• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 36
  • 13
  • 12
  • 12
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 199
  • 61
  • 43
  • 39
  • 33
  • 32
  • 31
  • 26
  • 25
  • 23
  • 21
  • 21
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Solution Precursor Plasma Spray Deposition of Super-capacitor Electrode Materials

Golozar, Mehdi 07 December 2011 (has links)
Double layer capacitors owe their large capacitance to high specific surface area carbon-based electrode materials adhered to a current collector via an adhesive. However, recent studies attribute greater electrical energy storage capacity to transition metal oxides/nitrides: a new generation of electrode materials for use in super-capacitors with mixed double-layer and pseudo-capacitive properties. Solution precursor plasma spray deposition is a technique that allows coatings to be fabricated with fine grain sizes, high porosity levels, and high surface area; characteristics ideal for application as super-capacitor electrodes. This investigation established conditions for deposition of porous, high specific surface area α-MoO3. It further identified a two-step temperature-programmed reaction for topotactic phase transformation of the α-MoO3 deposits into high specific surface area molybdenum nitrides of higher conductivity and higher electrochemical stability window. The electrochemical behavior of molybdenum oxide/nitride deposits was also studied in order to assess their potential for use in super-capacitors.
122

Solution Precursor Plasma Spray Deposition of Super-capacitor Electrode Materials

Golozar, Mehdi 07 December 2011 (has links)
Double layer capacitors owe their large capacitance to high specific surface area carbon-based electrode materials adhered to a current collector via an adhesive. However, recent studies attribute greater electrical energy storage capacity to transition metal oxides/nitrides: a new generation of electrode materials for use in super-capacitors with mixed double-layer and pseudo-capacitive properties. Solution precursor plasma spray deposition is a technique that allows coatings to be fabricated with fine grain sizes, high porosity levels, and high surface area; characteristics ideal for application as super-capacitor electrodes. This investigation established conditions for deposition of porous, high specific surface area α-MoO3. It further identified a two-step temperature-programmed reaction for topotactic phase transformation of the α-MoO3 deposits into high specific surface area molybdenum nitrides of higher conductivity and higher electrochemical stability window. The electrochemical behavior of molybdenum oxide/nitride deposits was also studied in order to assess their potential for use in super-capacitors.
123

Paper-based Supercapacitors

Andres, Britta January 2014 (has links)
The growing market of mobile electronic devices, renewable off-grid energy sources and electric vehicles requires high-performance energy storage devices. Rechargeable batteries are usually the first choice due to their high energy density. However, supercapacitors have a higher power density and longer life-time compared to batteries. For some applications supercapacitors are more suitable than batteries. They can also be used to complement batteries in order to extend a battery's life-time. The use of supercapacitors is, however, still limited due to their high costs. Most commercially available supercapacitors contain expensive electrolytes and costly electrode materials. In this thesis I will present the concept of cost efficient, paper-based supercapacitors. The idea is to produce supercapacitors with low-cost, green materials and inexpensive production processes. We show that supercapacitor electrodes can be produced by coating graphite on paper. Roll-to-roll techniques known from the paper industry can be employed to facilitate an economic large-scale production. We investigated the influence of paper on the supercapacitor's performance and discussed its role as passive component. Furthermore, we used chemically reduced graphite oxide (CRGO) and a CRGO-gold nanoparticle composite to produce electrodes for supercapacitors. The highest specific capacitance was achieved with the CRGO-gold nanoparticle electrodes. However, materials produced by chemical synthesis and intercalation of nanoparticles are too costly for a large-scale production of inexpensive supercapacitor electrodes. Therefore, we introduced the idea of producing graphene and similar nano-sized materials in a high-pressure homogenizer. Layered materials like graphite can be exfoliated when subjected to high shear forces. In order to form mechanical stable electrodes, binders need to be added. Nanofibrillated cellulose (NFC) can be used as binder to improve the mechanical stability of the porous electrodes. Furthermore, NFC can be prepared in a high-pressure homogenizer and we aim to produce both NFC and graphene simultaneously to obtain a NFC-graphene composite. The addition of 10% NFC in ratio to the amount of graphite, increased the supercapacitor's capacitance, enhanced the dispersion stability of homogenized graphite and improved the mechanical stability of graphite electrodes in both dry and wet conditions. Scanning electron microscope images of the electrode's cross section revealed that NFC changed the internal structure of graphite electrodes depending on the type of graphite used. Thus, we discussed the influence of NFC and the electrode structure on the capacitance of supercapacitors.
124

High Performance Microbial Fuel Cells and Supercapacitors Using Micro-Electro-Mechanical System (MEMS) Technology

January 2016 (has links)
abstract: A Microbial fuel cell (MFC) is a bio-inspired carbon-neutral, renewable electrochemical converter to extract electricity from catabolic reaction of micro-organisms. It is a promising technology capable of directly converting the abundant biomass on the planet into electricity and potentially alleviate the emerging global warming and energy crisis. The current and power density of MFCs are low compared with conventional energy conversion techniques. Since its debut in 2002, many studies have been performed by adopting a variety of new configurations and structures to improve the power density. The reported maximum areal and volumetric power densities range from 19 mW/m2 to 1.57 W/m2 and from 6.3 W/m3 to 392 W/m3, respectively, which are still low compared with conventional energy conversion techniques. In this dissertation, the impact of scaling effect on the performance of MFCs are investigated, and it is found that by scaling down the characteristic length of MFCs, the surface area to volume ratio increases and the current and power density improves. As a result, a miniaturized MFC fabricated by Micro-Electro-Mechanical System(MEMS) technology with gold anode is presented in this dissertation, which demonstrate a high power density of 3300 W/m3. The performance of the MEMS MFC is further improved by adopting anodes with higher surface area to volume ratio, such as carbon nanotube (CNT) and graphene based anodes, and the maximum power density is further improved to a record high power density of 11220 W/m3. A novel supercapacitor by regulating the respiration of the bacteria is also presented, and a high power density of 531.2 A/m2 (1,060,000 A/m3) and 197.5 W/m2 (395,000 W/m3), respectively, are marked, which are one to two orders of magnitude higher than any previously reported microbial electrochemical techniques. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2016
125

Séparateurs macroporeux innovants à base de poly(fluorure de vinylidène) pour supercondensateurs / Novel Macroporous PVdF based separators for supercapacitors

Karabelli, Duygu 08 July 2011 (has links)
La technologie supercondensateur a fait l'objet d'un grand intérêt ces dernières années. Cependant, tandis qu'une grande attention a été donnée aux électrodes, aux électrolytes et aux électrolytes de polymère gélifiée, peu d'études ont été centrées sur l'amélioration des séparateurs macroporeux. Dans le cadre du projet SEPBATT/DURAMAT, les séparateurs macroporeux à base de poly(fluorure de vinylidène) (PVdF) ont été préparés par inversion de phase, pour les supercondensateurs. Nos membranes présentent également une bonne stabilité thermique, en revanche leurs propriétés mécaniques sont significativement plus faibles que celles des membranes commerciales. De plus le séparateur PVdF de porosité 80% rempli par l'électrolyte à base d'AN atteint, à 25°C, 18mS/cm, tandis que dans les mêmes conditions mais avec le séparateur commercial en cellulose, la conductivité n'atteint que 10 mS/cm. Ce travail a été complété par l'étude de techniques de renforcement (addition de composites, réticulation par l'irradiation) appliquées aux membranes précédemment préparées, pour augmenter leur tenue mécanique. Ces membranes ont montré un renforcement des propriétés mécaniques sans nuire aux propriétés de conduction ionique (15 mS/cm). / Abstract In recent years a strong interest has been devoted to supercapacitor technology. However, while great attention has been paid to electrodes, electrolytes and gel polymer electrolytes, only few reports have been dedicated to macroporous separators. Hereby, in the frame of project SEPBATT/DURAMAT, macroporous poly(vinylidene fluoride) (PVdF) based separators were prepared by phase inversion technique for applications of supercapacitors. Their mechanical properties are relatively lower than those of commercial membranes nevertheless such membranes exhibit good thermal stability. Whereas commercial cellulose based separators filled with tetraethyl ammonium tetrafluoroborate + CH3CN electrolyte show 10 mS/cm (at 25°C), our PVdF macroporous separators exhibit significantly higher conductivity (18 mS/cm) under the same conditions. This study was completed with application of reinforcement techniques (addition of composites, crosslinking by irradiation) on to previously prepared membranes in order to increase their mechanical strength. Reinforced membranes showed good high mechanical strength whereas the ionic conductivity is almost maintained (15mS/cm).
126

Nouveaux matériaux pour les supercondensateurs : développement et caractérisation / New materials for supercapacitors : development and characterization

Dabonot, Aurore 29 September 2014 (has links)
Ces travaux de thèse portent sur l'étude de matériaux d'électrodes de supercondensateurs. Ce sont des dispositifs de stockage qui possèdent une densité de puissance importante de l'ordre de plusieurs kW/kg. Des systèmes asymétriques ont été développés dans le but d'augmenter la densité d'énergie de ces dispositifs, tout en essayant de maintenir une densité de puissance élevée. Ils font intervenir une électrode capacitive classique de carbone activé et une électrode faradique. Concernant cette électrode non-bloquante, deux orientations ont été abordées : • Principalement, l'utilisation de titanate de lithium Li4Ti5O12 qui est un matériau d'insertion du lithium habituellement utilisé dans les électrodes de batteries Li-ion. Il est apparu que pour les systèmes hybrides comportant une électrode négative composée uniquement de Li4Ti5O12, la densité d'énergie chute fortement au-delà de 1 kW/kg. L'utilisation d'électrodes négatives composites carbone activé + Li4Ti5O12 est donc préconisée pour maintenir de bonnes performances à la fois en énergie et en puissance. Ainsi, pour une densité de puissance de 2 kW/kg, la densité d'énergie du système hybride développé est encore 1,5 fois supérieure à celle d'un système symétrique carbone activé / carbone activé testé dans les mêmes conditions. • En second plan, l'utilisation du dioxyde de manganèse MnO2, matériau pseudo-capacitif qui fait intervenir des réactions redox. L'étude a porté sur la synthèse de l'oxyde métallique puis sur celle d'un matériau composite réalisé par auto-assemblage. Le but est d'agréger de fines particules de dioxyde de manganèse autour d'un squelette carboné. Une telle microstructure présente l'avantage d'offrir une grande surface spécifique de matière active directement en contact avec un réseau possédant une bonne conductivité électronique. Le matériau composite MnO2 + VGCF obtenu a été testé en électrode positive dans un système asymétrique face à une électrode négative de carbone activé. Cela a permis de multiplier par 1,5 l'étendue de la fenêtre de stabilité de l'électrolyte aqueux par rapport à un système carbone activé / carbone activé. Enfin, dans une optique exploratoire, l'utilisation du diamant en tant que matériau d'électrode de supercondensateur a été étudiée puisqu'il présente dans l'eau une fenêtre de stabilité électrochimique importante d'environ 3 V. L'intérêt de synthétiser des structures tridimensionnelles a été mis en évidence, en particulier une architecture de diamant « en aiguilles » permet de multiplier par 10 la capacité surfacique par rapport à une architecture plane. / This work deals with the study of electrode materials for supercapacitors. These storage devices have a significant power density of several kW/kg. Asymmetric systems have been developed in order to increase the energy density of these components while trying to maintain a high power density. They consist of a classic capacitive electrode made of activated carbon and a faradaic electrode. Two approaches have been broached regarding that non-blocking electrode: • Mainly, the use of lithium titanate Li4Ti5O12 which is a lithium insertion material usually used in Li-ion battery electrodes. It appeared that for hybrid systems including a negative electrode only made of Li4Ti5O12, the energy density is greatly reduced beyond 1 kW/kg. The use of composite negative electrodes made of activated carbon and Li4Ti5O12 is recommended so as to maintain good performances both in energy and power. Thus, for a power density of 2 kW/kg, the energy density of the developed hybrid system remains 1.5 superior to the one of an activated carbon / activated carbon symmetric system tested in the same conditions. • Secondly, the use of manganese dioxide MnO2, a pseudo-capacitive material involving redox reactions. The study has been focused on the synthesis of the metal oxide and then on the synthesis of a composite material by self-assembly. The aim is to aggregate small manganese dioxide particles around a carbon backbone. Such a microstructure offers a high specific surface area of active material directly in contact with a network having a good electronic conductivity. The obtained MnO2 + VGCF composite material has been tested as positive electrode in an asymmetric system, facing an activated carbon electrode. Thus, the stability window of the aqueous electrolyte has been multiplied by 1.5 compared to an activated carbon / activated carbon system. Finally, diamond has been considered as a supercapacitor electrode material in an explorative view since it offers a wide electrochemical stability window in water (around 3 V). The interest for tridimensional structures has been evidenced, e.g. a “needles” architecture allows to obtain a surfacic capacity ten times higher than the one obtained with a flat architecture.
127

Stimulus-Responsive Micro-Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window

Zhang, Panpan, Zhu, Feng, Wang, Faxing, Wang, Jinhui, Dong, Renhao, Zhuang, Xiaodong, Schmidt, Oliver G., Feng, Xinliang 07 May 2018 (has links) (PDF)
No description available.
128

Towards Smart Motile Autonomous Robotic Tubular Systems (S.M.A.R.T.S)

Bandari, Vineeth 22 September 2021 (has links)
The development of synthetic life once envisioned by Feynman and Flynn many decades ago has stimulated significant research in materials science, biology, neuroscience, robotics, and computer science. The cross-disciplinary effort and advanced technologies in soft miniature robotics have addressed some of the significant challenges of actuation, sensing, and subsystem integration. An ideal Soft motile miniaturised robot (SMMRs) has innovative applications on a small scale, for instance, drug delivery to environmental remediation. Such a system demands smart integration of micro/nano components such as engines, actuators, sensors, controllers, and power supplies, making it possible to implement complex missions controlled wirelessly. Such an autonomous SMMR spans over multiple science and technology disciplines and requires innovative microsystem design and materials. Over the past decade, tremendous efforts have been made towards mastering one of such a SMMR's essential components: micro-engine. Chemical fuels and magnetic fields have been employed to power the micro-engines. However, it was realized seven years ago in work of TU-Chemnitz Professorship of Material Systems in Nanoelectronics and institute of investigative Nanosciences Leibniz IFW Dresden including Chemnitz side. Write explicitly that it is essential to combine the micro-engine with other functional microelectronic components to create an individually addressable smart and motile microsystem. This PhD work summarises the progress in designing and developing a novel flexible and motile soft micro autonomous robotic tubular systems (SMARTS) different from the well-studied single-tube catalytic micro-engines and other reported micromotors. Our systems incorporate polymeric nanomembranes fabricated by photolithography and rolled-up nanotechnology, which provide twin-tube structures and a spacious platform between the engines used to integrate onboard electronics. Energy can be wirelessly transferred to the catalytic tubular engine, allowing control over the SMARTS direction. Furthermore, to have more functionality onboard, a micro-robotic arm was integrated with remote triggering ability by inductive heating. To make the entire system smart, it is necessary to develop an onboard processor. However, the use of conventional Si technology is technically challenging due to the high thermal processes. We developed complex integrated circuits (IC) using novel single crystal-like organic and ZnO-based transistors to overcome this issue. Furthermore, a novel fabrication methodology that combines with six primary components of an autonomous system, namely motion, structure, onboard energy, processor, actuators, and sensors to developing novel SMARTSs, is being pursued and discussed.:List of acronyms 8 Chapter 1. Introduction 12 1.1 Motivation 14 1.2 Objectives 17 1.3 Thesis structure 18 Chapter 2. Building blocks of micro synthetic life 19 2.1 Soft structure 20 2.1.1 Polymorphic adaptability 20 2.1.2 Dynamic reconfigurability 20 2.1.3 Continuous motion 21 2.2 Locomotion 21 2.2.1 Aquatic 22 2.2.2 State-of-the-art aquatic SMMR 24 2.2.3 State-of-the-art terrestrial SMMR 25 2.2.4 State-of-the-art aerial SMMR 27 2.3 Onboard sensing 28 2.3.1 State-of-the-art 3D and flexible sensors systems 28 2.4 Onboard actuation 30 2.4.1 State-of-the-art actuators 30 2.5 Embedded onboard intelligence 32 2.5.1 State-of-the-art flexible integrated circuits 32 2.6 Onboard energy 33 2.6.1 State-of-the-art micro energy storage 34 2.6.2 State-of-the-art onboard energy harvesting SMMR 35 Chapter 3. Technology overview 38 3.1 Structure 38 3.1.1 Self-assembled “swiss-roll” architectures 40 3.1.2 Polymeric “swiss-roll” architectures 41 3.2 Motion: micro tubes as propulsion engines 44 3.2.1 Chemical engines 44 3.3 Embedded onboard intelligence 46 3.3.1 Thin film transistor 46 3.3.2 Basic characteristics of MOSFETs 48 3.4 Growth dynamics of organic single crystal films 51 3.4.1 Thin films growth dynamics 52 3.5 Powering SMARTSs 55 3.5.1 Onboard energy storage 56 3.5.2 Wireless power delivery 59 3.6 Integrable micro-arm 63 3.6.1 Stimuli-responsive actuator 63 3.6.2 Remote activation 64 Chapter 4. Fabrication and characterization 65 4.1 Thin film fabrication technology 65 4.1.1 Photolithography 65 4.1.2 E-beam deposition 68 4.1.3 Sputtering 69 4.1.4 Physical vapour deposition 70 4.1.5 Atomic layer deposition 71 4.1.6 Ion beam etching 72 4.2 Characterization methods 73 4.2.1 Atomic force microscopy 73 4.2.2 Scanning electron microscopy 74 4.2.3 Cyclic voltammetry 75 4.2.4 Galvanic charge discharge 77 4.2.5 Electrochemical impedance spectroscopy 78 Chapter 5. Development of soft micro autonomous robotic tubular systems (SMARTS) 81 5.1 Soft, flexible and robust polymeric platform 82 5.2 Locomotion of SMARTS 84 5.2.1 Assembly of polymeric tubular jet engines 84 5.2.2 Catalytic self-propulsion of soft motile microsystem 85 5.2.3 Propulsion power generated by the catalyst reaction 87 5.3 Onboard energy for SMARTS 89 5.3.1 Onboard wireless energy 90 5.3.2 Onboard ‘zero-pitch’ micro receiver coil 90 5.3.3 Evaluation of the micro receiver coil 91 5.4 Onboard energy storage 92 5.4.1 Fabrication of nano-biosupercapacitors 93 5.4.2 Electrochemical performance of “Swiss-roll” nBSC 97 5.4.3 Self-discharge performance and Bio enhancement: 98 5.4.4 Electrochemical and structural life time performance 100 5.4.5 Performance under physiologically conditions 101 5.4.6 Electrolyte temperature and flow dependent performance 102 5.4.7 Performance under hemodynamic conditions 105 5.4.8 Biocompatibility of nBSCs 105 5.5 Wireless powering and autarkic operation of SMARTS 108 5.5.1 Remote activation of an onboard IR-LED 108 5.5.2 Wireless locomotion of SMARTS 109 5.5.3 Effect of magnetic moment on SMARTS locomotion 111 5.5.4 Full 2D wireless locomotion control of SMARTS 112 5.5.5 Self-powered monolithic pH sensor system 114 5.6 Onboard remote actuation 119 5.6.1 Fabrication of integrable micro-arm 120 5.6.2 Remote actuation of integrable micro-arm 122 5.7 Flexibility of SMARTS 122 5.8 Onboard integrated electronics 123 5.9 Onboard organic electronics 124 5.9.1 Growth of BTBT-T6 as active semiconductor material 125 5.9.2 Confined Growth of BTBT-T6 to form Single-Crystal-Like Domain 128 5.9.3 Fabrication of OFET based on Single-Crystal-Like BTBT-T6 129 5.9.4 Carrier injection optimization 132 5.9.5 Performance of single-crystal-like BTBT-T6-OFET 133 5.10 Onboard flexible metal oxide electronics 136 5.10.1 Fabrication flexible ZnO TFT 138 5.10.2 Performance of ZnO TFT 139 5.10.3 Flexible integrated circuits 140 5.10.4 Logic gates 140 Chapter 6. Summary 142 Chapter 7. Conclusion and outlook 144 References 147 List of Figures & tables 173 Versicherung 177 Acknowledgement 178 Research achievements 180 Research highlight 183 Cover pages 184 Theses 188 Curriculum-vitae 191
129

Koncepční návrh elektromobilu / Conceptual Design of Electromobile

Szabó, Ákos January 2016 (has links)
This diploma thesis deals with concept design of electric car with electric in-wheel motors. The designing work starts with modeling of dynamic through acceleration and range of electric car. This was necessary to choose important components. These components were placed based on given criteria. The full model of electric car was designed in program Creo Parametric. In the final chapter stress analysis via program Ansys is presented.
130

Integrated Micro-Supercapacitor: Design, Fabrication, and Functionalization

Wang, Jinhui 31 July 2020 (has links)
Owing to the advantages of high power density, fast charge/discharge rates as well as long lifetime, micro-supercapacitor (MSC) has drawn much attention for its potential application in miniaturized electronics. Many efforts have been devoted to the design and fabrication of high-performance MSCs. On the other hand, the integration of MSCs with multiple functional materials and devices has emerged with the development of portable and wearable microelectronics. To date, the biggest challenge in research is to develop a reliable and smart fabrication technology/strategy, which can integrate diverse objective materials into compact devices. Rolled-up nanotechnology is a unique approach to self-assemble 2D nanomembranes into 3D structures by using strain engineering. This self-assembly process smartly combines top-down and bottom-up methods to pattern functional nanomaterials into ordered 3D micro- and nanostructure arrays. One promising advantage of this approach is that such a self-assembled structure can endow micro-devices with functionality and high performance under a limited footprint area. The first part of this thesis focuses on the fabrication of planar interdigital MSCs with thermo-responsive function. Based on this work, the second part involves the research on novel tubular MSC which was fabricated by employing shapeable materials and strain engineering. A polymeric framework consisting of swelling hydrogel and polyimide layers ensures excellent ion transport between electrodes and provides efficient self-protection of the tubular MSC against external compression. Such tubular device also exhibits excellent areal capacitance, and an improved cycling stability compared to that of planar MSCs. The third part introduces the step-by-step experiments towards the fabrication and optimization of inorganic strained layer-based tubular MSC. Al2O3/Ni/Cr/Al2O3 strained nanomembrane is designed and can successfully drive the rolling up of MnO2 electrodes with a high yield under magnetic fields.:Chapter 1. Introduction 1 1.1. General background 1 1.2. Motivation of this work 2 1.2.1. Integration of micro-supercapacitors 2 1.2.2. Thermo-responsible micro-supercapacitors 2 1.2.3. 3D tubular functional micro-supercapacitors 2 1.3. Dissertation structure 3 Chapter 2. Overview of micro-supercapacitors 5 2.1. Introduction to MSCs 5 2.1.1. Capacitor 5 2.1.2. Electric double-layer capacitor 5 2.1.3. Pseudocapacitor 7 2.2. MSC configuration 8 2.3. Fabrication strategies of interdigital MSCs 9 2.4. Fabrication methods of active materials 12 2.5. Functionalization of supercapacitors 15 2.5.1. Tribo/piezoelectric driven self-charging function 15 2.5.2. Solar cell driven self-charging function 16 2.5.3. Electrochromic function 18 2.5.4. Self-healing function 19 2.5.5. Sensing function 20 2.5.6. Stretchable function 21 2.5.7. Thermo-responsive function 22 2.5.8. Photo-switchable function 23 2.6. Conclusion and outlook 23 Chapter 3. Overview of rolled-up technology 27 3.1. 3D self-assembly of the inorganic nanomembrane 27 3.1.1. Introduction 27 3.1.2. Rolled-up nanomembranes for capacitors 28 3.1.2. Rolled-up nanomembranes for Li-ion batteries 30 3.2. 3D self-assembly of the polymeric layers 32 3.2.1. Introduction 32 3.2.2. Self-assembled polymeric layers for microelectronics 35 Chapter 4. Experimental methods 39 4.1. Deposition methods 39 4.1.1. Photolithography 39 4.1.2. Electron beam evaporation 39 4.1.3. Atomic layer deposition 40 4.1.4. Electrochemical deposition 41 4.2. Characterization methods 43 4.2.1. Scanning electron microscopy and focused ion beam milling 43 4.2.2. Electrochemical characterization 43 Chapter 5. An integrated MSC with thermo-responsible function 47 5.1. Introduction 47 5.2. Fabrication and characterization of thermo-responsible MSCs 47 5.2.1. Single thermo-responsible MSCs 47 5.2.2. The array of thermo-responsible MSC 51 5.3. Conclusion 53 Chapter 6. Self-assembly of 3D tubular MSCs 55 6.1. Introduction 55 6.2. Fabrication of tubular MSCs 57 6.2.1. Diagram of processing flow 57 6.2.2. Polymeric layer stack 58 6.2.3. Microelectrodes, self-assembly and capsulation 59 6.3. Results and discussion 60 6.3.1. On-chip and free-standing sample morphology 60 6.3.2. Electrochemical characterization of tubular MSCs 64 6.3.3. Self-protection function of tubular structures 72 6.3.4. Assembly of tubular structures in series/parallel 76 6.4. Conclusion 80 Chapter 7. Tubular nanomembranes for MSCs 81 7.1. Introduction 81 7.2. Self-assembly of Al2O3/Ti/Cr/Al2O3 strained nanomembranes 82 7.2.1. Fabrication method 82 7.2.2. Results and discussion 83 7.3. Self-assembly of Al2O3/Ni/Cr/Al2O3 strained nanomembranes 87 7.3.1. Fabrication method 87 7.3.2. Results and discussion 88 7.4. Conclusion 92 Chapter 8. Summary and outlook 93 8.1. Summary 93 8.2. Outlook 94 Bibliography 95 List of Figures 109 List of Tables 117 Theses 119 Acknowledgment 121 Publications and presentations 123 Curriculum Vita 125

Page generated in 0.07 seconds