291 |
Supervised Learning models with ice hockey dataÁlvarez Robles, Enrique Josué January 2019 (has links)
The technology developments of the last years allow measuring data in almost every field and area nowadays, especially increasing the potential for analytics in branches in which not much analytics have been done due to complicated data access before. The increased number of interest in sports analytics is highly connected to the better technology now available for visual and physical sensors on the one hand and sports as upcoming economic topic holding potentially large revenues and therefore investing interest on the other hand. With the underlying database, precise strategies and individual performance improvements within the field of professional sports are no longer a question of (coach)experience but can be derived from models with statistical accuracy. This thesis aims to evaluate if the available data together with complex and simple supervised machine learning models could generalize from the training data to unseen situations by evaluating performance metrics. Data from games of the ice hockey team of Linköping for the season 2017/2018 is processed with supervised learning algorithms such as binary logistic regression and neural networks. The result of this first step is to determine the strategies of passes by considering both, attempted but failed and successful shots on goals during the game. For that, the original, raw data set was aggregated to game-specific data. After having detected the distinct strategies, they are classified due to their rate of success.
|
292 |
A NEURAL-NETWORK-BASED CONTROLLER FOR MISSED-THRUST INTERPLANETARY TRAJECTORY DESIGNPaul A Witsberger (12462006) 26 April 2022 (has links)
<p>The missed-thrust problem is a modern challenge in the field of mission design. While some methods exist to quantify its effects, there still exists room for improvement for algorithms which can fully anticipate and plan for a realistic set of missed-thrust events. The present work investigates the use of machine learning techniques to provide a robust controller for a low-thrust spacecraft. The spacecraft’s thrust vector is provided by a neural network controller which guides the spacecraft to the target along a trajectory that is robust to missed thrust, and the controller does not need to re-optimize any trajectories if it veers off its nominal course. The algorithms used to train the controller to account for missed thrust are supervised learning and neuroevolution. Supervised learning entails showing a neural network many examples of what inputs and outputs should look like, with the network learning over time to duplicate the patterns it has seen. Neuroevolution involves testing many neural networks on a problem, and using the principles of biological evolution and survival of the fittest to produce increasingly competitive networks. Preliminary results show that a controller designed with these methods provides mixed results, but performance can be greatly boosted if the controller’s output is used as an initial guess for an optimizer. With an optimizer, the success rate ranges from around 60% to 96% depending on the problem.</p>
<p><br></p>
<p>Additionally, this work conducts an analysis of a novel hyperbolic rendezvous strategy which was originally conceived by Dr. Buzz Aldrin. Instead of rendezvousing on the outbound leg of a hyperbolic orbit (traveling away from Earth), the spacecraft performs a rendezvous while on the inbound leg (traveling towards Earth). This allows for a relatively low Delta-v abort option for the spacecraft to return to Earth if a problem arose during rendezvous. Previous work that studied hyperbolic rendezvous has always assumed rendezvous on the outbound leg because the total Delta-v required (total propellant required) for the insertion alone is minimal with this strategy. However, I show that when an abort maneuver is taken into consideration, inserting on the inbound leg is both lower Delta-v overall, and also provides an abort window which is up to a full day longer.</p>
|
293 |
Bilinear Gaussian Radial Basis Function Networks for classification of repeated measurementsSjödin Hällstrand, Andreas January 2020 (has links)
The Growth Curve Model is a bilinear statistical model which can be used to analyse several groups of repeated measurements. Normally the Growth Curve Model is defined in such a way that the permitted sampling frequency of the repeated measurement is limited by the number of observed individuals in the data set.In this thesis, we examine the possibilities of utilizing highly frequently sampled measurements to increase classification accuracy for real world data. That is, we look at the case where the regular Growth Curve Model is not defined due to the relationship between the sampling frequency and the number of observed individuals. When working with this high frequency data, we develop a new method of basis selection for the regression analysis which yields what we call a Bilinear Gaussian Radial Basis Function Network (BGRBFN), which we then compare to more conventional polynomial and trigonometrical functional bases. Finally, we examine if Tikhonov regularization can be used to further increase the classification accuracy in the high frequency data case.Our findings suggest that the BGRBFN performs better than the conventional methods in both classification accuracy and functional approximability. The results also suggest that both high frequency data and furthermore Tikhonov regularization can be used to increase classification accuracy.
|
294 |
Winner Prediction of Blood Bowl 2 Matches with Binary ClassificationGustafsson, Andreas January 2019 (has links)
Being able to predict the outcome of a game is useful in many aspects. Such as,to aid designers in the process of understanding how the game is played by theplayers, as well as how to be able to balance the elements within the game aretwo of those aspects. If one could predict the outcome of games with certaintythe design process could possibly be evolved into more of an experiment basedapproach where one can observe cause and effect to some degree. It has previouslybeen shown that it is possible to predict outcomes of games to varying degrees ofsuccess. However, there is a lack of research which compares and evaluates severaldifferent models on the same domain with common aims. To narrow this identifiedgap an experiment is conducted to compare and analyze seven different classifierswithin the same domain. The classifiers are then ranked on accuracy against eachother with help of appropriate statistical methods. The classifiers compete onthe task of predicting which team will win or lose in a match of the game BloodBowl 2. For nuance three different datasets are made for the models to be trainedon. While the results vary between the models of the various datasets the general consensus has an identifiable pattern of rejections. The results also indicatea strong accuracy for Support Vector Machine and Logistic Regression across allthe datasets.
|
295 |
Stronger Together? An Ensemble of CNNs for Deepfakes Detection / Starkare Tillsammans? En Ensemble av CNNs för att Identifiera DeepfakesGardner, Angelica January 2020 (has links)
Deepfakes technology is a face swap technique that enables anyone to replace faces in a video, with highly realistic results. Despite its usefulness, if used maliciously, this technique can have a significant impact on society, for instance, through the spreading of fake news or cyberbullying. This makes the ability of deepfakes detection a problem of utmost importance. In this paper, I tackle the problem of deepfakes detection by identifying deepfakes forgeries in video sequences. Inspired by the state-of-the-art, I study the ensembling of different machine learning solutions built on convolutional neural networks (CNNs) and use these models as objects for comparison between ensemble and single model performances. Existing work in the research field of deepfakes detection suggests that escalated challenges posed by modern deepfake videos make it increasingly difficult for detection methods. I evaluate that claim by testing the detection performance of four single CNN models as well as six stacked ensembles on three modern deepfakes datasets. I compare various ensemble approaches to combine single models and in what way their predictions should be incorporated into the ensemble output. The results I found was that the best approach for deepfakes detection is to create an ensemble, though, the ensemble approach plays a crucial role in the detection performance. The final proposed solution is an ensemble of all available single models which use the concept of soft (weighted) voting to combine its base-learners’ predictions. Results show that this proposed solution significantly improved deepfakes detection performance and substantially outperformed all single models.
|
296 |
Semi-Supervised Learning Algorithm for Large Datasets Using Spark EnvironmentKacheria, Amar January 2021 (has links)
No description available.
|
297 |
Dynamic Information Density for Image Classification in an Active Learning FrameworkMorgan, Joshua Edward 01 May 2020 (has links)
No description available.
|
298 |
Evaluating The Predictability of Pseudo-Random Number Generators Using Supervised Machine Learning AlgorithmsApprey-Hermann, Joseph Kwame 20 May 2020 (has links)
No description available.
|
299 |
Essays on Machine Learning in International Conflict and Social NetworksKent, Daniel N. January 2020 (has links)
No description available.
|
300 |
Anomaly detection in surveillance camera dataSemerenska, Viktoriia January 2023 (has links)
The importance of detecting anomalies in surveillance camera data cannot be overemphasized. With the increasing availability of surveillance cameras in public and private locations, the need for reliable and effective methods to detect anomalous behavior has become critical to public safety. Anomaly detection algorithms can help identify potential threats in real time, allowing for rapid intervention and prevention of criminal activity. The examples of anomalies that can be detected by analyzing surveillance camera data include suspicious loitering or lingering, unattended bags or packages, crowd gatherings or dispersals, trespassing or unauthorized access, vandalism or property damage, violence or aggressive behavior, abnormal traffic patterns, missing or abducted persons, unusual pedestrian behavior, environmental anomalies. Detecting these anomalies in surveillance camera data can enable law enforcement, security personnel, and other relevant authorities to respond quickly and effectively to potential threats, ultimately contributing to a safer environment for all. Surveillance camera data contains a large amount of information that is difficult for humans to analyze in real time. In addition, the sheer volume of data generated by surveillance cameras makes manual analysis impractical. Therefore, the development of automated anomaly detection algorithms is crucial for effective and efficient surveillance. The goal of this master's thesis is to detect anomalies using video cameras with an embedded machine learning processor and video analytics, such as human behavior. For this purpose, the most appropriate machine learning techniques will be selected and after comparing the results of these techniques, the best anomaly detection technique for the given circumstances will be identified. To gather the evidence needed to answer the research questions, I will use a combination of methods appropriate to the study design. The study will follow a mixed-methods approach, combining a systematic literature review (SLR) and a formal experiment. In this study, we investigated the effectiveness of various machine learning algorithms in detecting anomalous human behavior in video surveillance data.
|
Page generated in 0.0998 seconds