• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biocéramiques: des monolithes aux composites

Gremillard, Laurent 14 October 2009 (has links) (PDF)
Ce document présente une synthèse partielle de mes activités de recherches. J'ai eu la chance de pouvoir travailler sur un même thème depuis le début de ma thèse : les céramiques biomédicales. Il m'a semblé intéressant non seulement de faire le point sur mes recherches, mais également de les replacer dans le contexte plus vaste qu'est l'évolution des biocéramiques depuis dix ans, et leur évolution à venir. Ce document est donc conçu comme un état de l'art sur les céramiques à vocation biomédicales. Il se divise en deux grandes parties, indépendantes l'une de l'autre, pourquoi pas destinées à terme à être enrichies et éditées séparément. La partie A s'intéresse aux céramiques bioinertes utilisée en orthopédie en particulier pour les applications prothétiques (prothèses de hanche, de genou...). Le chapitre A1 en particulier résume la partie la plus aboutie de mes recherches : il se veut aussi exhaustif que possible sur la zircone biomédicale, allant des aspects purement matériaux (transformation de phase, renforcement...) aux propriétés d'usage, en insistant sur les mécanismes de dégradation. Le chapitre A2 tente de discerner les matériaux céramiques et composites du futur en orthopédie : zircones cériées ou stabilisées au magnésium, matériaux non oxydes... La partie B s'intéresse aux céramiques bioactives, plutôt utilisées pour les applications de substitution osseuse. Ces céramiques étant trop fragiles, cette partie propose plusieurs pistes pour améliorer leurs propriétés mécaniques. Ce sont soit des matériaux ou composites purement céramiques (bioverres et matériaux poreux à gradient de fonctions dans la partie B1), soit des composites céramique – polymère (partie B2). Il est difficile de parler de biocéramiques sans parler de leurs propriétés biologiques. C'est par choix qu'elles ont été écartées de ce mémoire. En effet, les différents matériaux que le lecteur verra défiler sous ses yeux ont la plupart du temps servi de support à des cultures cellulaires, afin de vérifier leur biocompatibilité. Mais d'une part je ne considère par avoir pris une part significative à cette caractérisation biologique, d'autre part la détailler ici aurait encore allongé un manuscrit déjà conséquent.
2

Développement de bioverre poreux ostéoinducteur pour application à l'orthopédie et à l'ingénierie tissulaire

Lefebvre, Leila 05 November 2007 (has links) (PDF)
Ce mémoire porte sur le développement de substituts osseux macroporeux à base de bioverre 45S5. Ce verre est obtenu par fusion de poudre inorganique et trempe. Sa haute teneur en sodium et calcium ainsi que la présence de phosphore rendent ce matériau instable en présence de solutions aqueuses, ce qui lui confère une bioactivité élevée, c'est-à-dire une grande capacité à favoriser les processus conduisant à la genèse d'un os. Cette bioactivité est mise en évidence par la précipitation d'Hydroxyapatite carbonatée (HAC) à la surface des particules. Le procédé d'élaboration de blocs poreux nécessite une étape de consolidation, frittage, mettant en jeu des températures allant jusqu'à 1000°C. Dans cet intervalle de température, le bioverre 45S5 subit différentes transformations structurales qui peuvent influencer ce processus ainsi que ses propriétés biologiques. Cinq transformations sont identifiées : une transition vitreuse, une démixtion engendrant une phase riche en silice et une phase riche en phosphore, la cristallisation de la phase riche en silice, la cristallisation de la phase riche en phosphore, une seconde transition vitreuse et la fusion de la vitro céramique. L'étude de ces transformations conduit à une meilleure connaissance du comportement thermique du bioverre 45S5 et apporte la possibilité d'un contrôle de la cristallisation par la mise en place de courbes TTT. Après identification précise de ces transformations, leur influence sur le frittage est mise en évidence, notamment par modélisation : un nouveau modèle a été mis au point pouvant s'appliquer à tous les verres subissant une démixtion préalable à la cristallisation. Des cinétiques isothermes de frittage montrent qu'il est impossible d'obtenir une tenue mécanique élevée en évitant la cristallisation, le traitement thermique doit obligatoirement se faire au-dessus de 850°C, second stade significatif de frittage. Afin de connaître l'influence des transformations sur la bioactivité du verre, des cinétiques de formation d'HAC ont été réalisées. Celle-ci montrent que lorsque le degré de cristallisation de la phase Na2CaSi2O6 augmente, la bioactivité diminue mais reste encore présente. Par contre l'effet inverse est observé dans le cas de la cristallisation de la phase phosphate qui participerait donc au processus de corrosion du matériau. Des blocs poreux ont été réalisés par différentes techniques. Des blocs macroporeux de structure homogène et interconnectée ont été obtenus par freeze casting et par imprégnation de mousse. Cette dernière technique permet d'obtenir des substituts osseux de forme et de taille de pores variable. On montre que ces blocs sont également bioactifs et que l'épaisseur de la couche d'HAC formée à leur surface augmente avec le temps d'immersion. Ces blocs sont ensuite testés in vitro par l'intermédiaire de cultures cellulaire. Nous avons montré que des ostéoblastes pouvaient s'accrocher, proliférer et synthétiser de la matrice extracellulaire sur des blocs poreux à base de bioverre 45S5.
3

Modélisation biomécanique et étude de la fonctionnalisation d’un implant personnalisé de reconstruction mandibulaire en titane poreux / Biomechanical modelization and fonctionalization analysis of a patient-specific porous titanium implant for mandibular reconstruction

Schouman, Thomas 15 December 2016 (has links)
Plusieurs études rapportent l’intérêt de structures poreuses synthétiques reproduisant la micro-architecture osseuse pour obtenir une régénération des pertes de substance osseuses. La fusion laser sélective de titane permet de fabriquer des implants poreux aux propriétés mécaniques très proches de celles de l’os et au potentiel d’ostéointégration élevé. Néanmoins, la recolonisation osseuse des pores de ces implants peut être limitée par leurs propriétés élastiques que nous considérons surdimensionnées. Nous avons mis au point une étude expérimentale chez la brebis afin d’évaluer l’influence des propriétés élastiques de ces implants, utilisés dans des pertes de substance mandibulaires, sur leur recolonisation osseuse. Des implants poreux et contrôles permettant une reprise intégrale de la sollicitation mécanique ont été développés. Deux groupes de six brebis ont été équipés d’implants poreux et d’implants contrôles controlatéraux de raideur variable. La régénération osseuse au sein des implants a été évaluée par caractérisation mécanique des interfaces os–implant et par la mesure du volume osseux néoformé à partir d’acquisitions micro-CT. Les implants poreux ont permis une meilleure régénération osseuse que les implants contrôles. Les implants poreux à la raideur la plus basse ont montré une régénération osseuse significativement plus élevée que les autres implants poreux. Un modèle en éléments finis a été développé afin d’optimiser la fixation des implants et la transmission des contraintes aux interfaces os-implant. / Several articles report on the regeneration of bone defects using synthetic porous structures mimicking bone micro-architecture. Porous implants exhibiting mechanical properties close to that of bone tissue with enhanced osseointegration ability can be manufactured by means of selective laser melting of titanium. However, bone growth into the pores of such implant could be limited due to oversized elastic properties. We implemented an experimental study with ewes to assess the influence of the overall stiffness of these implants on bone ingrowth in critical-size mandibular defects. Fully load-bearing porous and control implants of varying overall stiffness were developed and implanted in two groups of six ewes. Bone ingrowth was assessed by mechanical characterization of bone-implant interfaces and by the measurement of the newly formed bone volume using micro-CT imaging. Higher bone ingrowth was identified in porous implants compared to control implants. Low-stiffness porous implants exhibited significantly higher bone ingrowth as compared to porous implants with stiffness closer to that of the missing bone. A finite elements model was developed to improve bone fixation of the implant and load transfer through the bone-implant interfaces.
4

Synthèse, caractérisation et évaluation biologique d'apatites phosphocalciques carbo silicatées / Synthesis, characterization and biological evaluation of silicated and carbonated hydroxyapatites

Boyer, Antoine 17 April 2014 (has links)
La substitution ionique apparait comme une des possibilités pour moduler la bioactivité de l’hydroxyapatite (HA), matériau couramment employé comme substitut osseux. L’incorporation simultanée d’ions carbonates et silicates dans la structure apatitique pourrait permettre de coupler les propriétés de résorption et de dissolution des apatites carbonatées avec le rôle métabolique important du silicium dans le tissu conjonctif.Des poudres d'hydroxyapatites phosphocalciques substituées en carbonates et en silicates de formule Ca10 x+y(PO4)6-x-y(CO3)x(SiO4)y(OH)2-x+y (avec 0 ≤ y ≤ x ≤ 2 et x+y ≤ 2, C Si HA), ont été synthétisées par précipitation en milieu aqueux. L’originalité de cette synthèse réside essentiellement dans l’emploi de réactifs parfaitement solubles et miscibles dans l’eau. L’incorporation des carbonates et des silicates en substitution des phosphates a lieu dès la précipitation. Les poudres obtenues sont monophasiques, cristallines et de structure apatitique.Les caractérisations physico-chimiques des poudres ont mis en évidence l’existence d’interactions entre les carbonates (A et B) et les silicates au sein de la maille apatitique. La décarbonatation des sites B, synonyme de décomposition de la phase C-Si-HA, a pu être décalée à de plus hautes températures avec l’emploi du CO2 comme atmosphère de calcination. Le frittage de céramiques denses et monophasiques en C Si HA destinée à une première évaluation biologique a donc été possible. La culture in vitro de cellules souches mésenchymateuses C3H10T1/2 à la surface de céramiques de composition C0,8 Si0,4 HA a mis en évidence leur biocompatibilité et des propriétés ostéoconductives équivalentes à celles de l’HA. / Ionic substitution appears as one possibility to modulate the bioactivity of hydroxyapatite (HA), which is a material commonly used as bone substitute due to its chemical and crystallographic similarities with bone mineral part. The simultaneous incorporation of silicates and carbonate ions in the apatite structure could allow coupling the resorption and dissolution properties of carbonate apatite with the important metabolic role of silicon in the connective tissue.Co-substituted hydroxyapatite powders, of assumed composition Ca10 x+y(PO4)6-x-y(CO3)x(SiO4)y(OH)2-x+y (with 0 ≤ y ≤ x ≤ 2 et x+y ≤ 2, C Si HA), with controlled amount of carbonate (x) and silicate groups (y), were synthesized by means of a wet precipitation method. The innovative character of this synthesis process lies in the use of completely soluble and miscible reagents in water. According to this method, silicates and carbonates substitution for phosphate ions into the apatitic structure occurs from precipitation. The powders obtained are monophasic, crystalline and apatitic.The physicochemical characterizations of powders revealed the existence of interactions between carbonates (A and B) and silicates within the apatitic structure. C Si HA phase decomposes when B-type carbonate are released from the structure. The use of CO2 throughout the heat treatment allows to shift the B sites decarbonatation to higher temperature than under inert atmosphere. The sintering of dense and monophasic ceramic in C Si HA was realized. In vitro culture of mesenchymal stem cells C3H10T1/2 on the surface ceramics showed equivalent biocompatibility and osteoconductive properties between HA and C-Si-HA (x=0.8, y=0.4) phases.
5

Contribution de l'analyse mécanique à l'étude des implants et des biomatériaux dentaires

Faudemer, Gonzague 14 February 2013 (has links)
La solution la plus favorable cliniquement au remplacement des dents absentes est aujourd’hui la mise en place d’implants dentaires. Cette technique nécessite la maîtrise de plusieurs problématiques qui s’articulent autour des interfaces du système. Celles-ci sont au nombre de trois soit : l’interface os-implant, l’interface implant-pilier prothétique et l’interface pilier prothétique-prothèse. Dans cette étude, nous analysons les matériaux mis en présence au sein des interfaces et ce, par le biais de l’analyse mécanique afin d’apporter une contribution objective au choix clinique des matériaux par les praticiens. Les substituts osseux sont ainsi étudiés sous le prisme de leur stabilité mécanique, servant de trame à la reconstruction osseuse au contact de l’implant. Plusieurs systèmes implantaires (ensemble implant-pilier prothétique) sont ensuite étudiés pour en évaluer également la stabilité, gage de solidité du système et d’absence de dévissage. Enfin, plusieurs polymères dentaires sont évalués et comparés afin d’établir leur apport dans la solidité du complexe implanto-prothétique. / Today, the most favorable clinical solution for replacing absent teeth are dental implants. Several problems has to be addressed to master this technique, in particular those concerning the design of the many interfaces of this system. The three main interfaces are : the bone-implant junction, the implant-prosthetic pillar contact and prosthetic pillar-prosthesis assembly. In this study, the mechanical behavior of the constitutive materials of the system is evaluated to supply unbiased criteria to the practitioners for selecting the right materials in clinical conditions. Thus, bones substitutes are studied to evaluate their mechanical stability which is necessary condition to ensure bone reconstruction in contact with the implant surface. Then, several implant systems (implant + prosthetic pillar) are tested to estimate their stability, which guaranty solid system and prevent from any unscrewing failure. Finally, several dental polymers are evaluated and compared to establish their contribution in the implanto-prosthetic system robustness.
6

Contribution de l'analyse mécanique à l'étude des implants et des biomatériaux dentaires

Faudemer, Gonzague 14 February 2013 (has links) (PDF)
La solution la plus favorable cliniquement au remplacement des dents absentes est aujourd'hui la mise en place d'implants dentaires. Cette technique nécessite la maîtrise de plusieurs problématiques qui s'articulent autour des interfaces du système. Celles-ci sont au nombre de trois soit : l'interface os-implant, l'interface implant-pilier prothétique et l'interface pilier prothétique-prothèse. Dans cette étude, nous analysons les matériaux mis en présence au sein des interfaces et ce, par le biais de l'analyse mécanique afin d'apporter une contribution objective au choix clinique des matériaux par les praticiens. Les substituts osseux sont ainsi étudiés sous le prisme de leur stabilité mécanique, servant de trame à la reconstruction osseuse au contact de l'implant. Plusieurs systèmes implantaires (ensemble implant-pilier prothétique) sont ensuite étudiés pour en évaluer également la stabilité, gage de solidité du système et d'absence de dévissage. Enfin, plusieurs polymères dentaires sont évalués et comparés afin d'établir leur apport dans la solidité du complexe implanto-prothétique.
7

Synthèse, caractérisation et évaluation biologique d'apatites phosphocalciques carbo silicatées

Boyer, Antoine 17 April 2014 (has links) (PDF)
La substitution ionique apparait comme une des possibilités pour moduler la bioactivité de l'hydroxyapatite (HA), matériau couramment employé comme substitut osseux. L'incorporation simultanée d'ions carbonates et silicates dans la structure apatitique pourrait permettre de coupler les propriétés de résorption et de dissolution des apatites carbonatées avec le rôle métabolique important du silicium dans le tissu conjonctif.Des poudres d'hydroxyapatites phosphocalciques substituées en carbonates et en silicates de formule Ca10 x+y(PO4)6-x-y(CO3)x(SiO4)y(OH)2-x+y (avec 0 ≤ y ≤ x ≤ 2 et x+y ≤ 2, C Si HA), ont été synthétisées par précipitation en milieu aqueux. L'originalité de cette synthèse réside essentiellement dans l'emploi de réactifs parfaitement solubles et miscibles dans l'eau. L'incorporation des carbonates et des silicates en substitution des phosphates a lieu dès la précipitation. Les poudres obtenues sont monophasiques, cristallines et de structure apatitique.Les caractérisations physico-chimiques des poudres ont mis en évidence l'existence d'interactions entre les carbonates (A et B) et les silicates au sein de la maille apatitique. La décarbonatation des sites B, synonyme de décomposition de la phase C-Si-HA, a pu être décalée à de plus hautes températures avec l'emploi du CO2 comme atmosphère de calcination. Le frittage de céramiques denses et monophasiques en C Si HA destinée à une première évaluation biologique a donc été possible. La culture in vitro de cellules souches mésenchymateuses C3H10T1/2 à la surface de céramiques de composition C0,8 Si0,4 HA a mis en évidence leur biocompatibilité et des propriétés ostéoconductives équivalentes à celles de l'HA.
8

Elaboration de céramiques phosphocalciques pour l'ingénierie tissulaire osseuse : étude de l’influence des propriétés physico-chimiques des matériaux sur le comportement biologique in vitro / Elaboration of phosphocalcic ceramics for bone tissue engineering : influence of physico-chemical properties of materials on the biological behavior in vitro

Germaini, Marie-Michèle 24 January 2017 (has links)
Cette thèse transdisciplinaire réalisée en collaboration avec le laboratoire SPCTS (Sciences des Procédés Céramiques et Traitement de Surface) et l’EA 3842 (Homéostasie cellulaire et pathologies) de l’université de Limoges est un projet de recherche à l’interface entre la biologie et la chimie et a été consacrée à l’étude de l’influence des propriétés physico-chimiques de biocéramiques de phosphate de calcium sur leur comportement biologique in vitro.L’exploration des processus d’interaction entre matériaux et cellules reste une problématique scientifique de premier plan tant d’un point de vue fondamental qu’appliqué pour la mise au point de biomatériaux performants. L’objectif final est d’optimiser l’efficacité thérapeutique des céramiques phosphocalciques comme matériaux de substitution pour la régénération osseuse. La première partie de la thèse est une revue bibliographique générale présentant la problématique actuelle abordée en lien avec les besoins cliniques et les limitations des études actuelles. Les connaissances sur la biologie du tissu osseux sain ainsi que les aspects de régulation du processus de remodelage osseux ont également été abordés dans ce chapitre. Ce chapitre se termine par une synthèse bibliographique sur les biomatériaux et la régénération osseuse. Le chapitre 2 est relatif à la synthèse puis à la caractérisation physico-chimique des matériaux céramiques. Des céramiques de trois compositions chimiques : HA (hydroxyapatite : Ca10(PO4)6(OH)2 , SiHA (hydroxyapatite silicatée : Ca10(PO4)5,6(SiO4)0,42(OH)1,6 et CHA (hydroxyapatite carbonatée : Ca9,5(PO4)5,5(CO3)0,48(OH)1,08(CO3)0,23 , chacune avec deux microstructures différentes : dense ou poreuse, ont été élaborées et rigoureusement caractérisées (porosité, topographie de surface, mouillabilité, potentiel zêta, taille des grains, distribution et taille des pores, surface spécifique). Le chapitre 3 décrit l’approche expérimentale employée pour l’évaluation biologique des interactions matériaux/cellules explorées dans ce travail. Les analyses biologiques ont été réalisées avec deux lignées cellulaires différentes. La lignée cellulaire pré-ostéoblastique MC3T3-E1 et la lignée cellulaire de monocytes/macrophages, précurseurs des ostéoclastes RAW 264.7, (très importantes pour les aspects osseux, mais moins souvent explorées que les lignées ostéoblastiques dans la littérature). Enfin, le chapitre 4 reporte et commente les résultats biologiques obtenus dans ce travail. Tous les biomatériaux évalués dans cette étude sont biocompatibles, néanmoins, le biomatériau poreux CHA s’est avéré le plus prometteur des six variantes de biomatériaux testés. / This transdisciplinary thesis, carried out in collaboration with the SPCTS laboratory (sciences of ceramic processes and surface treatment) and EA 3842 (Cellular homoeostasis and pathologies) of the University of Limoges, is a research project at the interface between biology and chemistry and was devoted to the study of the influence of the physico-chemical properties of calcium phosphate bioceramics on their biological behavior in vitro.The exploration of the processes of interaction between materials and cells remains a major scientific issue, both from a fundamental and applied point of view for the development of highperformance biomaterials. The ultimate objective is to optimize the therapeutic efficiency of phosphocalcic ceramics as substitute materials for bone regeneration.The first part of the thesis is a general bibliographic review presenting the current issues tackled with the clinical needs and limitations of current studies. Knowledge of the biology of healthy bone tissue as well as the regulatory aspects of the bone remodeling process was also discussed in this chapter. It includes also a bibliographic overview of biomaterials and bone regeneration.Chapter 2 relates to the synthesis and the physico-chemical characterization of ceramic materials. HA (hydroxyapatite: Ca10 (PO4) 6 (OH) 2, SiHA (silicated hydroxyapatite: Ca10 (PO4) 5.6 (SiO4) 0.42 (OH) 1.6 and CHA (carbonated hydroxyapatite: Ca9.5 (PO4) 5.5 (CO3) 0.48 (OH) 1.08 (CO3) 0.23, ceramics each with two different microstructures : dense or porous, have been elaborated and thoroughly characterized (porosity, surface topography, wettability, zeta potential, grain size, pore size and distribution, specific surface area). Chapter 3 describes the experimental approach used for the biological evaluation of the interactions between materials and cells. Biological analyzes were performed with two different cell lines. The pre-osteoblastic MC3T3-E1 cell line and the RAW 264.7cell line of monocytes / macrophages, precursors of the steoclasts, (very important for the bone aspects, but less often explored than the osteoblastic lines in the literature). Finally, Chapter 4 reports and comments on the biological results obtained in this work. All biomaterials evaluated are biocompatible, nevertheless, the porous CHA biomaterial was the most promising of the six variants of biomaterials tested.

Page generated in 0.0548 seconds