• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • Tagged with
  • 36
  • 36
  • 28
  • 27
  • 13
  • 10
  • 10
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Extensão de GENSMAC para escoamentos de fluidos governados pelos modelos integrais Maxwell e K-BKZ / Extension of GENSMAC to incompressible flows governed by the Maxwell and K-BKZ integral models

Araújo, Manoel Silvino Batalha de 22 May 2006 (has links)
Este trabalho tem como objetivo desenvolver um método numérico para simular escoamentos incompressíveis, isotérmicos, confinados ou com superfícies livres, de fuidos viscoelásticos governados pelos modelos integrais de Maxwell e K-BKZ (Kaye-Bernstein, Kearsley e Zapas). A técnica numérica apresentada é uma extensão do método GENSMAC (Tomé McKee - J. Comp. Phys., (110), pp 171--186, 1994 ) para a solução das equações de conservação, juntamente com as equações constitutivas integrais de Maxwell e K-BKZ. As equações governantes são resolvidas pelo método de diferenças finitas em uma malha deslocada. O tensor de Finger, B_t\'(t) é calculado com base nas idéias do método de campos de deformação (Peters et al. - J. Non-Newtonian Fluid Mech. (89), de maneira que não há a necessidade de seguir a trajetória da partícula de fuido para descrever a história de deformação da partícula. Uma abordagem diferente para a discretização do instante passado é utilizada e o tensor de Finger e o tensor das tensões são calculados utilizando um método de segunda ordem. A validação do método numérico descrito nesse trabalho foi feita utilizando o escoamento em um canal bidimensional e a solução numérica obtida para a velocidade e para as componentes de tensão com o modelo de Maxwell foram comparadas com as respectivas soluções analíticas no estado estacionário, mostrando excelente concordância. Os resultados numéricos para a simulação do escoamento em uma contração planar 4 : 1 mostraram bons resultados, tanto qualitativos quanto quantitativos, quando comparados com os resultados experimentais de Quinzani et al. ( J. Non-Newtonian Fluid Mech. (52), pp 1?36, 1994 ). Além disso, utilizando os modelos Maxwel e K-BKZ, o escoamento em uma contração planar 4 : 1 foi simulado para vários números de Weissenberg e os resultados obtidos estão de acordo com os encontrados na literatura. Resultados numéricos de escoamentos com superfícies livres modelados pelas equações integrais de Maxwell e K-BKZ são apresentados. Em particular, a simulação numérica do jato oscilante para diferentes números de Weissenberg e diferentes números de Reynolds é apresentada. / The aim of this work is to develop a numerical technique for simulating incompressible, isothermal, free surface (also con¯ned) viscoelastic flows of fuids governed by the integral models of Maxwell and K-BKZ (Kaye-Bernstein, Kearsley and Zapas). The numerical technique described herein is an extension of the GENSMAC method (Tome and McKee, J. Comput. Phys., 110, pp. 171-186, 1994) to the solution of the momentuum and mass conservation equations together with the integral constitutive Maxwell and K-BKZ equations. The governing equations are solved by the finite difference method on a staggered grid using a Marker-and-Cell approach. The fluid is represented by marker particles on the fluid surface only. This provides the visualization and location of the fluid free surface so that the free surface stress conditions can be applied. The Finger tensor Bt0(t) is computed using the ideias of the deformation fields method (Peters et al. J. Non-Newtonian Fluid Mech., 89, pp. 209-228, 2001) so that it is not necessary to track a fluid particle in order to calculate its deformation history. However, in this work modifcations to the deformation fields method are introduced: the past time is discretized using a different formula, the Finger tensor Bt0(x; t) is obtained by a second order method and the stress tensor ? (x; t) is computed by a second order quadrature formula. The numerical method presented in this work is validated by simulating the flow of a Maxwell fluid in a two-dimensional channel and the numerical solutions of the velocity and the stress components are compared with the respective analytic solutions providing a good agreement. Further, the flow through a 4:1 planar contraction of a specific fuid studied experimentally by Quinzani et al. (J. Non-Newtonian Fluid Mech., 52, pp. 1-36, 1994) was simulated and the numerical results were compared qualitatively and quantitatively with the experimental results and very good agreement was obtained. The Maxwell and the K-BKZ models were applied to simulate the 4:1 planar contraction problem using various Weissenberg numbers and the numerical results were in agreement with those published in the literature. Finally, numerical results of free surface flows using the Maxwell and K-BKZ integral constitutive equations are presented. In particular, the numerical simulation of jet buckling using several Weissenberg numbers and various Reynolds numbers are presented
32

Simulação de escoamento de fluidos em superfícies definidas por pontos não organizados / Fluid flow simulation in surfaces defined by non-organized points

Estacio, Kémelli Campanharo 24 October 2008 (has links)
Atualmente diversos produtos são fabricados por meio de injeção de polímeros, num processo denominado moldagem por injeção: material fundido é injetado em um molde no qual resfria e endurece. Contudo, ao contrário de outros processos de produção, a qualidade da peça criada por meio de moldagem por injeção não depende apenas do material e da sua forma geométrica, mas também da maneira na qual o material é processado durante a moldagem. Por esse motivo, o uso de modelagem matemática e simulações numéricas tem aumentado consideravelmente como maneira de auxiliar o processo de produção e tem-se tornado uma ferramenta indispensável. Desta forma, este projeto tem o propósito de simular o escoamento de fluidos durante a fase de preenchimento do processo de moldagem por injeção, utilizando o modelo 21/2-dimensional, composto por uma equação bidimensional para a pressão, conhecida como equação de Hele-Shaw, e uma equação tridimensional para a temperatura do fluido. Um modelo bidimensional para a temperatura é também desenvolvido e apresentado. Este projeto de doutorado propõe duas estratégias numéricas para a solução da equação de Hele-Shaw. A primeira delas é baseada em uma formulação euleriana do método Smoothed Particle Hydrodynamics, onde os pontos utilizados na discretização não se movem, e não há utilização de malhas. A segunda estratégia é baseada na criação de malhas dinamicamente construídas na região do molde que já encontra-se parcialmente cheio de fluido e subseqüente aplicação do método Control Volume Finite Element Method. Uma estratégia dinâmica do método semi lagrangeano é apresentada e aplicada à solução da equação bidimensional da temperatura. O projeto também pretende investigar três novas abordagens para o tratamento da superfície livre. Duas delas são baseadas na técnica Volume of Fluid e uma delas é uma adaptação meshless do método Front-Tracking. O comportamento não newtoniano do fluido é caracterizado por uma família de modelos de viscosidade. Testes numéricos indicando a confiabilidade das metodologias propostas são conduzidos / Currently, several plastic products are manufactured by polymer injection, in a process named injection molding: molten material is injected into a thin mold where it cools and solidifies. However, unlike other manufacturing processes, the quality of injection-molded parts depends not only on the material and shape of the part, but also on how the material is processed throughout the molding. For this reason, the use of mathematical modelling and numerical simulations has been increasing in order to assist in the manufacturing process, and it has become an essential tool. Therefore, this Sc.D. project has the purpose of simulating the fluid flow during the filling stage of the injection molding process, using the 21/2-dimensional model, compounded by a two-dimensional equation for the pressure field (also known as Hele-Shaw equation) and a three-dimensional equation for the temperature of the fluid. A simpler two-dimensional model for the temperature field is also derived and presented. This project proposes two novel numerical strategies for the solution of Hele-Shaw equation. The first one is based on an Eulerian formulation of the Smoothed Particle Hydrodynamics method, where the particles used in the discretization do not move along as the simulation evolves, thereby avoing the use of meshes. In the second strategy, local active dual patches are constructed on-the-fly for each active point to form a dynamic virtual mesh of active elements that evolves with the moving interface, then the Control Volume Finite Element Method is applied for the pressure field approximation. A dynamic approach of the semi-Lagrangian scheme is applied to the solution of the two-dimensional temperature equation. The project also assesses three new approaches for the treatment of the free surface of the fluid flow. Two of them are based on the Volume of Fluid technique and one of them is a meshless adaptation of the Front-Tracking method. The non-Newtonian behavior is characterized by a family of generalized viscosity models. Supporting numerical tests and performance studies, which assess the accuracy and the reliability of the proposed methodologies, are conducted
33

Extensão de GENSMAC para escoamentos de fluidos governados pelos modelos integrais Maxwell e K-BKZ / Extension of GENSMAC to incompressible flows governed by the Maxwell and K-BKZ integral models

Manoel Silvino Batalha de Araújo 22 May 2006 (has links)
Este trabalho tem como objetivo desenvolver um método numérico para simular escoamentos incompressíveis, isotérmicos, confinados ou com superfícies livres, de fuidos viscoelásticos governados pelos modelos integrais de Maxwell e K-BKZ (Kaye-Bernstein, Kearsley e Zapas). A técnica numérica apresentada é uma extensão do método GENSMAC (Tomé McKee - J. Comp. Phys., (110), pp 171--186, 1994 ) para a solução das equações de conservação, juntamente com as equações constitutivas integrais de Maxwell e K-BKZ. As equações governantes são resolvidas pelo método de diferenças finitas em uma malha deslocada. O tensor de Finger, B_t\'(t) é calculado com base nas idéias do método de campos de deformação (Peters et al. - J. Non-Newtonian Fluid Mech. (89), de maneira que não há a necessidade de seguir a trajetória da partícula de fuido para descrever a história de deformação da partícula. Uma abordagem diferente para a discretização do instante passado é utilizada e o tensor de Finger e o tensor das tensões são calculados utilizando um método de segunda ordem. A validação do método numérico descrito nesse trabalho foi feita utilizando o escoamento em um canal bidimensional e a solução numérica obtida para a velocidade e para as componentes de tensão com o modelo de Maxwell foram comparadas com as respectivas soluções analíticas no estado estacionário, mostrando excelente concordância. Os resultados numéricos para a simulação do escoamento em uma contração planar 4 : 1 mostraram bons resultados, tanto qualitativos quanto quantitativos, quando comparados com os resultados experimentais de Quinzani et al. ( J. Non-Newtonian Fluid Mech. (52), pp 1?36, 1994 ). Além disso, utilizando os modelos Maxwel e K-BKZ, o escoamento em uma contração planar 4 : 1 foi simulado para vários números de Weissenberg e os resultados obtidos estão de acordo com os encontrados na literatura. Resultados numéricos de escoamentos com superfícies livres modelados pelas equações integrais de Maxwell e K-BKZ são apresentados. Em particular, a simulação numérica do jato oscilante para diferentes números de Weissenberg e diferentes números de Reynolds é apresentada. / The aim of this work is to develop a numerical technique for simulating incompressible, isothermal, free surface (also con¯ned) viscoelastic flows of fuids governed by the integral models of Maxwell and K-BKZ (Kaye-Bernstein, Kearsley and Zapas). The numerical technique described herein is an extension of the GENSMAC method (Tome and McKee, J. Comput. Phys., 110, pp. 171-186, 1994) to the solution of the momentuum and mass conservation equations together with the integral constitutive Maxwell and K-BKZ equations. The governing equations are solved by the finite difference method on a staggered grid using a Marker-and-Cell approach. The fluid is represented by marker particles on the fluid surface only. This provides the visualization and location of the fluid free surface so that the free surface stress conditions can be applied. The Finger tensor Bt0(t) is computed using the ideias of the deformation fields method (Peters et al. J. Non-Newtonian Fluid Mech., 89, pp. 209-228, 2001) so that it is not necessary to track a fluid particle in order to calculate its deformation history. However, in this work modifcations to the deformation fields method are introduced: the past time is discretized using a different formula, the Finger tensor Bt0(x; t) is obtained by a second order method and the stress tensor ? (x; t) is computed by a second order quadrature formula. The numerical method presented in this work is validated by simulating the flow of a Maxwell fluid in a two-dimensional channel and the numerical solutions of the velocity and the stress components are compared with the respective analytic solutions providing a good agreement. Further, the flow through a 4:1 planar contraction of a specific fuid studied experimentally by Quinzani et al. (J. Non-Newtonian Fluid Mech., 52, pp. 1-36, 1994) was simulated and the numerical results were compared qualitatively and quantitatively with the experimental results and very good agreement was obtained. The Maxwell and the K-BKZ models were applied to simulate the 4:1 planar contraction problem using various Weissenberg numbers and the numerical results were in agreement with those published in the literature. Finally, numerical results of free surface flows using the Maxwell and K-BKZ integral constitutive equations are presented. In particular, the numerical simulation of jet buckling using several Weissenberg numbers and various Reynolds numbers are presented
34

Simulação de escoamento de fluidos em superfícies definidas por pontos não organizados / Fluid flow simulation in surfaces defined by non-organized points

Kémelli Campanharo Estacio 24 October 2008 (has links)
Atualmente diversos produtos são fabricados por meio de injeção de polímeros, num processo denominado moldagem por injeção: material fundido é injetado em um molde no qual resfria e endurece. Contudo, ao contrário de outros processos de produção, a qualidade da peça criada por meio de moldagem por injeção não depende apenas do material e da sua forma geométrica, mas também da maneira na qual o material é processado durante a moldagem. Por esse motivo, o uso de modelagem matemática e simulações numéricas tem aumentado consideravelmente como maneira de auxiliar o processo de produção e tem-se tornado uma ferramenta indispensável. Desta forma, este projeto tem o propósito de simular o escoamento de fluidos durante a fase de preenchimento do processo de moldagem por injeção, utilizando o modelo 21/2-dimensional, composto por uma equação bidimensional para a pressão, conhecida como equação de Hele-Shaw, e uma equação tridimensional para a temperatura do fluido. Um modelo bidimensional para a temperatura é também desenvolvido e apresentado. Este projeto de doutorado propõe duas estratégias numéricas para a solução da equação de Hele-Shaw. A primeira delas é baseada em uma formulação euleriana do método Smoothed Particle Hydrodynamics, onde os pontos utilizados na discretização não se movem, e não há utilização de malhas. A segunda estratégia é baseada na criação de malhas dinamicamente construídas na região do molde que já encontra-se parcialmente cheio de fluido e subseqüente aplicação do método Control Volume Finite Element Method. Uma estratégia dinâmica do método semi lagrangeano é apresentada e aplicada à solução da equação bidimensional da temperatura. O projeto também pretende investigar três novas abordagens para o tratamento da superfície livre. Duas delas são baseadas na técnica Volume of Fluid e uma delas é uma adaptação meshless do método Front-Tracking. O comportamento não newtoniano do fluido é caracterizado por uma família de modelos de viscosidade. Testes numéricos indicando a confiabilidade das metodologias propostas são conduzidos / Currently, several plastic products are manufactured by polymer injection, in a process named injection molding: molten material is injected into a thin mold where it cools and solidifies. However, unlike other manufacturing processes, the quality of injection-molded parts depends not only on the material and shape of the part, but also on how the material is processed throughout the molding. For this reason, the use of mathematical modelling and numerical simulations has been increasing in order to assist in the manufacturing process, and it has become an essential tool. Therefore, this Sc.D. project has the purpose of simulating the fluid flow during the filling stage of the injection molding process, using the 21/2-dimensional model, compounded by a two-dimensional equation for the pressure field (also known as Hele-Shaw equation) and a three-dimensional equation for the temperature of the fluid. A simpler two-dimensional model for the temperature field is also derived and presented. This project proposes two novel numerical strategies for the solution of Hele-Shaw equation. The first one is based on an Eulerian formulation of the Smoothed Particle Hydrodynamics method, where the particles used in the discretization do not move along as the simulation evolves, thereby avoing the use of meshes. In the second strategy, local active dual patches are constructed on-the-fly for each active point to form a dynamic virtual mesh of active elements that evolves with the moving interface, then the Control Volume Finite Element Method is applied for the pressure field approximation. A dynamic approach of the semi-Lagrangian scheme is applied to the solution of the two-dimensional temperature equation. The project also assesses three new approaches for the treatment of the free surface of the fluid flow. Two of them are based on the Volume of Fluid technique and one of them is a meshless adaptation of the Front-Tracking method. The non-Newtonian behavior is characterized by a family of generalized viscosity models. Supporting numerical tests and performance studies, which assess the accuracy and the reliability of the proposed methodologies, are conducted
35

Análise e implementação de esquemas de convecção e modelos de turbulência para simulação de escoamentos incompressíveis envolvendo superfícies livres. / Analysis and implementation of convection schemes and turbulence models for simulation of incompressible flows involving free surfaces.

Ferreira, Valdemir Garcia 26 September 2001 (has links)
Uma parte significativa dos escoamentos encontrados em aplicações tecnológicas é caracterizada por envolver altos números de Reynolds, principalmente aqueles em regime turbulento e com superfície livre. Obter soluções numéricas representativas para essa classe de problemas é extremamente difícil, devido à natureza não-linear das equações diferenciais parciais envolvidas nos modelos. Conseqüentemente, o tema tem sido uma das principais preocupações da comunidade científica moderna em dinâmica de fluidos computacional. Aproximações de primeira ordem para os termos convectivos são as mais adequadas para amortecer oscilações que estão associadas às aproximações de alta ordem não-limitadas. Todavia, elas introduzem dissipação artificial nas representações discretas comprometendo os resultados numéricos. Para minimizar esse efeito não-físico e, ao mesmo tempo, conseguir aproximações incondicionalmente estáveis, é indispensável adotar uma estratégia que combine aproximações de primeira ordem com as de ordem mais alta e que leve em conta a propagação de informações físicas. Os resultados dessa composição são os esquemas "upwind" limitados de alta ordem. Em geral, espera-se que esses esquemas sejam apropriados para a representação das derivadas convectivas nos modelos de turbulência kappa-varepsilon. No contexto de diferenças finitas, a presente tese dedica-se à solução numérica das equações de Navier-Stokes no regime de números de Reynolds elevados. Em particular, ela contém uma análise de algoritmos monotônicos e antidifusivos e modelos de turbulência kappa-varepsilon para a simulação de escoamentos incompressíveis envolvendo superfícies livres. Esquemas de convecção são implementados nos códigos GENSMAC para proporcionar um tratamento robusto dos termos convectivos nas equações de transporte. Duas versões do modelo kappa-varepsilon de turbulência são implementadas nos códigos GENSMAC, para problems bidimensionais e com simetria radial, para descrever os efeitos da turbulência sobre o escoamento médio. Resultados numéricos de escoamentos com simetria radial são comparados com resultados experimentais e analíticos. Simulações numéricas de problemas tridimensionais complexos são apresentadas para avaliar o desempenho de esquemas "upwind". Finalmente, os modelos de turbulência kappa-varepsilon são utilizados para a simulação de escoamentos confinados e com superfícies livres. / A considerable part of fluid flows encountered in technological applications is characterised by involving high-Reynolds numbers, especially those in turbulent regime and with free-surface. It is extremely difficult to obtain representative numerical solutions for this class of problems, due to the non-linear nature of the partial differential equations involved in the models. Consequently, this subject has been one of main concerns in the modern computational fluid dynamics community. First-order approximation to the convective terms is one of the most appropriate to smooth out oscilations/instabilities which are associated with high-order unlimited approximation. However, it introduces numerical dissipation in the discrete representation jeopardizing the numerical results. In order to minimize this non-physical effect and, at the same time, to obtain unconditionally stable approximation, it is essential to adopt a strategy that combines first and high-order approximations and takes into account the propagation of physical information. The results of this composition are the high-order bounded upwind techniques. In general, it is expected that these algorithms are satisfactory for the representation of the convective derivatives in the kappa-varepsilon turbulence model. In the context of finite-difference, the present thesis deals with the numerical solution of the Navier-Stokes equations at high-Reynolds number regimes. In particular, it contains an analysis of monotonic and anti-difusive convection schemes and kappa-varepsilon turbulence models for the simulation of free-surface fluid flows. Upwinding methods are implemented into the GENSMAC codes to provide a robust treatment of the convective terms in the transport equations. Two versions of the K-Epsilon turbulence model are implemented into the two-dimensional and axisymmetric GENSMAC codes, in order to describe the turbulent effects on the average flow. Numerical results of axisymmetric flows are compared with experimental and analytical results. Numerical simulations of complex three-dimensional problems are presented to assess the performance of high-order bounded upwind schemes. Finally, the K-Epsilon turbulence models are employed in the simulation of confined and free-surface flows.
36

Análise e implementação de esquemas de convecção e modelos de turbulência para simulação de escoamentos incompressíveis envolvendo superfícies livres. / Analysis and implementation of convection schemes and turbulence models for simulation of incompressible flows involving free surfaces.

Valdemir Garcia Ferreira 26 September 2001 (has links)
Uma parte significativa dos escoamentos encontrados em aplicações tecnológicas é caracterizada por envolver altos números de Reynolds, principalmente aqueles em regime turbulento e com superfície livre. Obter soluções numéricas representativas para essa classe de problemas é extremamente difícil, devido à natureza não-linear das equações diferenciais parciais envolvidas nos modelos. Conseqüentemente, o tema tem sido uma das principais preocupações da comunidade científica moderna em dinâmica de fluidos computacional. Aproximações de primeira ordem para os termos convectivos são as mais adequadas para amortecer oscilações que estão associadas às aproximações de alta ordem não-limitadas. Todavia, elas introduzem dissipação artificial nas representações discretas comprometendo os resultados numéricos. Para minimizar esse efeito não-físico e, ao mesmo tempo, conseguir aproximações incondicionalmente estáveis, é indispensável adotar uma estratégia que combine aproximações de primeira ordem com as de ordem mais alta e que leve em conta a propagação de informações físicas. Os resultados dessa composição são os esquemas "upwind" limitados de alta ordem. Em geral, espera-se que esses esquemas sejam apropriados para a representação das derivadas convectivas nos modelos de turbulência kappa-varepsilon. No contexto de diferenças finitas, a presente tese dedica-se à solução numérica das equações de Navier-Stokes no regime de números de Reynolds elevados. Em particular, ela contém uma análise de algoritmos monotônicos e antidifusivos e modelos de turbulência kappa-varepsilon para a simulação de escoamentos incompressíveis envolvendo superfícies livres. Esquemas de convecção são implementados nos códigos GENSMAC para proporcionar um tratamento robusto dos termos convectivos nas equações de transporte. Duas versões do modelo kappa-varepsilon de turbulência são implementadas nos códigos GENSMAC, para problems bidimensionais e com simetria radial, para descrever os efeitos da turbulência sobre o escoamento médio. Resultados numéricos de escoamentos com simetria radial são comparados com resultados experimentais e analíticos. Simulações numéricas de problemas tridimensionais complexos são apresentadas para avaliar o desempenho de esquemas "upwind". Finalmente, os modelos de turbulência kappa-varepsilon são utilizados para a simulação de escoamentos confinados e com superfícies livres. / A considerable part of fluid flows encountered in technological applications is characterised by involving high-Reynolds numbers, especially those in turbulent regime and with free-surface. It is extremely difficult to obtain representative numerical solutions for this class of problems, due to the non-linear nature of the partial differential equations involved in the models. Consequently, this subject has been one of main concerns in the modern computational fluid dynamics community. First-order approximation to the convective terms is one of the most appropriate to smooth out oscilations/instabilities which are associated with high-order unlimited approximation. However, it introduces numerical dissipation in the discrete representation jeopardizing the numerical results. In order to minimize this non-physical effect and, at the same time, to obtain unconditionally stable approximation, it is essential to adopt a strategy that combines first and high-order approximations and takes into account the propagation of physical information. The results of this composition are the high-order bounded upwind techniques. In general, it is expected that these algorithms are satisfactory for the representation of the convective derivatives in the kappa-varepsilon turbulence model. In the context of finite-difference, the present thesis deals with the numerical solution of the Navier-Stokes equations at high-Reynolds number regimes. In particular, it contains an analysis of monotonic and anti-difusive convection schemes and kappa-varepsilon turbulence models for the simulation of free-surface fluid flows. Upwinding methods are implemented into the GENSMAC codes to provide a robust treatment of the convective terms in the transport equations. Two versions of the K-Epsilon turbulence model are implemented into the two-dimensional and axisymmetric GENSMAC codes, in order to describe the turbulent effects on the average flow. Numerical results of axisymmetric flows are compared with experimental and analytical results. Numerical simulations of complex three-dimensional problems are presented to assess the performance of high-order bounded upwind schemes. Finally, the K-Epsilon turbulence models are employed in the simulation of confined and free-surface flows.

Page generated in 0.0778 seconds