categorical structural optimization : methods and applications / Optimisation structurelle catégorique : méthodes et applicationsGao, Huanhuan 07 February 2019 (has links)
La thèse se concentre sur une recherche méthodologique sur l'optimisation structurelle catégorielle au moyen d'un apprentissage multiple. Dans cette thèse, les variables catégorielles non ordinales sont traitées comme des variables discrètes multidimensionnelles. Afin de réduire la dimensionnalité, les nombreuses techniques d'apprentissage sont introduites pour trouver la dimensionnalité intrinsèque et mapper l'espace de conception d'origine sur un espace d'ordre réduit. Les mécanismes des techniques d'apprentissage à la fois linéaires et non linéaires sont d'abord étudiés. Ensuite, des exemples numériques sont testés pour comparer les performances de nombreuses techniques d’apprentissage. Sur la base de la représentation d'ordre réduit obtenue par Isomap, les opérateurs de mutation et de croisement évolutifs basés sur les graphes sont proposés pour traiter des problèmes d'optimisation structurelle catégoriels, notamment la conception du dôme, du cadre rigide de six étages et des structures en forme de dame. Ensuite, la méthode de recherche continue consistant à déplacer des asymptotes est exécutée et fournit une solution compétitive, mais inadmissible, en quelques rares itérations. Ensuite, lors de la deuxième étape, une stratégie de recherche discrète est proposée pour rechercher de meilleures solutions basées sur la recherche de voisins. Afin de traiter le cas dans lequel les instances de conception catégorielles sont réparties sur plusieurs variétés, nous proposons une méthode d'apprentissage des variétés k-variétés basée sur l'analyse en composantes principales pondérées. / The thesis concentrates on a methodological research on categorical structural optimizationby means of manifold learning. The main difficulty of handling the categorical optimization problems lies in the description of the categorical variables: they are presented in a category and do not have any orders. Thus the treatment of the design space is a key issue. In this thesis, the non-ordinal categorical variables are treated as multi-dimensional discrete variables, thus the dimensionality of corresponding design space becomes high. In order to reduce the dimensionality, the manifold learning techniques are introduced to find the intrinsic dimensionality and map the original design space to a reduced-order space. The mechanisms of both linear and non-linear manifold learning techniques are firstly studied. Then numerical examples are tested to compare the performance of manifold learning techniques mentioned above. It is found that the PCA and MDS can only deal with linear or globally approximately linear cases. Isomap preserves the geodesic distances for non-linear manifold however, its time consuming is the most. LLE preserves the neighbour weights and can yield good results in a short time. KPCA works like a non-linear classifier and we proves why it cannot preserve distances or angles in some cases. Based on the reduced-order representation obtained by Isomap, the graph-based evolutionary crossover and mutation operators are proposed to deal with categorical structural optimization problems, including the design of dome, six-story rigid frame and dame-like structures. The results show that the proposed graph-based evolutionary approach constructed on the reduced-order space performs more efficiently than traditional methods including simplex approach or evolutionary approach without reduced-order space. In chapter 5, the LLE is applied to reduce the data dimensionality and a polynomial interpolation helps to construct the responding surface from lower dimensional representation to original data. Then the continuous search method of moving asymptotes is executed and yields a competitively good but inadmissible solution within only a few of iteration numbers. Then in the second stage, a discrete search strategy is proposed to find out better solutions based on a neighbour search. The ten-bar truss and dome structural design problems are tested to show the validity of the method. In the end, this method is compared to the Simulated Annealing algorithm and Covariance Matrix Adaptation Evolutionary Strategy, showing its better optimization efficiency. In chapter 6, in order to deal with the case in which the categorical design instances are distributed on several manifolds, we propose a k-manifolds learning method based on the Weighted Principal Component Analysis. And the obtained manifolds are integrated in the lower dimensional design space. Then the method introduced in chapter 4 is applied to solve the ten-bar truss, the dome and the dame-like structural design problems.
|
278 |
Modélisation et validation expérimentale de nouvelles structures SOA large bande et de techniques d'élargissement de la bande passante optique / Modeling and experimental validation of new broadband SOA structures and techniques for widening the SOA optical bandwidthMotaweh, Tammam 11 December 2014 (has links)
L’amplification optique large bande à base de SOA est devenue indispensable pour la montée en débit des systèmes de transmissions optiques et pour pouvoir exploiter au mieux la bande optique des fibres optiques. Ce travail présente une étude théorique et expérimentale d’un SOA large bande passante développé par Alcatel Thales III-V Lab dans le cadre des projets ANR AROME et UltraWIDE. Dans cette thèse, nous avons d’abord effectué une modélisation semi-phénoménologique du gain matériau et du coefficient de gain d’une structure à base de multi-puits quantiques avec un nombre réduit de paramètres. L’intégration de notre modèle dans un modèle de SOA déjà développé au laboratoire a montré son efficacité pour restituer quantitativement le comportement statiques (gain, facteur de bruit) des nouvelles structures SOA large bande sur une large plage de longueurs d’onde (> 110 nm), de courants d’alimentation et de puissances optiques. A l’aide de ce modèle, nous avons étudié l’influence de la structure du SOA sur la bande passante pour un gain cible en jouant sur la longueur, le nombre d’électrode et le courant d’alimentation du SOA. Nous avons mis en évidence qu’une structure bi-électrodes n’apportait pas d’amélioration de la bande passante optimisée par rapport au cas mono-électrode. En revanche, la structure bi-électrode permet d’optimiser la puissance de saturation et le facteur de bruit du SOA, sans sacrifier ni le gain maximal ni la bande passante optique. Nous avons aussi montré que, pour ce type de composants, une augmentation de la puissance optique injectée pouvait être compensée par une augmentation du courant d’alimentation pour maintenir une large bande passante optique. Nous avons également mis en place deux techniques d’élargissement de la bande passante optique de SOA à large bande. La première technique est fondée sur le filtrage en réflexion spectralement sélectif (ESOA). Le dispositif expérimental a permis d’amplifier simultanément 8 canaux CWDM dans une bande passante (définie à −1 dB) de 140 nm. La deuxième technique, basée sur un amplificateur hybride Raman-SOA, a fourni une bande passante optique (définie à −1 dB) de 89 nm avec un gain de 17 dB. Nous avons ainsi pu réaliser une transmission simultanée de 5 canaux CWDM allant jusqu’à 10 Gb/s sur 100 km. / SOA-based optical amplification became crucial for increasing optical system capacity and to benefit from the broad bandwidth of optical fibers. In this work we present both theoretical and experimental studies for a new broadband SOA developed by Alcatel Thales III-V lab in the framework of AROME and UltraWIDE ANR projects.We developed firstly a semi-phenomenological model for both the material gain and the gain coefficient of a multi-quantum well -based SOA structure with a reduced set of parameters. This material gain model has been integrated in an existing SOA model and proved its performance in reproducing steady state behavior of this new broadband SOA (gain and noise figure) for a wide range of wavelengths, input powers and bias currents. Thanks to this model, we studied the influence of the SOA geometrical structure on the optical bandwidth for a given target gain, by varying length, number of electrodes and bias current. We showed that two-electrode SOA structures do not provide any improvement of the bandwidth compared to the one-electrode case. However, the two-electrode structure allows the optimization of both the SOA saturation power and the noise figure, without sacrificing neither the maximum gain nor the optical bandwidth. We have also shown that for this kind of component, an increase in the injected optical power could be compensated by an increase in the supply current to maintain a wide optical bandwidth.We have also investigated two techniques to widen the optical bandwidth of our broadband SOA. The first one is based on a modification of the SOA structure by introducing a selective reflection filter (ESOA). Its experimental implementation allowed the amplification of an 8-CWDM-channel comb in a bandwidth (defined at -1 dB) of 140 nm. The second one, based on a hybrid Raman-SOA amplifier, provided an optical bandwidth (defined at -1 dB) of 89 nm with a gain of 17 dB. With this last technique, we were able to achieve a 5-CWDM-channel comb transmission up to 10 Gb/s over 100 km.
|
279 |
Schalltechnische Strukturoptimierung von EisenbahnradsätzenKlotz, Christian 13 February 2013 (has links) (PDF)
Die Eisenbahn wird in der Öffentlichkeit als umweltfreundliches Verkehrsmittel gesehen und ist für Personen und Fracht die bedeutendste Alternative zum Straßenverkehr. Die hohe Lärmbelastung, die die Bahn jedoch in Ballungsgebieten oder an stark belasteten Strecken verursacht, führt zu Akzeptanzproblemen in der Bevölkerung und zunehmend in der Politik. Eine Steigerung des Schienenverkehrs ist deshalb nur möglich, wenn die Schallabstrahlung der Schienenfahrzeuge in Zukunft spürbar reduziert werden kann.
Im Geschwindigkeitsbereich des konventionellen Güter- und Personenverkehrs ist das Rollgeräusch die dominierende Schallquelle. Bei der Rollbewegung wird die Oberflächenrauheit von Rad und Schiene überfahren und wirkt als Erregung in der Kontaktzone. Rad und Schiene werden in Schwingung versetzt und strahlen Schall ab. Ziel dieser Arbeit ist es, einen ausführbaren CAE-Prozess aufzubauen und anzuwenden, der auf dem aktuellen Stand der Modellierungstechnik die Optimierung von Eisenbahnrädern nach akustischen Gesichtspunkten ermöglicht. Der Kernbestandteil dieses Prozesses sind effiziente Methoden, die es ermöglichen, für einen rotationssymmetrischen Radsatz binnen weniger Sekunden die im Rad-Schiene-System abgestrahlte Schallleistung zu berechnen.
Die Modellierung der Schwingung und Schallabstrahlung des rotierenden Radsatzes bildet einen Schwerpunkt. Verschiedene Anregungshypothesen und -modelle werden gegenübergestellt und anhand eines Prüfstandsversuchs auf ihre Validität untersucht. Der Anregungsmechanismus des Rollgeräuschs wird aus der Literatur aufgearbeitet und ein Modell für die Schallvorhersage daraus entwickelt. Dabei spielt die Körperschallleistung des Rades eine entscheidende Rolle. Sie kann mit Hilfe der Ergebnisse einer numerischen Modalanalyse sehr schnell und automatisiert berechnet werden und stellt im Falle des Eisenbahnrades eine effiziente und brauchbare Alternative zu aufwendigen BEM-Simulationen dar. Die Wirkung der Rauheit wird mit einem Kontaktmodell untersucht und die Filterwirkung des Kontakts dabei ermittelt.
Es werden Studien zur wegerregten Schwingung im Rad-Schiene-System vorgestellt, in denen sich einige Spezifika offenbaren. Nahe seinen Eigenfrequenzen zeigen sich für den Radsatz erwartungsgemäß erhöhte Schwingungsamplituden. Jedoch ist dies keine eigentliche Resonanz sondern ein Effekt von Antiresonanz bzw. Tilgung. Dies führt u. A. dazu, dass eine Erhöhung der Dämpfung zwar die Schwingung vermindert, die Wirkung jedoch weit hinter der unter Krafterregung zu erwartenden Reduktion zurückbleibt.
Ein in ANSYS parametrisch modellierter Güterwagen-Radsatz wird hinsichtlich Masse und Schallleistung optimiert. Es zeigt sich ein Verbesserungspotenzial gegenüber beispielhaft gewählten Referenzradsätzen von ein bis drei Dezibel. Ein für den praktischen Einsatz verwendbares, akustisch optimiertes Rad ist im Rahmen der Arbeit nicht entwickelt worden. Der CAE-Prozess stellt jedoch ein Werkzeug dar, die konstruktiven Freiräume bei der Entwicklung von Radsätzen zielgerichtet so auszunutzen, dass hierbei ein möglichst leises Rad entsteht.
|
280 |
Schalltechnische Strukturoptimierung von EisenbahnradsätzenKlotz, Christian 01 November 2012 (has links)
Die Eisenbahn wird in der Öffentlichkeit als umweltfreundliches Verkehrsmittel gesehen und ist für Personen und Fracht die bedeutendste Alternative zum Straßenverkehr. Die hohe Lärmbelastung, die die Bahn jedoch in Ballungsgebieten oder an stark belasteten Strecken verursacht, führt zu Akzeptanzproblemen in der Bevölkerung und zunehmend in der Politik. Eine Steigerung des Schienenverkehrs ist deshalb nur möglich, wenn die Schallabstrahlung der Schienenfahrzeuge in Zukunft spürbar reduziert werden kann.
Im Geschwindigkeitsbereich des konventionellen Güter- und Personenverkehrs ist das Rollgeräusch die dominierende Schallquelle. Bei der Rollbewegung wird die Oberflächenrauheit von Rad und Schiene überfahren und wirkt als Erregung in der Kontaktzone. Rad und Schiene werden in Schwingung versetzt und strahlen Schall ab. Ziel dieser Arbeit ist es, einen ausführbaren CAE-Prozess aufzubauen und anzuwenden, der auf dem aktuellen Stand der Modellierungstechnik die Optimierung von Eisenbahnrädern nach akustischen Gesichtspunkten ermöglicht. Der Kernbestandteil dieses Prozesses sind effiziente Methoden, die es ermöglichen, für einen rotationssymmetrischen Radsatz binnen weniger Sekunden die im Rad-Schiene-System abgestrahlte Schallleistung zu berechnen.
Die Modellierung der Schwingung und Schallabstrahlung des rotierenden Radsatzes bildet einen Schwerpunkt. Verschiedene Anregungshypothesen und -modelle werden gegenübergestellt und anhand eines Prüfstandsversuchs auf ihre Validität untersucht. Der Anregungsmechanismus des Rollgeräuschs wird aus der Literatur aufgearbeitet und ein Modell für die Schallvorhersage daraus entwickelt. Dabei spielt die Körperschallleistung des Rades eine entscheidende Rolle. Sie kann mit Hilfe der Ergebnisse einer numerischen Modalanalyse sehr schnell und automatisiert berechnet werden und stellt im Falle des Eisenbahnrades eine effiziente und brauchbare Alternative zu aufwendigen BEM-Simulationen dar. Die Wirkung der Rauheit wird mit einem Kontaktmodell untersucht und die Filterwirkung des Kontakts dabei ermittelt.
Es werden Studien zur wegerregten Schwingung im Rad-Schiene-System vorgestellt, in denen sich einige Spezifika offenbaren. Nahe seinen Eigenfrequenzen zeigen sich für den Radsatz erwartungsgemäß erhöhte Schwingungsamplituden. Jedoch ist dies keine eigentliche Resonanz sondern ein Effekt von Antiresonanz bzw. Tilgung. Dies führt u. A. dazu, dass eine Erhöhung der Dämpfung zwar die Schwingung vermindert, die Wirkung jedoch weit hinter der unter Krafterregung zu erwartenden Reduktion zurückbleibt.
Ein in ANSYS parametrisch modellierter Güterwagen-Radsatz wird hinsichtlich Masse und Schallleistung optimiert. Es zeigt sich ein Verbesserungspotenzial gegenüber beispielhaft gewählten Referenzradsätzen von ein bis drei Dezibel. Ein für den praktischen Einsatz verwendbares, akustisch optimiertes Rad ist im Rahmen der Arbeit nicht entwickelt worden. Der CAE-Prozess stellt jedoch ein Werkzeug dar, die konstruktiven Freiräume bei der Entwicklung von Radsätzen zielgerichtet so auszunutzen, dass hierbei ein möglichst leises Rad entsteht.
|
Page generated in 0.1517 seconds