Spelling suggestions: "subject:"superalgèbre"" "subject:"superalgebras""
1 |
Quelques propriétés des représentations de la super-algèbre de Lie gl(m, n) / Some properties of representations of the Lie superalgebra gl(m,n)Drouot, François 04 December 2008 (has links)
Cette thèse consiste en une étude des représentations de dimension finie de la super-algèbre de Lie gl(m,n). Dans le premier chapitre nous rappelons des résultats sur ces super-algèbres de Lie. Dans le second chapitre nous étudions les représentations simples de gl(2,2). Ces modules peuvent être obtenus comme quotient de modules induits dont on connaît les suites de composition, ce qui nous permet de calculer une formule des caractères finie explicite. Dans le troisième chapitre nous étudions les représentations d'une déformation quantique de l'algèbre enveloppante de gl(m,n). Nous rappelons tout d'abord la construction des bases cristallines pour les facteurs directs de puissances tensorielles de la représentation standard. Nous montrons, en affaiblissant la notion de cristal, l'existence de bases cristallines pour des modules qui ne sont pas semi-simpes, et nous donnons une méthode pour les construire. Le quatrième chapitre porte sur le dévissage du bloc maximalement atypique de la catégorie des représentations de dimension finie de gl(2,2). La connaissance de la sous-catégorie pleine des modules projectifs maximalement atypiques nous permet de reconstituer la catégorie. Nous étudions dans un premier temps les modules projectifs indécomposables et nous donnons leurs suites de Loewy. Puis dans un deuxième temps nous étudions leurs morphismes. Pour terminer nous formulons une conjecturons sur la composition de ces morphismes. / This thesis is a study of finite dimensional representations of the Lie superalgebra gl(m,n). In the first chapter we recall some results on these Lie superalgebra. In the second chapter we study the simple representations of gl(2.2). These modules can be obtained as quotient of some induced modules, the knowledge of the composition series of these modules allow us to compute an explicit finite character forumula for simple modules. In the third chapter we look at representations of a quantum deformation of the universal enveloping algebra of gl(m,n). We first recall the construction of crystal bases for the direct factors of a tensor power of the standard representation. We show by weakening the definition of crystal, that there exist crystal bases for non-semisimple modules, and we give a way to construct them. The fourth chapter focuses on the understanding of the maximaly atypical block of the category of finite dimensional representations of gl(2.2). Knowing the full subcategory of projective maximally atypical modules allows us to reconstruct the category. First, we study the projective indecomposable modules, and we compute their Loewy series. We then study their morphisms. Finally we make a conjecture on the composition of those morphisms.
|
2 |
Structures de Nambu et super-théorème d'Amitsur-LevitzkiGIÉ, Pierre-Alexandre 19 November 2004 (has links) (PDF)
Dans cette étude, nous cherchons à établir des identités polynomiales dans le cadre de la combinatoire non-commutative. Dans un premier temps, nous présentons de nouvelles structures de Nambu-Lie, en classifiant totalement les (n-1)-structures sur l'espace R^n, et en donnant une méthode permettant de construire des crochets de tout ordre sur une algèbre de Lie. Nous proposons également une quantification de l'une de nos structures, grâce aux polynômes standards et aux algèbres de Clifford d'indice pair. Dans un second moment, en généralisant la notion de polynôme standard au cas des algèbres graduées, nous cherchons à démontrer une version du théorème d'Amitsur-Levitzki sur les superalgèbres de Lie osp(1,2n) en suivant une démonstration de Kostant dans le cas classique. Nous sommes amenés à démontrer des super-versions des propriétés et résultats nécessaires à la démonstration dans le cas classique, notamment en définissant un super-opérateur de transgression de Cartan-Chevalley.
|
3 |
Polynômes orthogonaux : processus limites et modèles exactement résolublesLemay, Jean-Michel 06 1900 (has links)
Cette thèse porte sur l’étude des familles de polynômes orthogonaux et leurs liens avec les modèles
exactement résolubles. Elle se décline en deux parties. Dans la première, on caractérise quatre
nouvelles familles de polynômes orthogonaux à l’aide de processus limites appliqués à des familles
appartenant aux schéma d’Askey et de Bannai-Ito. Des troncations singulières des polynômes de
Wilson et d’Askey-Wilson sont considérées. Deux premières extensions bivariées de polynômes
appartenant au tableau de Bannai-Ito sont également introduites. La deuxième partie présente
quatre modèles exactement résolubles en lien avec la théorie des polynômes orthogonaux. Les
propriétés de transfert parfait d’information quantique et de partage d’intrication d’un modèle de
chaîne de spin XX dont les couplage sont liés aux polynômes de para-Racah sont examinées. Deux
modèles superintégrables contenant des opérateurs de réflexions sont proposés. Leurs solutions
sont obtenues et leurs symétries s’encodent respectivement dans l’algèbre de Bannai-Ito de rang
deux et de rang arbitraire ce qui mène à conjecturer l’apparition des polynômes de Bannai-Ito
multivariés comme coefficients de connection. Finalement, par la théorie des représentations de la
superalgèbre osp(1|2), deux identités de convolution pour des familles de polynômes du tableau de
Bannai-Ito sont offertes. Une réalisation en termes d’opérateurs de Dunkl conduit à une fonction
génératrice bilinéaire pour les polynômes de Big −1 Jacobi. / This thesis is concerned with the study of families of orthogonal polynomials and their connection
to exactly solvable models. It comprises two parts. In the first one, four novel families of orthogonal
polynomials are caracterized through limit processes applied to families belonging to the Askey
and Bannai-Ito schemes. Singular truncations of the Wilson and Askey-Wilson polynomials are
considered. The first two bivariate extensions of families of the Bannai-Ito tableau are also
introduced. The second part presents four exactly solvable models connected to the theory of
orthogonal polynomials. The perfect transfer of quantum information and entanglement generation
properties of an XX spin chain model whose couplings are linked to the para-Racah polynomials are
examined. Two superintegrable models containing reflexion operators are proposed. Their solutions
are obtained and their symmetries are encoded respectively in the rank two and arbitrary rank
Bannai-Ito algebra which leads to conjecture the apparition of multivariate Bannai-Ito polynomials
as overlaps. Finally, via the representation theory of the osp(1|2) Lie superalgebra, two convolution
identities for families of orthogonal polynomials of the Bannai-Ito tableau are offered. Realizations
in terms of Dunkl operators lead to a bilinear generating function for the Big −1 Jacobi polynomials.
|
4 |
Extensions supersymétriques des équations structurelles des supervariétés plongées dans des superespacesBertrand, Sébastien 06 1900 (has links)
No description available.
|
Page generated in 0.0658 seconds